Lecture 2 Performance Evaluation Process, Models and Metrics

Usage

Function

Model

Metrics

Examples

1.3.2002 Copyright Teemu Kerola 2002

Capacity Planning Usage

- · Current system, new system
- HW
- SW
 - -OS
 - Applications
- · Measurement of existing system
- Tuning current system
- Planning for future systems
- See Figs on bad planning

1.3.2002

Copyright Teemu Kerola 2002

Capacity Planning Basic Methods

- Measurement
- Modeling
 - Solution methods for models
 - · analytical, simulation, mixed
 - · operational analysis, approximations
 - Parameter estimation
 - · existing systems, future systems
 - guesswork
 - · workload modeling

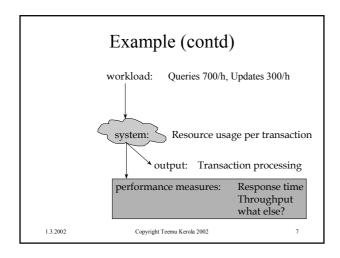
1.3.2002

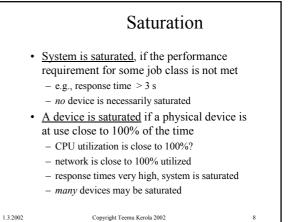
Copyright Teemu Kerola 2002

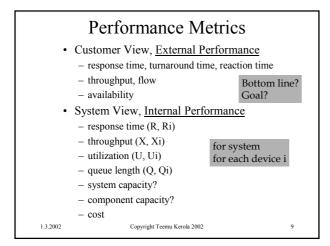
Capacity Planning Example Usages

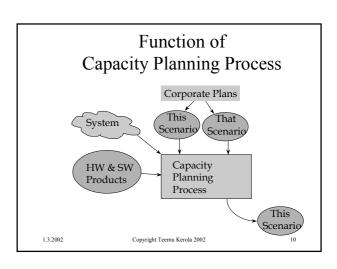
- Why is my machine so slow?
 - would 64MB extra memory help?
 - should I put the 64MB in main memory or into the display card?
 - what if I just change the scheduling algorithm?
- Is Pentium II fast enough for this server, or do we need to use a Pentium IV?
 - how fast Pentium IV?
 - what about 2 years from now?

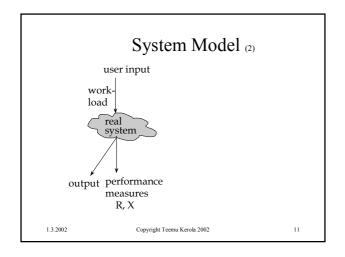
Copyright Teemu Kerola 2002

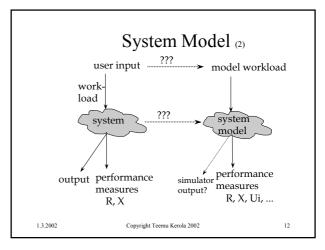

Capacity Planning Example Usages

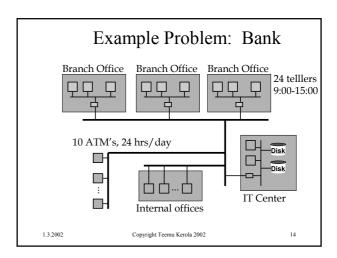

- What about the new system?
 - Is it fast enough? What does "fast" mean?
 - Is it balanced?
 - ullet slow component \Longrightarrow everybody is slowed down
 - fast component => waste of money
- What about the current system?
 - How do we get most of it out with the least expenses?
 - Can we modify it or do we need completely new system? When do we need it?


1.3.2002


Copyright Teemu Kerola 2002


Example: Bank Application terminals, network, CPU, 2 disks · System: - Queries, 70%/of transactions, max resp. time 3 s require- Updates into many files, max resp. time 10 s. ment measured Upd CPU service time 0.20 $0.30 \sec$ 0.30 0.80 per rement transaction Query resp. time 2.3 s, Update resp. time 9 s work load Queries 700/h, Updates 300/h Can the system handle it, future if the query rate goes up 30%? work load





Example on Prediction

- · Previous CPU utilization
 - Table 1.2 [Menasce 94]
- · Linear forecast of CPU utilization
 - Table 1.3 [Menasce 94]
- Bad estimate for September. Why?
 - bad assumption: linear growth
 - possible changes in workload not considered
 - CPU utilization might be bad metric for system performance
 - Better: response time? for different job classes?

Copyright Teemu Kerola 2002

Teller Load to System

- 2 online transactions per customer
- peak 11:30-13:30: 20 customers/hour I.e., 24 * 20 * 2 = 960 trans/h (total), or 320 trans/h (per branch) or 80 trans/h (per teller), or
- 12 customers/h I.e., 24 * 12 * 2 = 576 transactions/h (total)

1.3.2002

Copyright Teemu Kerola 2002

15

ATM Load to System

- 1.2 transactions/customer (in average)
- peak 8:00-9:00, 15:00-21:00 15 customers/h, I.e.,

10*15*1.2 = 180 trans/h (total)18 trans/h (per ATM)

• other: 7.5 cust/h, I.e., 90 trans/h (total)

1.3.2002 Copyright Teemu Kerola 2002

Average System Response Time

- Teller limit 3 s. peak 1.23 s
- ATM peak 1.02 s limit 4 s.

Copyright Teemu Kerola 2002

Expansion?

- Teller peak load is 960 trans/hr New branch office per every 2 months: 320 new trans/h per 2 months, I.e., 160 new trans/h per month, I.e., teller peak estimate: 960 + 160m trans/h
- ATM peak load is 180 trans/h 20 new ATMs per 2 months, I.e., 10 * 18 = 180 new trans/hr/month, I.e., ATM peak estimate: 180+180m trans/h

Copyright Teemu Kerola 2002

Expansion Questions

- How long are resp. times OK? R(teller) < 3 sec? R(ATM) < 4 sec?
- What upgrade is needed and when?
 - new CPU? new disks? new traffic controller?
 - Figs 1.4 and 1.3 [Menasce 94]
- Would another, distributed approach be better?
 - more scalable?
 - Figs 1.5 and 1.6 [Menasce 94]

1.3.2002

Copyright Teemu Kerola 2002

View, External Performance

Performance Metrics, Customer

Response time (vasteaika)
Turnaround time (vastausaika)
Reaction time (reaktioaika)

• Throughput (läpimenotiheys, -vuo)

Availability (käytettävyys)

1.3.2002 Copyright Teemu Kerola 2002 20

Performance Metrics, System View, Internal Performance

21

Utilization (*) U (käyttösuhde)
Queue length (*) Q (jonon pituus)
Response time (vasteaika)
Throughput (läpimenotiheys)
Capacity(*) (kapasiteetti)

• Cost (*) (hinta)

(*) per system, or per component

1.3.2002 Copyright Teemu Kerola 2002

1.3.2002 Copyright Teemu Kerola 1998

22