Lecture 6 Operational Analysis

Network of Queues
Observations
Operational Laws
Bottleneck Analysis

Operational Analysis

(operaatioanalyysi)

- Simple to use
- Limited gain
- "Back in the envelope" calculations
- Based on (simple) measurements or observations
- What happens (happened) in the system?
- Can be used to give bounds for predicted performance

Example Contd (Denning \& Buzen, 1978)
What happens if batch throughput triples, i.e., $\mathrm{X}_{0, \mathrm{BA}}=1.5$?

Assuming that $\mathrm{M}, \mathrm{Z}, \mathrm{V}_{\mathrm{i}}$'s and $\mathrm{S}_{\mathrm{i}}^{\prime}$'s did not change!
18.3.2002

Copyright Teemu Kerola 2002
10

Bottleneck Analysis (pullonkaulanalyysi)

- ABA, Asymptotic Bound Analysis

- q_{ij} 's know, can compute V_{i} 's (deductions,
$-\mathrm{V}_{1}=20, \mathrm{~V}_{2}=11, \mathrm{~V}_{2}=8$ or lin. equ's)
- Resource Demands $\mathrm{D}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} \mathrm{S}_{\mathrm{i}}$
$-D_{1}=1.0, D_{2}=0.88, D_{2}=0.32$

Compute V_{i} 's, D_{i} 's from q_{ij} 's

Balanced Job Bounds

- BJB, Balanced Job Bounds
- make 2 models: one faster and one slower
- both new models very easy to solve
- get fast, rough bounds

BJB - Balanced Job Bounds

- Original model $\quad D_{c}=10, D_{f}=10, D_{s}=15(\mathrm{secs})$
- Slower bound model $D_{c}=15, D_{\mathrm{f}}=15, D_{s}=15$ (secs)
- Faster bound model $D_{c}=11.7, D_{\mathrm{f}}=11.7, \mathrm{D}_{\mathrm{s}}=11.7$
- Solve with constant demand $D_{\text {const }} \stackrel{\uparrow}{\text { ave }} \max$

- Figs 5.10, 5.11 [Men 94]

Better BJB's

- New lower limit:

Figs 5.7 a and 5.7 b [LZGS84]

Better BJB's

- Original model: $\quad D_{c}=10, D_{f}=10, D_{s}=15$ (secs)
- With max demand $\mathrm{D}_{\text {max }}$ consider also total demand D :

$\mathrm{D}=35, \mathrm{~K}=3$
- New slower bound model:
$-D / D_{\text {max }}$ servers with max load $\left(D_{\text {max }}\right)$
- other servers with zero load (0)
- intuitively OK when $D / D_{\text {max }}$ integer
- math works even if not

