
Concurrent Programming (RIO) 1.12.2009

Lecture 10: Distributed Mutual Exclusion 1

Distributed Mutual Exclusion
Ch 10 [BenA 06]

Distributed System
Distributed Critical Section

Ricart-Agrawala
Token Passing Ricart-Agrawala
Token Passing Neilsen-Mizuno

11.12.2009 Copyright Teemu Kerola 2009

Lesson 10 (Generic) Distributed System

• Nodes have processes
• Communication channels between nodes

– Each node connected to every other node
• Two-way channel

– Reliable communication channels
• Provided by network layer below
• Messages are not lost
• Messages processed concurrently with other

computations (e.g., critical sections)
– Nodes do not fail

• Requirements reduced later on
– courses on distributed systems topics

21.12.2009 Copyright Teemu Kerola 2009

Unrealistic
assumptions?
Not really…

(Generic) Distributed System
• Processes (nodes) communicate with (asymmetric)

messages
– Message arrival order is not specified
– Transmission times are arbitrary, but finite
– Message (header) does not include send/receiver id
– Receiver does not know who sent the message

• Unless sender id is in the message itself

31.12.2009 Copyright Teemu Kerola 2009

Distributed Processes

• Sender does not block
• Receiver blocks (suspended wait) until message

of the proper type is received
• Atomicity problems in each node is not

considered here
– Solved with locking, semaphores, monitors, …

• Message receiving and subsequent actions are
considered to be atomic actions
– Atomicity within each system considered solved

41.12.2009 Copyright Teemu Kerola 2009

51.12.2009 Copyright Teemu Kerola 2009

Distributed Critical Section Problem
• Processes within one node

– Problem solved before

• Processes in different nodes
– More complex

• State
– Control pointer (CP, PC, program counter)
– Local and shared variable values
– Messages

• Messages, that have been sent
• Messages, that have been received
• Messages, that are on the way

– Arbitrary time, but finite!
61.12.2009 Copyright Teemu Kerola 2009

Where are these?

Concurrent Programming (RIO) 1.12.2009

Lecture 10: Distributed Mutual Exclusion 2

Two Approaches
• Ask everybody for permission, if it is my turn now

– Lots of questions/answers
• I’ll wait until I get the token, then it is my turn

– Pass the token to next one (which one?)
– Wait until I get the token
– Token (turn) goes around all the time

• Moves only when needed?
• Both approaches have advantages/disadvantages

– Who is “everybody”? How do I know them?
– What if someone does not talk to me?
– What if node/network breaks down?
– What if token is lost?

71.12.2009 Copyright Teemu Kerola 2009

Do not worry
now about the
token getting
lost …

Ricart-Agrawala
for Distributed Mutex

• Distributed Mutex, 1981 (Lamport, 1978)
• Modification of Bakery algorithm with ticket numbers
• Idea

– Must know all other processes/nodes competing for CS
– Choose own ticket number, “larger than previous”
– Send it to everybody else
– Wait until permission from everybody else

• Exactly one will always get permission
from everybody else?

• All others will wait
– Do your CS
– Give CS permission to everybody else who was waiting for you

81.12.2009 Copyright Teemu Kerola 2009

G. Ricart A. K. Agrawala

mutex,
no deadlock,
no starvation?

91.12.2009 Copyright Teemu Kerola 2009

server process, runs concurrently all the time

most recent myNum

make these wait by
not sending reply

Each one answers
only when it is safe.
Reply needs no content.

not trivial!

local
mutex
control?

application process, needs distr mutex

all those waiting
for my permission

Ricart-Agrawala Example
• 3 processes, each trying to enter CS concurrently

– No status information needed on who had CS last

101.12.2009 Copyright Teemu Kerola 2009

myNum

Ricart-Agrawala Example (contd)
• Receive process runs at each node

– What if Aaron’s receive completes 1st? Last? Becky’s? not yet?

• Distributed
virtual queue:

111.12.2009 Copyright Teemu Kerola 2009

deferred,
can enter CS
after me

myNum

I got reply
from
everybody,
I can
enter CS

turn req=5

req=5

req=15

req=1
5 req=10req=10

Ricart-Agrawala Example (contd)
• Becky executes CS, and then sends deferred replies to Aaron & Chloe
• Aaron has now replies from everybody, and it can enter CS
• What if Becky now selects ticket number 8, and requests CS?

– Aaron’s and Chloe’s receive will both reply immediately? Ouch!

121.12.2009 Copyright Teemu Kerola 2009

Problem: Becky’s
ticket number 8
is too small
(Becky should not
be able to select
so small number)

req=8 ?

req=8 ?

Concurrent Programming (RIO) 1.12.2009

Lecture 10: Distributed Mutual Exclusion 3

How to select ticket numbers

• Select always larger one than you have seen before
– Larger than your previous myNum
– Larger than any requestedNum that you have seen

• They all came before you, and you should not try to get ahead of them

• What if equal ticket numbers?
– Fixed priority, based on node/process id numbers
– Used only with equal ticket numbers to avoid deadlock

• Just like in Bakery algorithm

131.12.2009 Copyright Teemu Kerola 2009 Discussion A

Quiescent Nodes
• Nodes that do not try to enter CS (but they could)

– They are still listed in “all other nodes”
– Problem with initial value of myNum
– Initial value zero?

– Initial value N > 0 ; tickets numbers eventually will reach it

– Cure: receive checks for tickets numbers only if main wants CS
141.12.2009 Copyright Teemu Kerola 2009

(hiljaiset solmut)

No reply, because 0<5

810 800

No reply, because 800<810

• Keep track of highest
number seen

• What if one process asks
for CS all the time?

• Same myNum OK?

151.12.2009 Copyright Teemu Kerola 2009

(Receive on next slide)

• Mutex between main & receive?
– Exact mutex boundaries?

• What to do when myNum overflows?
– Restart everybody? When? How?
– Fairness is not the problem, mutex is

• Correctness proofs
– Mutex? No deadlock? No starvation?

161.12.2009 Copyright Teemu Kerola 2009

original
article
http://www.
cc.gatech.
edu/classe
s/AY2002/
cs6210_fal
l/papers/M
utualExFor
Network.p
df

Discussion B

171.12.2009 Copyright Teemu Kerola 2009

Token Based Algorithms
• Problems with permission based algorithms

– Need permission from everybody (very many?)
– Inactive participants (those not wanting in CS) slow

you down
• Need reply from all of them!
• Lots of synchronization even if only one tries to get into CS
• Lots of communication (many messages)

• Token based algorithms
– Have token, that is enough

• No synchronization with everybody else needed
– Get token, send token is simple

• Communicate only with a few (fewer) nodes
• Scalable?

– Mutex is trivial, how about deadlock and starvation?
181.12.2009 Copyright Teemu Kerola 2009

Concurrent Programming (RIO) 1.12.2009

Lecture 10: Distributed Mutual Exclusion 4

Ricart-Agrawala ideas
• Send token to next one only when I know that

someone wants it
– o/w keep token until needed

• Keep local requested array for best knowledge for
the most recent CS request times
– Update this based on received CS request messages

• Keep granted array, that has precise knowledge
when each node actually was last granted CS
– Update it only when CS granted
– Pass it with token to next node

• Only this granted array (with token) is exactly correct!
• Other nodes have (slightly) old granted array

191.12.2009 Copyright Teemu Kerola 2009 201.12.2009 Copyright Teemu Kerola 2009

Ticket
number
last time
in CS

local data in node
distributed global data

server process, runs all the time

Give also most recent granted[]

Ticket
number
for newest
request
for CS
(that I
know of)

If no one else
wants token,
I will keep it

• Mutex?
• No deadlock?
• No starvation?

– “some” in sendToken?

• Scalable?
• Overflows?

211.12.2009 Copyright Teemu Kerola 2009

application process, needs distr mutex

If I have token, no delays.

Request token from everybody
Very many messages?

Wait until
token
received

Only if someone wants it!
Send granted also.

Update
one field

Just one very
large message?

Discussion C

• Mutex?
• No deadlock?
• No starvation?

– “some” in sendToken?

• Scalable?
• Overflows?

221.12.2009 Copyright Teemu Kerola 2009

application process, needs distr mutex

If I have token, no delays.

Request token from everybody
Very many messages?

Wait until
token
received

Only if someone wants it!
Send granted also.

Update
one field

Very large message?
• Can Chloe be 3rd time in CS?
• Who wants CS now?
• If Chloe has token, and is in

non-CS, what happens next?
• If Chloe has token and is in

CS, what happens next?
• Why is Chloe’s own

requested[i] zero?
• Could Becky have kept the

token since last use?

Chloe’s
view

Neilsen-Mizuno
Token Based Algorithm

• Rigart-Agrawala: token carries queue of waiting processes
– Token can be very large, which may be problematic

• Neilsen-Mizuno: virtual tree structure within the nodes
implements the queue
– Algorithm utilizes virtual spanning tree of nodes

• Spanning tree: all nodes linked as a tree, no cycles
– Simple token indicates “turn” for critical section
– Parent link points to the direction of last in line for CS

• Parent == 0: node may have token and is last in line for CS
– Deferred link points to next in line for CS

231.12.2009 Copyright Teemu Kerola 2009

tokendeferred

Masaaki Mizuno

Mitchell L.
Neilsen

virtuaalinen virittävä (viritys-) puu

Chloe has token, Aaron is waiting for it

Neilsen-Mizuno Example
• Fully

connected
nodes

• Chloe is
in CS

• No one waits
for CS

241.12.2009 Copyright Teemu Kerola 2009

Concurrent Programming (RIO) 1.12.2009

Lecture 10: Distributed Mutual Exclusion 5

Neilsen-Mizuno Example (contd)
• Chloe has token, nobody waits for it

• Aaron requests CS
– Sends msg=(req, Aaron, Aaron) on parent link
– Removes himself from parent spanning tree

• Becky receives msg, and forwards the request “upward”
– Sends msg=(req, Becky, Aaron) to Chloe
– Moves to new parent spanning tree, points to Aaron

• Aaron is now last to request CS

251.12.2009 Copyright Teemu Kerola 2009

sender originator
deferred

Neilsen-Mizuno Example (contd)

• Chloe receives msg (req, Becky, Aaron)
– Chloe in CS, sets deferred field to Aaron

and sets parent field to Becky
• Chloe was (also) last in line for CS

– When Chloe completes CS, she will pass token to Aaron
• Token transferred directly to the next process in line for critical

section (if any)
– Just token is passed, no big array with it

261.12.2009 Copyright Teemu Kerola 2009

deferred

Neilsen-Mizuno Example (contd)

• Chloe still has CS, Evan wants CS
– Sends (req, Evan, Evan) to Danielle
– Danielle sends (req, Danielle, Evan) to Chloe
– Chloe sends (req, Chloe, Evan) to Becky
– Becky sends (req, Becky, Evan) to Aaron
– Aaron makes a deferred link to Evan

271.12.2009 Copyright Teemu Kerola 2009

deferred

deferred

Neilsen-Mizuno Example (contd)

• Chloe completes CS, passes token to Aaron

• Aaron completes CS, passes token to Evan

• Evan completes CS, keeps token

281.12.2009 Copyright Teemu Kerola 2009

Neilsen-Mizuno

291.12.2009 Copyright Teemu Kerola 2009

holding = have token, not in CS

someone wants the CS next

Target node, not part of message

mark latest request for CS

wait here until permission for CS obtained

301.12.2009 Copyright Teemu Kerola 2009

(runs concurrently with main, mutex problems solved…)

last in queue

have token, not in CS

place new req last in queue

forward request

update direction for last request

Discussion D

Concurrent Programming (RIO) 1.12.2009

Lecture 10: Distributed Mutual Exclusion 6

Ricart-Agrawala vs. Neilsen-Mizuno
• Number of messages needed
• Size of messages
• Size of data structures in each node
• Behaviour with heavy load

– Many need CS at the same time
• Behaviour with light load

– Requests for CS do not come often
– Usually only one process requests CS at a time

311.12.2009 Copyright Teemu Kerola 2009

Other Distributed Mutex Algorithms
• Other token-based algorithms

– Token ring: token moves all the time
– Lots of token traffic even when no CS requests

• Centralized server
– Simple, not very many messages
– Not scalable, may become bottleneck

• Give up unrealistic assumptions
– Nodes may fail
– Messages may get lost, token may get lost

• See other courses

321.12.2009 Copyright Teemu Kerola 2009

Courses on
distributed systems topics
(hajautetut järjestelmät)

Summary
• Distributed critical section is hard, avoid it

– Use centralized solutions if possible?
• Permission based solutions

– Ricart-Agrawala – ask everyone
• Token based solutions

– Ricart-Agrawala – centralized state in granted[]
– Neilsen-Mizuno – queue kept in spanning tree

• There are other algorithms
• How do they scale up?

331.12.2009 Copyright Teemu Kerola 2009

