
Concurrency Control in
Distributed Environment

Ch 8 [BenA 06]

Messages
Channels

Rendezvous
RPC and RMI

130.11.2009 Copyright Teemu Kerola 2008

Lesson 9

Distributed System
• No shared memory
• Communication with

messages
• Tighly coupled systems

– Processes alive at the same time
• Persistent systems

– Data stays even if processes die
• Fully distributed systems

– Everything goes

230.11.2009 Copyright Teemu Kerola 2008

Communication with Messages (4)

• Sender, receiver
• Synchronous/asynchronous communication

330.11.2009 Copyright Teemu Kerola 2008

…
X=f(..);
send X to B
...

KJ:n
Ydin

send OS
kernel

…
receive X from A
Y=f(X);
...

X: 10 X: 5X: 10

send

receive X from A

X: 10

Prosess
A

Prosess
B

…
X=f(..);
send X to B
...

OS
kernel

send receiveDCDC

communi-
cation

channel

Message Passing
• Synchronous communication

– Atomic action
– Both wait until communication complete

• Asynchronous communication
– Sender continues after giving the message to OS for delivery
– May get an acknowledgement later on

• Message received or not
• Addressing

– Some address for receiver process
• Process name, id, node/name, …

– Some address for the communication channel
• Port number, channel name, …

– Some address for requested service
• Broker will find out, sooner or later

– After message has been sent?
• Service address not known at service request time

430.11.2009 Copyright Teemu Kerola 2008

Usual case

kanava

palvelu

prosessi

meklari

Synchronization levels (10)

530.11.2009 Copyright Teemu Kerola 2008

OS
kernel

DC OS
kernel

…
receive X from A
Y=f(X);
...

X: 10 X: 5

Process BProcess A

…
X=f(..);
send X to B
...

X: 10

DC receivesend DC receive

receive X from A

DC

send X to B

asynchronous?reliable comm

synchronous?
Discussion 0

Synchronization levels (1/5)

630.11.2009 Copyright Teemu Kerola 2008

OS
kernel

DC OS
kernel

…
receive X from A
Y=f(X);
...

X: 10 X: 5

Process BProcess A

…
X=f(..);
send X to B
...

X: 10

DC receivesend DC

Synchronization levels (2/5)

730.11.2009 Copyright Teemu Kerola 2008

OS
kernel

DC OS
kernel

…
receive X from A
Y=f(X);
...

X: 10 X: 5

Process BProcess A

…
X=f(..);
send X to B
...

X: 10

DC receivesend Data
Com

send X to B

asynchronous?

Synchronization levels (3/5)

830.11.2009 Copyright Teemu Kerola 2008

OS
kernel

DC OS
kernel

…
receive X from A
Y=f(X);
...

X: 10 X: 5

Process BProcess A

…
X=f(..);
send X to B
...

X: 10

DC receivesend DC

send X to B

asynchronous?

Synchronization levels (4/5)

930.11.2009 Copyright Teemu Kerola 2008

OS
kernel

DC OS
kernel

…
receive X from A
Y=f(X);
...

X: 10 X: 5

Process BProcess A

…
X=f(..);
send X to B
...

X: 10

DC receivesend DC receiveDC

send X to B

asynchronous?reliable comm

Synchronization levels (5/5)

1030.11.2009 Copyright Teemu Kerola 2008

OS
kernel

DC OS
kernel

…
receive X from A
Y=f(X);
...

X: 10 X: 5

Process BProcess A

…
X=f(..);
send X to B
...

X: 10

DC receivesend DC receive

receive X from A

DC

send X to B

synchronous?

Message Passing
• Symmetric communication

– Cooperating processes at same level
– Both know about each others address
– Communication method for a fixed channel

• Asymmetric communication
– Different status for communicating processes
– Client-server model

• Server address known, client address given in request

• Broadcast communication
– Receiver not addressed directly
– Message sent to everybody (in one node?)
– Receivers may be limited in number

• Just one?
• Only the intended recipient will act on it?

1130.11.2009 Copyright Teemu Kerola 2008

Wait Semantics
• Sender

– Continue after OS has taken the message
• Non-blocking send

– Continue after message reached receiver node
• Blocking send

– Continue after message reached receiver process
• Blocking send

• Receiver
– Continue only after message received

• Blocking receive
– Continue even if no message received

• Status indicated whether message received or not
• Non-blocking receive

1230.11.2009 Copyright Teemu Kerola 2008

Usual case

Usual case

Message Passing
• Data flow

– One-way
• Synchronous may be one-way
• Asynchronous is always one-way

– Two-way
• Synchronous may be two-way
• Two asynchronous communications

• Primitives
– One message at a time
– Need addresses for communicating processes
– Operating system level service
– Usually not programming language level construct

• Too primitive: need to know node id, process id, port
number,…

1330.11.2009 Copyright Teemu Kerola 2008

data flow
vs.
control flow!

1430.11.2009 Copyright Teemu Kerola 2008

Channels
• History of languages utilizing channels

– Guarded Commands
• Dijkstra, 1975

– Communicating Sequential
Processes

• CSP, Hoare, 1978
– Occam

• David May et al, 1983
• Hoare as consultant
• Inmos Transputer

1530.11.2009 Copyright Teemu Kerola 2008

C.A.R. Hoare

David May

Edsger Dijkstra

Guarded Commands (Dijkstra)
• Way to describe predicate transformer semantics
• Communication not really specified
• Guarded command

– Condition or guard
– Statement

1630.11.2009 Copyright Teemu Kerola 2008

C S

x, y = X, Y -- statement (unguarded)
do -- loop command, loop terminates when x = y

x y
if -- conditional command (itself guarded)

x > y x := x-y -- guarded statement in the if
y > x y := y-x

fi
od
print x ; -- another statement, also unguarded

greatest common divisor

http://en.wikipedia.org

guard
can be also
input/output
statement

predikaatti-
muunnos-
semantiikka

vartioitu
lauseke

Communicating Sequential
Processes – CSP (Hoare)

• Language for modeling and analyzing the behavior of
concurrent communicating systems

• A known group of processes A, B, …
• Communication:

– output statement: B!e
• evaluate e, send the value to B

– input statement: A?x
• receive the value from A to x

– input, output: blocking statements
– output & input: “distributed assignment”

• Communicate value from one process to a
variable in some other process

1730.11.2009 Copyright Teemu Kerola 2008

B!eA:

A?xB:

e

CSP communication
• Input/output statements

– Destination!port (e1, …, en) ;
– Source?port (x1, …, xn) ;

• Binding
– Communication with named processes
– Matching types for communication

• Example: Copy (West => Copy => East)
West: Copy: East:

do true -> do true -> do true ->
Copy!c; West?c; Copy?c;
… East!c ; …

od od od

1830.11.2009 Copyright Teemu Kerola 2008

OCCAM
Language

• Communication through
named channels
– Globally defined

• Somewhere, in advance
– Each channel has one

sender and one receiver
• Process in some node

• Transputer
– Multicomputer

• E.g., 100 node Hathi-2 in ÅA
– Automatic message routing for

channels
– Programmed with OCCAM

1930.11.2009 Copyright Teemu Kerola 2008

http://www.embedded.com.au/reference/transputers.html

OCCAM Example

• How to bind processes to nodes? 8 vs. 100 nodes?
• How to bind channels to processes, physical system?

– 4 physical ports (N, S, E, W) in each processor
2030.11.2009 Copyright Teemu Kerola 2008

PROC Copy (CHAN OF BYTE West, EAsks, East)
BYTE c1, c2, dummy; -- buffer size = 2
SEQ

West ? c1 - - West has 1st byte
WHILE TRUE

ALT
West ? c2 - - West has new byte

SEQ
East ! c1 - - send previous byte
c1 := c2 - - copy to buffer c1

EAsks ? dummy - - East wants a byte
SEQ

East ! c1 - - send previous byte
West ? c1 - - receive next one

(Andrews, p 331)

West East

EAsks

block here,
until other
end ready
(“guards”)

c1 c2

Copy

Discussion 1

Inmos
Trans-
puter

• B0042
• 2D array
• 10 boards

420 cpu’s
• 30 boards

1260 cpu’s

2130.11.2009 Copyright Teemu Kerola 2008

http://www.cs.bris.ac.uk/~dave/transputer.html

Channels
• Communication through named channels

– Typed, global to processes
– Programming language concept
– Any one can read/write

(usually limited in practice)
• Pipe or mailbox
• Synchronous, one-way (?)
• How to tie in with many nodes?

– Not really thought through! Easy with shared memory!

2230.11.2009 Copyright Teemu Kerola 2008

buffer size?

many readers/writers?
same process writes
and reads?

Filtering Problem

• Compress many (at most MAX) similar characters
to pairs …
– {nr of chars, char}

• … and place newline (\n) after every K’th
character in the compressed string

• Why is it called “Conway’s problem”?
– “Classic coroutine example”

2330.11.2009 Copyright Teemu Kerola 2008

aaaa 4a k’th ch \n…aaaabbb… …4a\n3b…

vuorottaisrutiinit

“compress”

“output”

2430.11.2009 Copyright Teemu Kerola 2008

Filtering
Problem
with Channels

no last char?

Matrix Multiplication with Channels

• 16 = (7 8 9) (1 0 1)
• 30 = (7 8 9) (2 2 0)
• Process for every multiply-add

2530.11.2009 Copyright Teemu Kerola 2008

1 2 3
4 5 6
7 8 9

1 0 2
0 1 2
1 0 0

4 2 6
10 5 18
16 8 30

x =

other
processes

channels

7*2+ 8*2+ 9*0+ 0

*
+=

*
+=

*
+=

2630.11.2009 Copyright Teemu Kerola 2008

27 processes
24 channels

contains 1 value, makes
three multiply-adds,
forwards values down

contains 1 row,
sends it down
one element
at a time

How to
initialize
everything?

*+=
N

How to
synchronize
everything?

West-bound
multiply-add,
South-bound
copy North

• How to map processes to nodes?
• How to map channels to processes?

– North channel of one process the
South channel of some other

• North-South data flow has priority (*)
– Waiting even when data-flow East-West available
– Node on East may be blocked unnecessarily

2730.11.2009 Copyright Teemu Kerola 2008

 wait 1st for this (*)
 and then for this

Relative
names?

Discussion 2

• Guarded statement
– Execute one selective input statement

• Nondeterministic selection (if both available)
• p2 follows p1, it does not compete with p3

2830.11.2009 Copyright Teemu Kerola 2008

If message from North
available, do this

If message from East
available, do this

sequential block

Discussion 3

Dining Philosophers with Channels
• Each fork i is a process, forks[i] is a channel
• Each philosopher i is a process

• Would it be enough to initialize each forks[i] <= true ?
– Do you really need forks[i] => dummy in fork i? Why?

2930.11.2009 Copyright Teemu Kerola 2008

mutex?

deadlock?(would false
be ok?)

3030.11.2009 Copyright Teemu Kerola 2008

Rendezvous (1978, Abrial & Andrews)
• Synchronization with communication

– No channels, usage similar to procedure calls
– One (accepting) process waits for one of the (calling)

processes
• One request in service at a time

– Calling process must know id of the accepting process
– Accepting process does not need to know the id of

calling process
– May involve parameters and return value

• Good for client-server synchronization
– Clients are calling processes
– Server is accepting process
– Server is active process
– Language construct, no mapping for real system nodes

3130.11.2009 Copyright Teemu Kerola 2008

asymmetric

• Can have many similar clients
• Implementation with messages (e.g.)

– Service request in one message
• Arguments must be marshalled

(make them suitable for transmission)
– Wait until reply received
– Reply result in another message

3230.11.2009 Copyright Teemu Kerola 2008

Guards in Rendezvous
• Additional constraint for accepting given service call
• Accept service call, if

– Someone requests it and
– Guard for that request type is true

• Guard is based on local state
• If many such requests (with open guards) available, select

one randomly
• Complete one request at a time

– Implicit mutex

3330.11.2009 Copyright Teemu Kerola 2008

Ada
Rendezvous

3430.11.2009 Copyright Teemu Kerola 2008

…
Buffer.Append (456);
Buffer.Append (333);
…

…
Buffer.Take(x);
Buffer.Take(y);
…

Terminates when no
rendezvous processes
available? Tricky!
How to know?
No concurrent operations!

Export public ops defined
before task body

3530.11.2009 Copyright Teemu Kerola 2008

Remote Procedure Call
• Common operating system service for client-

server model synchronization
– Implemented with messages
– Parameter marshalling

• Semantics remain, implementation may change
– Mutex problem

• Combines monitor and synchronized messages?
– Automatic mutex for service

• Multiple calls active simultaneously?
– Mutex problems solved within called service

– Semantics similar to ordinary procedure call
• But no global environment (e.g., shared array)

– Two-way synchronized communication channel
• Client waits until service completed (usually)

3630.11.2009 Copyright Teemu Kerola 2008

Usual case

RPC System Structure

3730.11.2009 Copyright Teemu Kerola 2008

(Sta05 Fig 14.12)

Qremote

Qlocal

P

P
Q

calls

RPC Module

3830.11.2009 Copyright Teemu Kerola 2008

Export public ops

Call:

RPC Example: Time Server

3930.11.2009 Copyright Teemu Kerola 2008

(And00 Fig 8.1)
(process Clock{} on next slide)

mutex

• Internal process
– Keeps the time
– Wakes up delayed clients

• Service RPC’s:

4030.11.2009 Copyright Teemu Kerola 2008

time = TimeServer.get_time();
TimeServer.delay(10);

4130.11.2009 Copyright Teemu Kerola 2008

RPC(3) RPC(3)

NAME
rpc - library routines for remote procedure calls

SYNOPSIS AND DESCRIPTION
These routines allow C programs to make procedure calls on other
machines across the network. First, the client calls a procedure to
send a data packet to the server. Upon receipt of the packet, the
server calls a dispatch routine to perform the requested service, and
then sends back a reply. Finally, the procedure call returns to the
client.

callrpc(host, prognum, versnum, procnum, inproc, in, outproc, out)
char *host;
u_long prognum, versnum, procnum;
char *in, *out;
xdrproc_t inproc, outproc;

Linux machine>> man rpc

decode/encode
parameters/results

remote process

Remote Method Invocation (RMI)

• Java RPC
• Start rmiregistry

– Stub lookup (default at port 1099)
• Start rmi server

– Server runs until explicitly terminated by user

4230.11.2009 Copyright Teemu Kerola 2008

package example.hello;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Hello extends Remote {
String sayHello() throws RemoteException;

}

rmi server

start java -classpath classDir example.hello.Server

java -classpath classDir example.hello.Server &

rmiregistry & start rmiregistry

http://java.sun.com/j2se/1.5.0/docs/guide/rmi/hello/hello-world.html

4330.11.2009 Copyright Teemu Kerola 2008

package example.hello;
import java.rmi.registry.Registry;
import java.rmi.registry.LocateRegistry;
import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;
public class Server implements Hello {

public Server() {}
public String sayHello() {

return "Hello, world!"; }
public static void main(String args[]) {

try { Server obj = new Server();
Hello stub = (Hello) UnicastRemoteObject.exportObject(obj, 0);

// Bind the remote object's stub in the registry
Registry registry = LocateRegistry.getRegistry();
registry.bind("Hello", stub);
System.err.println("Server ready");

} catch (Exception e) {
System.err.println("Server exception: " + e.toString());
e.printStackTrace();

}
}

rmi server

Output: Server ready

4430.11.2009 Copyright Teemu Kerola 2008

package example.hello;
import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry;

public class Client {
private Client() {}
public static void main(String[] args) {

String host = (args.length < 1) ? null : args[0];
try {

Registry registry = LocateRegistry.getRegistry(host);
Hello stub = (Hello) registry.lookup("Hello");
String response = stub.sayHello();
System.out.println("response: " + response);

} catch (Exception e) {
System.err.println("Client exception: " + e.toString());
e.printStackTrace();

}
}

}

rmi client

Output: response: Hello, world!

Summary
• Distributed communication with messages

– Synchronization and communication
– Computation time + communication time = ?

• Higher level concepts
– Guarded commands (theoretical background)
– CSP (idea) & Occam (application)
– Named Channels (ok without shared memory?)
– Rendezvous
– RPC & RMI (Java)

4530.11.2009 Copyright Teemu Kerola 2008

