Lecture 11

Practical Examples with Specific Problems

Memory Queue Priorities

Disk Sub-System
CPU Scheduling
Paging

Problems

- Memory queue
- Disk subsystem

Simultaneous resource possession
Complex sub-model

- CPU scheduling
- Paging

Priorities

Dependence on other jobs

- General: non-product form

Non-Product Form Solutions

- Use your imagination and know-how
- Flow equivalence
- Load concealment
- Change model
- Multi-level modeling
- Simulation
- Hybrid simulation

Flow Equivalent Server

- Fig. 8.2
- Approach OK, if sub-model is "busy" part of model
- many state transitions within sub-model as compared to transitions between sub-model and rest of the original model
- Hierarchical models
- orig model, sub-model, aggregate model

Modeling Memory

- Fig. 8.1
- Original model not product form
- Use FESC, max mpl 5
- short cut sub-system to closed model
- solve for all $\mathrm{mpl}=\{1,2,3,4,5\}$
- create service times for FESC: $S^{\text {FESCC }(k)=1 / X^{\text {SUBSYS }}(\mathrm{k})}$
- solve new model (or models), Fig. 8.3
- solve open class first, slow down FESC
- solve closed class

Memory Constraint, One Class

Not product form! Why? Simultaneous resource possession source:[Men 94, p. 239]

One Class Example

- Isolate system, use shortcuts

- Solve pprduct form model for $\mathrm{mpl}=\{1,2,3\}$
- use MVA: X= $\{1,1.413,1.623\}$
- Create FESC: $S(\mathrm{n})=\{1,1 / 1.413,1 / 1.623,1 / 1.623, \ldots)$

$$
=\{1,0.708,0.616,0.616, \ldots\}
$$

- Create new model
- birth-death process

- state dependent serv. rate: $X=\{1,1.413,1.623\}$

Solve Birth-Death Model (5)

$$
\begin{aligned}
& \mathrm{P}_{0}=0.260, \mathrm{P}_{1}=0.260, \mathrm{P}_{2}=0.184, \mathrm{P}_{3}=0.113, \\
& \mathrm{P}_{\mathrm{N} \geqslant 3}=1-0.260-0.260-0.184-0.113=0.183
\end{aligned}
$$

average jobs in mem $=0 * \mathrm{P}_{0}+1 \mathrm{P}_{1}+2 \mathrm{P}_{2}+3\left(\mathrm{P}_{3}+\mathrm{P}_{\mathrm{N}>3}\right)$

$$
=0.260+2 * 0.184+3 * 0.296=1.516
$$

$$
\begin{aligned}
& \text { average number } \\
& \text { of waiting for } \\
& \text { memory jobs: }
\end{aligned} \quad N_{w}=\sum_{i=1}^{\infty} i P_{i+3}=\frac{P_{0} \lambda^{3}}{\mu_{1} \mu_{2} \mu_{3}} \frac{\lambda / \mu_{3}}{\left[1-\left(\lambda / \mu_{3}\right)\right]^{2}}=0.474
$$

total popul $=1.516+0.474=1.99$
time spent in memory queue: $0.474 / 1.99=23.8 \%$

Memory Constraint, Many Classes

- Each class c has its own constraints J_{c}
- each class in its own domain
- classes are independent

4 segm for class 1
1 segm for class 2

Multiple Domain Solution

- Assumptions
- Class r population is independent of population in other classes
- Throughput in class r depends only on average propulations in other classes:

$$
X_{r}\left(n_{r}\right)=f\left(\bar{n}_{1}, \bar{n}_{2}, \ldots, n_{r}, \ldots, \bar{n}_{R}\right)
$$

- Iterative solution, one class at a time
- solution for each class is not quite simple...

Model with Memory, Multiple Classes Iterative Solution

- Guess initial average populations \bar{N}
- Solve one class r at a time for population $\bar{N}=\left(\bar{n}_{1}, \bar{n}_{2}, \ldots, n_{r}, \ldots, \bar{n}_{R}\right)$
- Get new average population for each class r: $\bar{n}_{r}, X_{r}, R_{r}, U_{k r}$ $\bar{N}=\left(\bar{n}_{1}, \bar{n}_{2}, \ldots, \bar{n}_{r}, \ldots, \bar{n}_{R}\right)$
- Iterate until "convergence" $\bar{N}=(2.1,5.3,2)$

Iterative Memory Solution

- 1. Initialize
- solve network without memory queue
- get average popul. for each class: $\bar{n}_{r}^{\text {nomem }}$
- set initial $\quad \bar{n}_{r}=\min \left(\bar{n}_{r}^{\text {nomem }}, J_{r}\right)$
- 2. Create transformed model
- remove memory constraint
- make all memory constrained classes c closed (batch) job classes

Iterative Memory Solution (contd)

- 3. Solve the model for all constrained
classes c, one class at a time:
$\begin{array}{r}\text { - Solve it for populations } \\ \text { Approx MVA } \ldots \text { why? }\end{array}<\begin{aligned} & \bar{N} \\ & \bar{N}\end{aligned}=\left(\bar{n}_{1}, \bar{n}_{2}, \ldots, 1, \ldots, \bar{n}_{R}\right)$
Approx MVA... why? population not integers!

$$
\bar{N}=\left(\bar{n}_{1}, \bar{n}_{2}, \ldots, J_{c}, \ldots, \bar{n}_{R}\right)
$$

- get $\mathrm{X}_{\mathrm{c}}\left(\mathrm{n}_{\mathrm{c}}\right)$ for this class $\forall \mathrm{n}_{\mathrm{c}} \in\left\{1, \ldots, \mathrm{~J}_{\mathrm{c}}\right\}$
- create single class memory queue birth-death model for class c, with system as FESC
- solve it, get new
- iterate until "done"

$$
\bar{n}_{c}=\text { "average number of } \begin{gathered}
\text { jobs in memory" }
\end{gathered}
$$

Iterative Memory Solution (contd)

- 4. Iterate step 3 until convergence
- 5. Get performance results for constrained classes c from the latest solutions for each such class
- 6. Solve model for unconstrained classes, using fixed \bar{n}_{c} 's for constrained classes

Multiple Class Example

- Two class model, Tbl 8.1
- Step 1. Solve open model without memory constraint

$$
\bar{n}^{\text {nomem }}=(6.0192,0.8540)
$$

$$
\max p o p=\max \operatorname{mpl}
$$

$$
\text { init } \bar{n}=\left(\bar{n}_{Q}, \bar{n}_{U}\right)=(4.0,0.8540)
$$

Multiple Class Example (contd)

- Steps 2 \& 3.
$\bar{n}=(1.0,0.8540) \xrightarrow{\text { appr.MVA }} X_{Q}(1)=2.542$
$\bar{n}=(2.0,0.8540) \xrightarrow{\text { appr.MVA }} X_{Q}(2)=3.577$
$\bar{n}=(3.0,0.8540) \xrightarrow{\text { appr.MVA }} X_{Q}(3)=4.115$
$\bar{n}=(4.0,0.8540) \xrightarrow{\text { appr.MVA }} X_{Q}(4)=4.434$

Single class
open model
$\lambda_{\mathrm{Q}}=4.2 \rightarrow$
$S=\binom{\frac{1}{2.542}, \frac{1}{3.577}, \frac{1}{4.115}}{\frac{1}{4.434}, \frac{1}{4.434}, \ldots}$
Birth-death

Steps 4 \& $5 \quad \mathrm{Tbl} 8.2$
Tbl 8.3

Priorities with Shadow Server

- Two job classes: Tbl 8.6
- No priorities: $\mathrm{R}=(2.69,8.19)$ appr. MVA $(2.37,6.74)$ from PMVA

PMVA listing fig.8.6a.out

Shadow Server

- Class P: CPU "just for it"
- Class D: sees a "shadow" CPU as slower device
- how much slower? $1 /\left(1-\mathrm{U}_{\mathrm{CPU}, \mathrm{p}}\right)=1 /(1-0.291)$
- inflate demands D_{kD} this much for class D
- Get: model with no priorities

PMVA listing fig.8.6b.out
Fig 8.6 [Men 94]
PMVA listing fig.8.6.out

Many Priority Levels

- Generalized solution method for many priority levels
- Each level (but the one with highest priority) will get their own shadow server

$$
\text { Alg. } 11.1 \text { [LZGS 84] }
$$

- Shadow server utilizations of no use

Another Simple Example (from Distr. OS homework)

- We consider a supermarket with one check-out ("kassa"). A client arrives once every 3 minutes, and the average service time is 2.5 minutes. During a day, how long is the check-out clerk idle? On the other hand, how long will a client spend in the queue?
- Every fifth client has only one purchase, and for him/her the service time is only half a minute. The manager wants to improve the service for these "express clients". Two alternatives are considered: 1) an "express client" may pass the queue (but he/she is or she is not allowed to interrupt an ongoing service), 2) a new check-out is established for the "express clients".
- How would these alternatives affect the performance of the check-out service? Which alternative is better?
- How would it be possible to guarantee "express service" for "express clients" that the total delay is less than one minute?

Another Simple Example (contd)

- Basic 1-class solution
slides ASE 1-3
- Priority pre-emptive solution slide ASE 4
- Priority non pre-emptive solution slides ASE 5-7
- 2-server solution
- Basic 2-class solution
slide ASE 8
slides ASE 9-13

Paging

- Page fault rate depends on behaviour of other jobs, and total number of jobs in system
- Is paging disk the same unit as for files?

```
\(D=D^{\text {paging }}+D^{\text {file }}\)
```

nr of page faults * Spaging

Paging (contd)

- Nr of page faults?
- Fig 8.8
- Fig. 9.5 from [LZGS 84]
- Nr page faults:
total Nr of Pages
$\frac{D_{c p u}}{\operatorname{IFT}(f)}=\frac{D_{c p u}}{\operatorname{IFT}\left(\frac{N P}{n}\right)}=\frac{6 \mathrm{sec}}{1.5 \mathrm{sec} / \text { fault }}=4$ faults
nr of frames in average

Paging (contd)

$$
\begin{aligned}
& D_{d i s k}^{\text {paging }}=\frac{D_{c p u}}{I F T(f)} S_{d i s k}^{\text {paging }}=\frac{D_{c p u}}{D_{c p u x} /} S_{d i s k}^{\text {paging }} \\
& \left(1+\left(\frac{a}{N P / n}\right)^{2}-\left(\frac{a}{F}\right)^{2}\right) \\
& =\left[1+\left(\frac{a}{N P / n}\right)^{2}-\left(\frac{a}{F}\right)^{2}\right] S_{\text {disk }}^{\text {paging }} \\
& \mathrm{F}=\mathrm{nr} \text { of frames in } \\
& \text { virtual addr space } \\
& D_{\text {disk }}=\left\{\begin{array}{cl}
D_{\text {disk }}^{\text {file }}+D_{\text {disk }}^{\text {paping }} & \text { if } n F>N P \\
D_{\text {dilisk }}^{\text {fil }} & 0 / \mathrm{w}
\end{array}\right.
\end{aligned}
$$

Paging Example

page frame size paging mem

- Memory NP=10M/1K = $10 \mathrm{~K}=10240$
- Virt. addr. space $=2 \mathrm{MB}$
- nr virt pages $\mathrm{F}=2 \mathrm{MB} / 1 \mathrm{~K}=1 \mathrm{~K}=2048$
- match IFT(f) to data: magic $a=4000$

$$
\begin{aligned}
D_{d 2}(n) & =D_{d 2}^{\text {paging }}(n)=\left[1+\left(\frac{4000}{10240 / n}\right)^{2}-\left(\frac{4000}{2048}\right)^{2}\right] * 0.03 \\
& =\left[1+0.153 n^{2}-3.81\right] * 0.03 \text { if } n>\frac{N P}{F}=\frac{10240}{2048}=5 \\
D_{d 2}(n) & =0 \quad \quad 0 / \text { w (i.e., } n \leq 5)
\end{aligned}
$$

Paging Example (contd)

- Modify MVA to account for varying demand
- Solve, get system throughput as fn of load
- Fig. 8.9
- X, R, U as function of load:
- Figs. 9.6-9.8 from [LZGS 84]

