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Messages
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Rendezvous
RPC and RMI
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Lesson 9



Distributed System
• No shared memory
• Communication with

messages
• Tighly coupled systems

– Processes alive at the same time
• Persistent systems

– Data stays even if processes die
• Fully distributed systems

– Everything goes
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Communication with Messages (4)

• Sender, receiver
• Synchronous/asynchronous communication
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Message Passing
• Synchronous communication

– Atomic action
– Both wait until communication complete

• Asynchronous communication
– Sender continues after giving the message to OS for delivery
– May get an acknowledgement later on

• Message received or not
• Addressing

– Some address for receiver process
• Process name, id, node/name, …

– Some address for the communication channel
• Port number, channel name, …

– Some address for requested service
• Broker will find out, sooner or later

– After message has been sent?
• Service address not known at service request time
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Usual case
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Synchronization levels (10)
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Synchronization levels (1/5)
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Synchronization levels (2/5)
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Synchronization levels (3/5)
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Synchronization levels (4/5)
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Synchronization levels (5/5)
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Message Passing
• Symmetric communication

– Cooperating processes at same level
– Both know about each others address
– Communication method for a fixed channel

• Asymmetric communication
– Different status for communicating processes
– Client-server model

• Server address known, client address given in request

• Broadcast communication
– Receiver not addressed directly
– Message sent to everybody (in one node?)
– Receivers may be limited in number

• Just one?
• Only the intended recipient will act on it?
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Wait Semantics
• Sender

– Continue after OS has taken the message
• Non-blocking send

– Continue after message reached receiver node
• Blocking send

– Continue after message reached receiver process
• Blocking send

• Receiver
– Continue only after message received

• Blocking receive
– Continue even if no message received

• Status indicated whether message received or not
• Non-blocking receive

1230.11.2009 Copyright Teemu Kerola 2008

Usual case

Usual case



Message Passing
• Data flow

– One-way
• Synchronous may be one-way
• Asynchronous is always one-way

– Two-way
• Synchronous may be two-way
• Two asynchronous communications

• Primitives
– One message at a time
– Need addresses for communicating processes
– Operating system level service
– Usually not programming language level construct

• Too primitive: need to know node id, process id, port
number,…
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data flow
vs.
control flow!
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Channels
• History of languages utilizing channels

– Guarded Commands
• Dijkstra, 1975

– Communicating Sequential
Processes

• CSP, Hoare, 1978
– Occam

• David May et al, 1983
• Hoare as consultant
• Inmos Transputer
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C.A.R. Hoare

David May

Edsger Dijkstra



Guarded Commands (Dijkstra)
• Way to describe predicate transformer semantics
• Communication not really specified
• Guarded command

– Condition or guard
– Statement
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C  S

x, y = X, Y     -- statement (unguarded)
do -- loop command, loop terminates when x = y

x y
if -- conditional command (itself guarded)

x > y x := x-y      -- guarded statement in the if
y > x y := y-x

fi
od
print x ; -- another statement, also unguarded

greatest common divisor

http://en.wikipedia.org

guard
can be also
input/output
statement

predikaatti-
muunnos-
semantiikka

vartioitu
lauseke



Communicating Sequential
Processes – CSP (Hoare)

• Language for modeling and analyzing the behavior of
concurrent communicating systems

• A known group of processes A, B, …
• Communication:

– output statement:  B!e
• evaluate e, send the value to B

– input statement: A?x
• receive the value from A to x

– input, output: blocking statements
– output & input: “distributed assignment”

• Communicate value from one process to a
variable in some other process
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B!eA:

A?xB:

e



CSP communication
• Input/output statements

– Destination!port (e1, …, en) ;
– Source?port (x1, …, xn) ;

• Binding
– Communication with named processes
– Matching types for communication

• Example: Copy ( West => Copy => East )
West: Copy: East:

do true -> do true -> do true ->
Copy!c; West?c; Copy?c;
… East!c ; …

od od od
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OCCAM
Language

• Communication through
named channels
– Globally defined

• Somewhere, in advance
– Each channel has one

sender and one receiver
• Process in some node

• Transputer
– Multicomputer

• E.g., 100 node Hathi-2 in ÅA
– Automatic message routing for

channels
– Programmed with OCCAM
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http://www.embedded.com.au/reference/transputers.html



OCCAM Example

• How to bind processes to nodes?  8 vs. 100 nodes?
• How to bind channels to processes, physical system?

– 4 physical ports (N, S, E, W) in each processor
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PROC Copy (CHAN OF BYTE West, EAsks, East)
BYTE  c1, c2, dummy;  -- buffer size = 2
SEQ

West ? c1                      - - West has 1st byte
WHILE TRUE

ALT
West ? c2            - - West has new byte

SEQ
East ! c1    - - send previous byte
c1 := c2     - - copy to buffer c1

EAsks ? dummy  - - East wants a byte
SEQ

East ! c1    - - send previous byte
West ? c1  - - receive next one

(Andrews, p 331)

West East

EAsks

block here,
until other
end ready
(“guards”)

c1 c2

Copy

Discussion 1



Inmos
Trans-
puter

• B0042
• 2D array
• 10 boards

420 cpu’s
• 30 boards

1260 cpu’s

2130.11.2009 Copyright Teemu Kerola 2008

http://www.cs.bris.ac.uk/~dave/transputer.html



Channels
• Communication through named channels

– Typed, global to processes
– Programming language concept
– Any one can read/write

(usually limited in practice)
• Pipe or mailbox
• Synchronous, one-way (?)
• How to tie in with many nodes?

– Not really thought through! Easy with shared memory!
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buffer size?

many readers/writers?
same process writes
and reads?



Filtering Problem

• Compress many (at most MAX) similar characters
to pairs …
– {nr of chars, char}

• … and place newline (\n) after every K’th
character in the compressed string

• Why is it called “Conway’s problem”?
– “Classic coroutine example”
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aaaa 4a k’th ch \n…aaaabbb… …4a\n3b…

vuorottaisrutiinit

“compress”

“output”
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Filtering
Problem
with Channels

no last char?



Matrix Multiplication with Channels

• 16 = (7 8 9) (1 0 1)
• 30 = (7 8 9) (2 2 0)
• Process for every multiply-add
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1 2 3
4 5 6
7 8 9

1 0 2
0 1 2
1 0 0

4   2    6
10  5  18
16  8  30

x =

other
processes

channels

7*2+ 8*2+ 9*0+ 0

*
+=

*
+=

*
+=
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27 processes
24 channels

contains 1 value, makes
three multiply-adds,
forwards values down

contains 1 row,
sends it down
one element
at a time

How to
initialize
everything?

*+=
N

How to
synchronize
everything?

West-bound
multiply-add,
South-bound
copy North



• How to map processes to nodes?
• How to map channels to processes?

– North channel of one process the
South channel of some other

• North-South data flow has priority (*)
– Waiting even when data-flow East-West available
– Node on East may be blocked unnecessarily
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 wait 1st for this (*)
 and then for this

Relative
names?

Discussion 2



• Guarded statement
– Execute one selective input statement

• Nondeterministic selection (if both available)
• p2 follows p1, it does not compete with p3
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If message from North
available, do this

If message from East
available, do this

sequential block

Discussion 3



Dining Philosophers with Channels
• Each fork i is a process, forks[i] is a channel
• Each philosopher i is a process

• Would it be enough to initialize each forks[i] <= true ?
– Do you really need forks[i] => dummy in fork i? Why?
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mutex?

deadlock?(would false
be ok?)
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Rendezvous (1978, Abrial & Andrews)
• Synchronization with communication

– No channels, usage similar to procedure calls
– One (accepting) process waits for one of the (calling)

processes
• One request in service at a time

– Calling process must know id of the accepting process
– Accepting process does not need to know the id of

calling process
– May involve parameters and return value

• Good for client-server synchronization
– Clients are calling processes
– Server is accepting process
– Server is active process
– Language construct, no mapping for real system nodes
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asymmetric



• Can have many similar clients
• Implementation with messages (e.g.)

– Service request in one message
• Arguments must be marshalled

(make them suitable for transmission)
– Wait until reply received
– Reply result in another message
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Guards in Rendezvous
• Additional constraint for accepting given service call
• Accept service call, if

– Someone requests it and
– Guard for that request type is true

• Guard is based on local state
• If many such requests (with open guards) available, select

one randomly
• Complete one request at a time

– Implicit mutex
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Ada
Rendezvous
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…
Buffer.Append (456);
Buffer.Append (333);
…

…
Buffer.Take(x);
Buffer.Take(y);
…

Terminates when no
rendezvous processes
available? Tricky!
How to know?
No concurrent operations!

Export public ops defined
before task body
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Remote Procedure Call
• Common operating system service for client-

server model synchronization
– Implemented with messages
– Parameter marshalling

• Semantics remain, implementation may change
– Mutex problem

• Combines monitor and synchronized messages?
– Automatic mutex for service

• Multiple calls active simultaneously?
– Mutex problems solved within called service

– Semantics similar to ordinary procedure call
• But no global environment (e.g., shared array)

– Two-way synchronized communication channel
• Client waits until service completed (usually)
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Usual case



RPC System Structure
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(Sta05 Fig 14.12)

Qremote

Qlocal

P

P
Q

calls



RPC Module
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Export public ops

Call:



RPC Example: Time Server
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(And00 Fig 8.1)
(process Clock{} on next slide)

mutex



• Internal process
– Keeps the time
– Wakes up delayed clients

• Service RPC’s:
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time = TimeServer.get_time();
TimeServer.delay(10);
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RPC(3)                                                                                     RPC(3)

NAME
rpc - library routines for remote procedure calls

SYNOPSIS AND DESCRIPTION
These  routines  allow  C  programs  to  make  procedure calls on other
machines across the network.  First, the client calls  a  procedure  to
send  a  data  packet  to  the server.  Upon receipt of the packet, the
server calls a dispatch routine to perform the requested  service,  and
then  sends  back  a reply.  Finally, the procedure call returns to the
client.

callrpc(host, prognum, versnum, procnum, inproc, in, outproc, out)
char *host;
u_long prognum, versnum, procnum;
char *in, *out;
xdrproc_t inproc, outproc;

Linux machine>> man rpc

decode/encode
parameters/results

remote process



Remote Method Invocation (RMI)

• Java RPC
• Start rmiregistry

– Stub lookup (default at port 1099)
• Start rmi server

– Server runs until explicitly terminated by user
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package example.hello;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Hello extends Remote {
String sayHello() throws RemoteException;

}

rmi server

start java -classpath classDir example.hello.Server

java -classpath classDir example.hello.Server &

rmiregistry & start rmiregistry

http://java.sun.com/j2se/1.5.0/docs/guide/rmi/hello/hello-world.html
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package example.hello;
import java.rmi.registry.Registry;
import java.rmi.registry.LocateRegistry;
import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;
public class Server implements Hello {

public Server() {}
public String sayHello() {

return "Hello, world!"; }
public static void main(String args[]) {

try { Server obj = new Server();
Hello stub = (Hello) UnicastRemoteObject.exportObject(obj, 0);

// Bind the remote object's stub in the registry
Registry registry = LocateRegistry.getRegistry();
registry.bind("Hello", stub);
System.err.println("Server ready");

} catch (Exception e) {
System.err.println("Server exception: " + e.toString());
e.printStackTrace();

}
}

rmi server

Output: Server ready
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package example.hello;
import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;

public class Client {
private Client() {}
public static void main(String[] args) {

String host = (args.length < 1) ? null : args[0];
try {

Registry registry = LocateRegistry.getRegistry(host);
Hello stub = (Hello) registry.lookup("Hello");
String response = stub.sayHello();
System.out.println("response: " + response);

} catch (Exception e) {
System.err.println("Client exception: " + e.toString());
e.printStackTrace();

}
}

}

rmi client

Output: response: Hello, world!



Summary
• Distributed communication with messages

– Synchronization and communication
– Computation time + communication time = ?

• Higher level concepts
– Guarded commands (theoretical background)
– CSP (idea) & Occam (application)
– Named Channels (ok without shared memory?)
– Rendezvous
– RPC & RMI (Java)
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