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With the Pentium 4, the microprocessor family that began with the 8086
and that has been the most successful computer product line ever
appears to have come to an end. Intel has teamed up with Hewlett-

Packard (HP) to develop a new 64-bit architecture, called IA-64. IA-64 is not a
64-bit extension of Intel’s 32-bit x86 architecture, nor is it an adaptation of Hewlett-
Packard’s 64-bit PA-RISC architecture. Instead, IA-64 is a new architecture that
builds on years of research at the two companies and at universities. The architec-
ture exploits the vast circuitry and high speeds available on the newest generations
of microchips by a systematic use of parallelism. IA-64 architecture represents a sig-
nificant departure from the trend to superscalar schemes that have dominated
recent processor development.

We begin this chapter with a discussion of the motivating factors for the new
architecture. Next, we look at the general organization to support the architecture.
We then examine in some detail the key features of the IA-64 architecture that pro-
mote instruction-level parallelism. Finally, we look at the IA-64 instruction set archi-
tecture and the Itanium organization.
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KEY POINTS

� The IA-64 instruction set architecture is a new approach to providing hard-
ware support for instruction-level parallelism and is significantly different that
the approach taken in superscalar architectures.

� The most noteworthy features of the IA-64 architecture are hardware support
for predicated execution, control speculation, data speculation, and software
pipelining.

� With predicated execution, every IA-64 instruction includes a reference to a
1-bit predicate register and only executes if the predicate value is 1 (true).
This enables the processor to speculatively execute both branches of an if
statement and only commit after the condition is determined.

� With control speculation, a load instruction is moved earlier in the program
and its original position replaced by a check instruction. The early load saves
cycle time; if the load produces an exception, the exception is not activated
until the check instruction determines if the load should have been taken.

� With data speculation, a load is moved before a store instruction that might
alter the memory location that is the source of the load. A subsequent check
is made to assure that the load receives the proper memory value.

� Software pipelining is a technique in which instructions from multiple itera-
tions of a loop are enabled to execute in parallel.
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15.1 MOTIVATION

The basic concepts underlying IA-64 are as follows:

• Instruction-level parallelism that is explicit in the machine instructions rather
than being determined at run time by the processor

• Long or very long instruction words (LIW/VLIW)
• Branch predication (not the same thing as branch prediction)
• Speculative loading

Intel and HP refer to this combination of concepts as explicitly parallel instruc-
tion computing (EPIC). Intel and HP use the term EPIC to refer to the technology,
or collection of techniques. IA-64 is an actual instruction set architecture that is
intended for implementation using the EPIC technology. The first Intel product
based on this IA-64 is referred to as Itanium. Other products will follow, based on
the same IA-64 architecture.

Table 15.1 summarizes key differences between IA-64 and a traditional super-
scalar approach.

For Intel, the move to a new architecture, one that is not hardware compati-
ble with the x86 instruction architecture, is a momentous decision. But it is driven
by the dictates of the technology. When the x86 family began, back in the late 1970s,
the processor chip had tens of thousands of transistors and was an essentially scalar
device. That is, instructions were processed one at a time, with little or no pipelin-
ing. As the number of transistors increased into the hundreds of thousands in the
mid-1980s, Intel introduced pipelining (e.g., Figure 12.18). Meanwhile, other man-
ufacturers were attempting to take advantage of the increased transistor count and
increased speed by means of the RISC approach, which enabled more effective
pipelining, and later the superscalar/RISC combination, which involved multiple
execution units. With the Pentium, Intel made a modest attempt to use superscalar
techniques, allowing two CISC instructions to execute at a time. Then, the Pentium
Pro and Pentium II through Pentium 4 incorporated a mapping from CISC instruc-

Table 15.1 Traditional Superscalar versus IA-64 Architecture

Superscalar IA-64

RISC-line instructions, one per word RISC-line instructions bundled into groups of three

Multiple parallel execution units Multiple parallel execution units

Reorders and optimizes instruction stream Reorders and optimizes instruction stream at
at run time compile time

Branch prediction with speculative execution Speculative execution along both paths of a 
of one path branch

Loads data from memory only when needed, Speculatively loads data before its needed, and 
and tries to find the data in the caches first still tries to find data in the caches first
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tions to RISC-like micro-operations and the more aggressive use of superscalar
techniques. This approach enabled the effective use of a chip with millions of tran-
sistors. But for the next generation processor, the one beyond Pentium, Intel and
other manufacturers are faced with the need to use effectively tens of millions of
transistors on a single processor chip.

Processor designers have few choices in how to use this glut of transistors. One
approach is to dump those extra transistors into bigger on-chip caches. Bigger caches
can improve performance to a degree but eventually reach a point of diminishing
returns, in which larger caches result in tiny improvements in hit rates. Another
alternative is to increase the degree of superscaling by adding more execution units.
The problem with this approach is that designers are, in effect, hitting a complexity
wall. As more and more execution units are added, making the processor “wider,”
more logic is needed to orchestrate these units. Branch prediction must be improved,
out-of-order processing must be used, and longer pipelines must be employed. But
with more and longer pipelines, there is a greater penalty for misprediction. Out-of-
order execution requires a large number of renaming registers and complex inter-
lock circuitry to account for dependencies. As a result, today’s best processors can
manage at most to retire six instructions per cycle, and usually less.

To address these problems, Intel and HP have come up with an overall design
approach that enables the effective use of a processor with many parallel execution
units. The heart of this new approach is the concept of explicit parallelism. With this
approach, the compiler statically schedules the instructions at compile time, rather
than having the processor dynamically schedule them at run time. The compiler
determines which instructions can execute in parallel and includes this information
with the machine instruction. The processor uses this information to perform paral-
lel execution. One advantage of this approach is that the EPIC processor does not
need as much complex circuitry as an out-of-order superscalar processor. Further,
whereas the processor has only a matter of nanoseconds to determine potential par-
allel execution opportunities, the compiler has orders of magnitude more time to
examine the code at leisure and see the program as a whole.

15.2 GENERAL ORGANIZATION

As with any processor architecture, IA-64 can be implemented in a variety of
organizations. Figure 15.1 suggests in general terms the organization of an IA-64
machine. The key features are as follows:

• Large number of registers: The IA-64 instruction format assumes the use of 256
registers: 128 64-bit registers for integer, logical, and general-purpose use, and
128 82-bit registers for floating-point and graphic use. There are also 64 1-bit
predicate registers used for predicated execution, as explained subsequently.

• Multiple execution units: A typical commercial superscalar machine today
may support four parallel pipelines, using four parallel execution units in
both the integer and floating-point portions of the processor. It is expected that
IA-64 will be implemented on systems with eight or more parallel units.
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Figure 15.1 General Organization for IA-64 Architecture 

The register file is quite large compared with most RISC and superscalar
machines. The reason for this is that a large number of registers is needed to sup-
port a high degree of parallelism. In a traditional superscalar machine, the machine
language (and the assembly language) employs a small number of visible registers,
and the processor maps these onto a larger number of registers using register renam-
ing techniques and dependency analysis. Because we wish to make parallelism
explicit and relieve the processor of the burden of register renaming and depen-
dency analysis, we need a large number of explicit registers.

The number of execution units is a function of the number of transistors avail-
able in a particular implementation. The processor will exploit parallelism to the
extent that it can. For example, if the machine language instruction stream indicates
that eight integer instructions may be executed in parallel, a processor with four
integer pipelines will execute these in two chunks. A processor with eight pipelines
will execute all eight instructions simultaneously.

Four types of execution unit are defined in the IA-64 architecture:

• I-unit: For integer arithmetic, shift-and-add, logical, compare, and integer mul-
timedia instructions.

• M-unit: Load and store between register and memory plus some integer ALU
operations.

• B-unit: Branch instructions.
• F-unit: Floating-point instructions.

15 Stallings I  4/4/02  10:37 AM  Page 545



546 CHAPTER 15 / THE IA-64 ARCHITECTURE

Table 15.2 Relationship between Instruction Type and Execution Unit Type

Instruction Type Description Execution Unit Type

A Integer ALU I-unit or M-unit

I Non-ALU integer I-unit

M Memory M-unit

F Floating point F-unit

B Branch B-unit

L � X Extended I-unit/B-unit

Each IA-64 instruction is categorized into one of six types. Table 15.2 lists the
instruction types and the execution unit types on which they may be executed.

15.3 PREDICATION, SPECULATION, AND 
SOFTWARE PIPELINING

This section looks at the key features of the IA-64 architecture that support
instruction-level parallelism. First, we need to provide an overview of the IA-64 in-
struction format and, to support the examples in this section, define the general
format of IA-64 assembly language instructions.

Instruction Format

IA-64 defines a 128-bit bundle that contains three instructions, called syllables, and
a template field (Figure 15.2a). The processor can fetch instructions one or more
bundles at a time; each bundle fetch brings in three instructions. The template field
contains information that indicates which instructions can be executed in parallel.
The interpretation of the template field is not confined to a single bundle. Rather,
the processor can look at multiple bundles to determine which instructions may
be executed in parallel. For example, the instruction stream may be such that eight
instructions can be executed in parallel. The compiler will reorder instructions
so that these eight instructions span contiguous bundles and set the template bits so
that the processor knows that these eight instructions are independent.

The bundled instructions do not have to be in the original program order. Fur-
ther, because of the flexibility of the template field, the compiler can mix indepen-
dent and dependent instructions in the same bundle. Unlike some previous VLIW
designs, IA-64 does not need to insert null-operation (NOP) instructions to fill in
the bundles.

Table 15.3 shows the interpretation of the possible values for the 5-bit tem-
plate field (some values are reserved and not in current use). The template value
accomplishes two purposes:
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1. The field specifies the mapping of instruction slots to execution unit types. Not
all possible mappings of instructions to units are available.

2. The field indicates the presence of any stops. A stop indicates to the hardware
that one or more instructions before the stop may have certain kinds of re-
source dependencies with one or more instructions after the stop. In the table,
a heavy vertical line indicates a stop.

Each instruction has a fixed-length 41-bit format (Figure 15.2b). This is some-
what longer than the traditional 32-bit length found on RISC and RISC superscalar
machines (although it is much shorter than the 118-bit micro-operation of the Pen-
tium 4). Two factors lead to the additional bits. First, IA-64 makes use of more reg-
isters than a typical RISC machine: 128 integer and 128 floating-point registers.
Second, to accommodate the predicated execution technique, an IA-64 machine
includes 64 predicate registers. Their use is explained subsequently.

Figure 15.2c shows in more detail the typical instruction format. All instruc-
tions include a 4-bit major opcode and a reference to a predicate register. Although
the major opcode field can only discriminate among 16 possibilities, the interpreta-

41-bit instruction

41 41

(a) IA-64 bundle

(b) General IA-64 instruction format

41 5

Instruction slot 2 Instruction slot 1

PR

PR � Predicate register
GR � General or floating-point register

Major
opcode

Instruction slot 0
Tem-
plate

128-bit bundle

31 64

(c) Typical IA-64 instruction format

PRGR1GR2GR3Other modifying bits
Major
opcode

10 7 7 7 64

Figure 15.2 IA-64 Instruction Format 
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tion of the major opcode field depends on the template value and the location of the
instruction within a bundle (Table 15.3), thus affording more possible opcodes. Typ-
ical instructions also include three fields to reference registers, leaving 10 bits for
other information needed to fully specify the instruction.

Assembly-Language Format

As with any machine instruction set, an assembly language is provided for the con-
venience of the programmer. The assembler or compiler then translates each assem-

Table 15.3 Template Field Encoding and Instruction Set Mapping

Template Slot 0 Slot 1 Slot 2

00 M-unit I-unit I-unit

01 M-unit I-unit I-unit

02 M-unit I-unit I-unit

03 M-unit I-unit I-unit

04 M-unit L-unit X-unit

05 M-unit L-unit X-unit

08 M-unit M-unit I-unit

09 M-unit M-unit I-unit

0A M-unit M-unit I-unit

0B M-unit M-unit I-unit

0C M-unit F-unit I-unit

0D M-unit F-unit I-unit

0E M-unit M-unit F-unit

0F M-unit M-unit F-unit

10 M-unit I-unit B-unit

11 M-unit I-unit B-unit

12 M-unit B-unit B-unit

13 M-unit B-unit B-unit

16 B-unit B-unit B-unit

17 B-unit B-unit B-unit

18 M-unit M-unit B-unit

19 M-unit M-unit B-unit

1C M-unit F-unit B-unit

1D M-unit F-unit B-unit
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bly language instruction into a 41-bit IA-64 instruction. The general format of an
assembly language instruction is

[qp] mnemonic[.comp] dest=srcs

where

qp Specifies a 1-bit predicate register used to qualify the instruction. If
the value of the register is 1 (true) at execution time, the instruction
executes and the result is committed in hardware. If the value is false,
the result of the instruction is not committed but is discarded. Most
IA-64 instructions may be qualified by a predicate but need not be. To
account for an instruction that is not predicated, the qp value is set
to 0 and predicate register zero always has the constant value of 1.

mnemonic Specifies the name of an IA-64 instruction.
comp Specifies one or more instruction completers, separated by periods,

which are used to qualify the mnemonic. Not all instructions require
the use of a completer.

dest Specifies one or more destination operands, with the typical case being
a single destination.

srcs Specifies one or more source operands. Most instructions have two or
more source operands.

On any line, any characters to the right of a double slash “//” are treated as a
comment. Instruction groups and stops are indicated by a double semicolon “;;”. An
instruction group is defined as a sequence of instructions that have no read after
write or write after write dependencies. The processor can issue these without hard-
ware checks for register dependencies. Here is a simple example:

ld8 r1 = [r5] ;;   // First group

add r3 = r1, r4    // Second group

The first instruction reads an 8-byte value from the memory location whose
address is in register r5 and then places that value in register r1. The second instruc-
tion adds the contents of r1 and r4 and places the result in r3. Because the second
instruction depends on the value in r1, which is changed by the first instruction, the
two instructions cannot be in the same group for parallel execution.

Here is a more complex example, with multiple register flow dependencies:

ld8 r1 = [r5]        // First group

sub r6 = r8, r9 ;;   // First group

add r3 = r1, r4      // Second group

st8 [r6] = r12       // Second group

The last instruction stores the contents of r12 in the memory location whose
address is in r6.

We are now ready to look at the four key mechanisms in the IA-64 architec-
ture to support instruction-level parallelism:
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• Predication
• Control speculation
• Data speculation
• Software pipelining

Figure 15.3, based on a figure in [HALF97], illustrates the first two of these tech-
niques, which are discussed in this subsection and the next.

Predicated Execution

Predication is a technique whereby the compiler determines which instructions may
execute in parallel. In the process, the compiler eliminates branches from the pro-
gram by using conditional execution. A typical example in a high-level language is
an if-then-else instruction. A traditional compiler inserts a conditional branch at the
if point of this construct. If the condition has one logical outcome, the branch is not
taken and the next block of instructions is executed, representing the then path; at
the end of this path is an unconditional branch around the next block, representing
the else path. If the condition has the other logical outcome, the branch is taken
around the then block of instructions and execution continues at the else block of
instructions. The two instruction streams join together after the end of the else
block. An IA-64 compiler instead does the following (Figure 15.3a):

1. At the if point in the program, insert a compare instruction that creates two
predicates. If the compare is true, the first predicate is set to true and the sec-
ond to false; if the compare is false, the first predicate is set to false and the
second to true.

2. Augment each instruction in the then path with a reference to a predicate reg-
ister that holds the value of the first predicate, and augment each instruction
in the else path with a reference to a predicate register that holds the value of
the second predicate.

3. The processor executes instructions along both paths. When the outcome of
the compare is known, the processor discards the results along one path and
commits the results along the other path. This enables the processor to feed
instructions on both paths into the instruction pipeline without waiting for the
compare operation to complete.

As an example, consider the following source code:

if (a&&b)
j = j + 1;

else

Source Code: if (c)
k = k + 1;

else
k = k - 1;

i = i + 1;

15 Stallings I  4/4/02  10:37 AM  Page 550



551

In
st

ru
ct

io
n 

1

In
st

ru
ct

io
n 

1

(a
) 

P
re

di
ca

ti
on

(b
) 

Sp
ec

ul
at

iv
e 

lo
ad

in
g

In
st

ru
ct

io
n 

2
In

st
ru

ct
io

n 
3

In
st

ru
ct

io
n 

4
In

st
ru

ct
io

n 
7

In
st

ru
ct

io
n 

5

In
st

ru
ct

io
n 

8
In

st
ru

ct
io

n 
6

In
st

ru
ct

io
n 

9

1.
 T

he
 b

ra
nc

h 
ha

s 
tw

o
po

ss
ib

le
 o

ut
co

m
es

.

2.
 T

he
 c

om
pi

le
r 

as
si

gn
s 

a
pr

ed
ic

at
e 

re
gi

st
er

 to
 e

ac
h

fo
llo

w
in

g 
in

st
ru

ct
io

n,
ac

co
rd

in
g 

to
 it

s 
pa

th
.

3.
 A

ll 
in

st
ru

ct
io

ns
al

on
g 

th
is

 p
at

h 
po

in
t

to
 p

re
di

ca
te

 r
eg

is
te

r
P1

.

4.
 A

ll 
in

st
ru

ct
io

ns
al

on
g 

th
is

 p
at

h 
po

in
t

to
 p

re
di

ca
te

 r
eg

is
te

r
P2

.

5.
 C

PU
 b

eg
in

s 
ex

ec
ut

in
g

in
st

ru
ct

io
ns

 f
ro

m
 b

ot
h 

pa
th

s.

6.
 C

PU
 c

an
 e

xe
cu

te
in

st
ru

ct
io

ns
 f

ro
m

 d
if

fe
re

nt
pa

th
s 

in
 p

ar
al

le
l b

ec
au

se
th

ey
 h

av
e 

no
 m

ut
ua

l
de

pe
nd

en
ci

es
.

7.
 W

he
n 

C
PU

 k
no

w
s 

th
e

co
m

pa
re

 o
ut

co
m

e,
 it

 d
is

ca
rd

s
re

su
lts

 f
ro

m
 in

va
lid

 p
at

h.

T
he

 c
om

pi
le

r 
m

ig
ht

 r
ea

rr
an

ge
 in

st
ru

ct
io

ns
 in

 th
is

 o
rd

er
, p

ai
ri

ng
in

st
ru

ct
io

ns
 4

 a
nd

 7
, 5

 a
nd

 8
, a

nd
 6

 a
nd

 9
 f

or
 p

ar
al

le
l e

xe
cu

tio
n.

In
st

ru
ct

io
n 

2

In
st

ru
ct

io
n 

3
(b

ra
nc

h)

In
st

ru
ct

io
n 

7
(P

2)
In

st
ru

ct
io

n 
4

(P
1)

In
st

ru
ct

io
n 

8
(P

2)
In

st
ru

ct
io

n 
5

(P
1)

In
st

ru
ct

io
n 

9
(P

2)
In

st
ru

ct
io

n 
6

(P
1)

In
st

ru
ct

io
n 

1
1.

 T
he

 c
om

pi
le

r 
sc

an
s 

th
e

so
ur

ce
 c

od
e 

an
d 

se
es

 a
n

up
co

m
in

g 
lo

ad
 (

in
st

ru
ct

io
n

8)
. I

t r
em

ov
es

 th
e 

lo
ad

, 
in

se
rt

s 
a 

sp
ec

ul
at

iv
e 

lo
ad

he
re

 a
nd

 a
 s

pe
cu

la
tiv

e
ch

ec
k 

im
m

ed
ia

te
ly

 b
ef

or
e

th
e 

op
er

at
io

n 
th

at
 w

ill
 u

se
th

e 
da

ta
 (

in
st

ru
ct

io
n 

9)
.

2.
 A

t r
un

 ti
m

e,
 th

is
in

st
ru

ct
io

n 
lo

ad
s 

th
e 

da
ta

fr
om

 m
em

or
y 

 b
ef

or
e 

it 
is

ne
ed

ed
. I

f 
th

e 
lo

ad
 w

ou
ld

tr
ig

ge
r 

an
 e

xc
ep

tio
n,

 th
e

C
PU

 p
os

tp
on

es
 r

ep
or

tin
g

th
e 

ex
ce

pt
io

n.

5.
 I

n 
ef

fe
ct

, I
A

-6
4

ha
s 

ho
is

te
d 

th
e 

lo
ad

ab
ov

e 
th

e 
br

an
ch

.

3.
 T

he
 c

om
pi

le
r

re
pl

ac
ed

 th
is

 lo
ad

 w
ith

th
e 

sp
ec

ul
at

iv
e 

lo
ad

ab
ov

e,
 s

o 
in

st
ru

ct
io

n 
8

do
es

 n
ot

 a
ct

ua
lly

ap
pe

ar
 in

 th
e 

pr
og

ra
m

.

4.
 T

hi
s 

in
st

ru
ct

io
n

ch
ec

ks
 th

e 
va

lid
ity

 o
f

th
e 

da
ta

. I
f 

it 
is

 O
K

,
th

e 
C

PU
 d

oe
s 

no
t

re
po

rt
 a

n 
ex

ce
pt

io
n.

In
st

ru
ct

io
n 

2

In
st

ru
ct

io
n 

3
(b

ra
nc

h)

Sp
ec

ul
at

iv
e

lo
ad

In
st

ru
ct

io
n 

7
(P

2)
In

st
ru

ct
io

n 
4

(P
1)

Sp
ec

ul
at

iv
e

ch
ec

k 
(P

2)

In
st

ru
ct

io
n 

5
(P

1)
In

st
ru

ct
io

n 
8

(l
oa

d 
da

ta
)

In
st

ru
ct

io
n 

9
(P

2)

In
st

ru
ct

io
n 

6
(P

1)

F
ig

ur
e 

15
.3

IA
-6

4 
P

re
di

ca
ti

on
 a

nd
 S

pe
cu

la
ti

ve
 L

oa
di

ng
 

15 Stallings I  4/4/02  10:37 AM  Page 551



552 CHAPTER 15 / THE IA-64 ARCHITECTURE

cmp a, 0
je L1

cmp b, 0
je L1

L1:

L2: p5p4

p3

P2

p1

L3:

cmp c, 0
je L2

add k, 1

add i, 1

sub k, 1

add  j, 1

F

F

F

T

T

T

Figure 15.4 Example of Predication 

Two if statements jointly select one of three possible execution paths. This can
be compiled into the following code, using the Pentium assembly language. The pro-
gram has three conditional branches and one unconditional branch instructions:

cmp a, 0 ; compare a with 0

je L1 ; branch to L1 if a = 0

cmp b, 0

je L1

add j, 1 ; j = j + 1

Assembly Code: jmp L3

L1: cmp c, 0

je L2

add k, 1 ; k = k + 1

jmp L3

L2: sub k, 1 ; k = k - 1

L3: add i, 1 ; i = i + 1

In the Pentium assembly language, a semicolon is used to delimit a comment.
Figure 15.4 shows a flow diagram of this assembly code. This diagram breaks

the assembly language program into separate blocks of code. For each block that
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executes conditionally, the compiler can assign a predicate. These predicates are
indicated in Figure 15.4. Assuming that all of these predicates have been initialized
to false, the resulting IA-64 assembly code is as follows:

(1)      cmp.eq p1, p2 = 0, a ;;

(2) (p2)  cmp.eq p1, p3 = 0, b

(3) (p3)  add j = 1, j

Predicated Code: (4) (p1)  cmp.ne p4, p5 = 0, c

(5) (p4)  add k = 1, k

(6) (p5)  add k = -1, k

(7)      add i = 1, i

Instruction (1) compares the contents of symbolic register a with 0; it sets the
value of predicate register p1 to 1 (true) and p2 to 0 (false) if the relation is true and
will set the value of predicate p1 to 0 and p2 to 1 if the relation is false. Instruction
(2) is to be executed only if the predicate p2 is true (i.e., if a is true, which is equiv-
alent to a � 0). The processor will fetch, decode, and begin executing this instruc-
tion, but only make a decision as to whether to commit the result after it determines
whether the value of predicate register p1 is 1 or 0. Note that instruction (2) is a
predicate-generating instruction and is itself predicated. This instruction requires
three predicate register fields in its format. 

Returning to our Pentium program, the first two conditional branches in the
Pentium assembly code are translated into two IA-64 predicated compare instruc-
tions. If instruction (1) sets p2 to false, the instruction (2) is not executed. After
instruction (2) in the IA-64 program, p3 is true only if the outer if statement in the
source code is true. That is, predicate p3 is true only if the expression (a AND b) is
true (i.e., a � 0 AND b � 0). The then part of the outer if statement is predicated
on p3 for this reason. Instruction (4) of the IA-64 code decides whether the addi-
tion or subtraction instruction in the outer else part is performed. Finally, the incre-
ment of i is performed unconditionally. Looking at the source code and then at
the predicated code, we see that only one of instructions (3), (5), and (6) is to be
executed. In an ordinary superscalar processor, we would use branch prediction to
guess which of the three is to be executed and go down that path. If the processor
guesses wrong, the pipeline must be flushed. An IA-64 processor can begin execu-
tion of all three of these instructions and, once the values of the predicate registers
are known, commit only the results of the valid instruction. Thus, we make use of
additional parallel execution units to avoid the delays due to pipeline flushing. 

Much of the original research on predicated execution was done at the Uni-
versity of Illinois. Their simulation studies indicate that the use of predication results
in a substantial reduction in dynamic branches and branch mispredictions and a sub-
stantial performance improvement for processors with multiple parallel pipelines
(e.g., [MAHL94], [MAHL95]).

Control Speculation

Another key innovation in IA-64 is control speculation, also known as speculative load-
ing. This enables the processor to load data from memory before the program needs
it, to avoid memory latency delays. Also, the processor postpones the reporting of
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exceptions until it becomes necessary to report the exception. The term hoist is used to
refer to the movement of a load instruction to a point earlier in the instruction stream.

The minimization of load latencies is crucial to improving performance. Typ-
ically, early in a block of code, there are a number of load operations that bring data
from memory to registers. Because memory, even augmented with one or two lev-
els of cache, is slow compared with the processor, the delays in obtaining data from
memory become a bottleneck. To minimize this, we would like to rearrange the
code so that loads are done as early as possible. This can be done with any compiler,
up to a point. The problem occurs if we attempt to move a load across a control flow.
You cannot unconditionally move the load above a branch because the load may
not actually occur. We could move the load conditionally, using predicates, so that
the data could be retrieved from memory but not committed to an architectural reg-
ister until the outcome of the predicate is known; or we can use branch prediction
techniques of the type we saw in Chapter 14. The problem with this strategy is that
the load can blow up. An exception due to invalid address or a page fault could be
generated. If this happens, the processor would have to deal with the exception or
fault, causing a delay.

How, then, can we move the load above the branch? The solution specified in
IA-64 is the control speculation, which separates the load behavior (delivering the
value) from the exception behavior (Figure 15.3b). A load instruction in the origi-
nal program is replaced by two instructions:

• A speculative load (ld.s) executes the memory fetch, performs exception
detection, but does not deliver the exception (call the OS routine that handles
the exception). This ld.s instruction is hoisted to an appropriate point earlier
in the program.

• A checking instruction (chk.s) remains in the place of the original load and
delivers exceptions. This chk.s instruction may be predicated so that it will only
execute if the predicate is true.

If the ld.s detects an exception, it sets a token bit associated with the target
register, known as the Not a Thing (NaT) bit. If the corresponding chk.s instruction
is executed, and if the NaT bit is set, the chk.s instruction branches to an exception-
handling routine.

Let us look at a simple example, taken from [INTE00a, Volume 1]. Here is the
original program:

(p1) br some_label // Cycle 0

ld8 r1 = [r5] ;; // Cycle 1

add r2 = r1, r3 // Cycle 3

The first instruction branches if predicate p1 is true (register p1 has value 1).
Note that the branch and load instructions are in the same instruction group, even
though the load should not execute if the branch is taken. IA-64 guarantees that if
a branch is taken, later instructions, even in the same instruction group, are not exe-
cuted. IA-64 implementations may use branch prediction to try to improve effi-
ciency but must assure against incorrect results. Finally, note that the add instruction
is delayed by at least a clock period (one cycle) due to the memory latency of the
load operation. 
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The compiler can rewrite this code using a control speculative load and a check:

ld8.s r1 = [r5] ;; // Cycle -2

// Other instructions

(p1) br some_label // Cycle 0

chk.s r1, recovery // Cycle 0

add r2 = r1, r3 // Cycle 0

We can’t simply move the load instruction above the branch instruction, as is,
because the load instruction may cause an exception (e.g., r5 may contain a null
pointer). Instead, we convert the load to a speculative load, ld8.s, and then move it.
The speculative load doesn’t immediately signal an exception when detected; it just
records that fact by setting the NaT bit for the target register (in this case, r1). The
speculative load now executes unconditionally at least two cycles prior to the
branch. The chk.s instruction then checks to see if the NaT bit is set on r1. If not,
execution simply falls through to the next instruction. If so, a branch is taken to a
recovery program. Note that the branch, check, and add instructions are all shown
as being executed in the same clock cycle. However, the hardware ensures that the
results produced by the speculative load do not update the application state (change
the contents of r1 and r2) unless two conditions occur: The branch is not taken
(p1 � 0) and the check does not detect a deferred exception (r1.NaT � 0).

There is one other important point to note about this example. If there is no
exception, then the speculative load is an actual load and takes place prior to the
branch that it is supposed to follow. If the branch is taken, then a load has occurred
that was not intended by the original program. The program, as written, assumes
that r1 is not read on the taken-branch path. If r1 is read on the taken-branch path,
then the compiler must use another register to hold the speculative result.

Let us look at a more complex example, used by Intel and HP to benchmark
predicated programs and to illustrate the use of speculative loads, known as the
Eight Queens Problem. The objective is to arrange eight queens on a chessboard so
that no queen threatens any other queen. Figure 15.5a shows one solution. The key
line of source code, in an inner loop, is the following:

if ((b[j] == true) && (a[i + j] == true) && (c[i - j] == true))

where 1 � i, j � 8.
The queen conflict tracking mechanism consists of three Boolean arrays that

track queen status for each row and diagonal. TRUE means no queen is on that row
or diagonal; FALSE means a queen is already there. Figures 15.5b and c show the
mapping of the arrays to the chess board. All array elements are initialized to
TRUE. The B array elements 1–8 correspond to rows 1–8 on the board. A queen in
row n sets b[n] to FALSE. C array elements are numbered from �7 to 7 and corre-
spond to the difference between column and row numbers, which defines the diag-
onals that go down to the right. A queen at column 1, row 1 sets c[0] to FALSE. A
queen at column 1, row 8 sets c[�7] to FALSE. The A array elements are numbered
2–16 and correspond to the sum of the column and row. A queen placed in column
1, row 1 sets a[2] to FALSE. A queen placed in column 3, row 5 sets a[8] to FALSE.

The overall program moves through the columns, placing a queen on each col-
umn such that the new queen is not attacked by a queen previously placed on either
along a row or one of the two diagonals.

15 Stallings I  4/4/02  10:37 AM  Page 555



556 CHAPTER 15 / THE IA-64 ARCHITECTURE
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Figure 15.5 The Eight Queens Problem 

A straightforward Pentium assembly program includes three loads and three
branches:

(1) mov r2, &b[j] ; transfer contents of location

; b[j] to register r2

(2) cmp r2, 1

(3) jne L2

(4) mov r4, &a[i + j]

Assembly Code: (5) cmp r4, 1

(6) jne L2

(7) mov r6, &c[i - j]

(8) cmp r6, 1

(9) jne L2

(10)L1: <code for then path>

(11)L2: <code for else path>

In the preceding program, the notation &x symbolizes an immediate address for
location x. Using speculative loads and predicated execution yields the following:
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(1) mov r1 = &b[j] // transfer address of 

// b[j] to r1

(2) mov r3 = &a[i + j]

(3) mov r5 = &c[i - j + 7]

(4) ld8 r2 = [r1] // load indirect via r1

(5) ld8.s r4 = [r3]

(6) ld8.s r6 = [r5]

Code with (7) cmp.eq p1, p2 = 1, r2

Speculation and (8) (p2) br L2

Predication: (9) chk.s r4, recovery_a // fixup for loading a

(10) cmp.eq p3, p4 = 1, r4

(11) (p4) br L2

(12) chk.s r6, recovery_b // fixup for loading b

(13) cmp.eq p5, p6 = 1, r5

(14) (p6) br L2

(15)L1: <code for then path>

(16)L2: <code for else path>

The assembly program breaks down into three basic blocks of code, each of
which is a load followed by a conditional branch. The address-setting instructions
4 and 7 in the Pentium assembly code are simple arithmetic calculations; these can
be done anytime, so the compiler moves these up to the top. Then the compiler is
faced with three simple blocks, each of which consists of a load, a condition calcu-
lation, and a conditional branch. There seems little hope of doing anything in par-
allel here. Furthermore, if we assume that the load takes two or more clock cycles,
we have some wasted time before the conditional branch can be executed. What the
compiler can do is hoist the second and third loads (instructions 5 and 8 in the Pen-
tium code) above all the branches. This is done by putting a speculative load up top
(IA-64 instructions 5 and 6) and leaving a check in the original code block (IA-64
instructions 9 and 12).

This transformation makes it possible to execute all three loads in parallel and
to begin the loads early so as to minimize or avoid delays due to load latencies. The
compiler can go further by more aggressive use of predication, and eliminate two of
the three branches:

(1) mov r1 = &b[j]

(2) mov r3 = &a[i + j]

(3) mov r5 = &c[i - j + 7]

(4) ld8 r2 = [r1]

Revised Code (5) ld8.s r4 = [r3]

with Speculation (6) ld8.s r6 = [r5]

and Predication: (7) cmp.eq p1, p2 = 1, r2

(8) (p1) chk.s r4, recovery_a

(9) (p1) cmp.eq p3, p4 = 1, r4

(10) (p3) chk.s r6, recovery_b

(11) (p3) cmp.eq p5, p4 = 1, r5

(12) (p6) br L2

(13)L1: <code for then path>

(14)L2: <code for else path>
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We already had a compare that generated two predicates. In the revised code,
instead of branching on the false predicate, the compiler qualifies execution of both
the check and the next compare on the true predicate. The elimination of two
branches means the elimination of two potential mispredictions, so that the savings
is more than just two instructions.

Data Speculation

In a control speculation, a load is moved earlier in a code sequence to compensate
for load latency, and a check is made to assure that an exception doesn’t occur if it
subsequently turns out that the load was not taken. In data speculation, a load is
moved before a store instruction that might alter the memory location that is the
source of the load. A subsequent check is made to assure that the load receives the
proper memory value. To explain the mechanism, we use an example taken from
[INTE00a, Volume 1].

Consider the following program fragment:

st8 [r4] = r12 // Cycle 0

ld8 r6 = [r8] ;; // Cycle 0

add r5 = r6, r7 ;; // Cycle 2

st8 [r18] = r5 // Cycle 3

As written, the code requires four instruction cycles to execute. If registers r4
and r8 do not contain the same memory address, then the store through r4 cannot
affect the value at the address contained in r8; under this circumstance, it is safe to
reorder the load and store to more quickly bring the value into r6, which is needed
subsequently. However, because the addresses in r4 and r8 may be the same or over-
lap, such a swap is not safe. IA-64 overcomes this problem with the use of a tech-
nique known as advanced load.

ld8.a r6 = [r8] ;; // Cycle -2 or earlier; advanced load

// other instructions

st8 [r4] = r12 // Cycle 0

ld8.c r6 = [r8] // Cycle 0; check load

add r5 = r6, r7 ;; // Cycle 0

st8 [r18] = r5 // Cycle 1

Here we have moved the ld instruction earlier and converted it into an
advanced load. In addition to performing the specified load, the ld8.a instruction
writes its source address (address contained in r8) to a hardware data structure
known as the Advanced Load Address Table (ALAT). Each IA-64 store instruc-
tion checks the ALAT for entries that overlap with its target address; if a match is
found, the ALAT entry is removed. When the original ld8 is converted to an ld8.a
instruction and moved, the original position of that instruction is replaced with a
check load instruction, ld8.c. When the check load is executed, it checks the ALAT
for a matching address. If one is found, no store instruction between the advanced
load and the check load has altered the source address of the load, and no action is
taken. However, if the check load instruction does not find a matching ALAT entry,
then the load operation is performed again to assure the correct result.
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We may also want to speculatively execute instructions that are data dependent
on a load instruction, together with the load itself. Starting with the same original
program, suppose we move up both the load and the subsequent add instruction:

ld8.a r6 = [r8] ;; // Cycle -3 or earlier; advanced load

// other instructions

add r5 = r6, r7 // Cycle -1; add that uses r6

// other instructions

st8 [r4] = r12 // Cycle 0

chk.a r6, recover // Cycle 0; check

back: // return point from jump to recover

st8 [r18] = r5 // Cycle 0

Here we use a chk.a instruction rather than an ld8.c instruction to validate the
advanced load. If the chk.a instruction determines that the load has failed, it cannot
simply reexecute the load; instead, it branches to a recovery routine to clean up:

Recover:

ld8 r6 = [r8] ;; // reload r6 from [r8]

add r5 = r6, r7 ;; // re-execute the add

br back // jump back to main code

This technique is effective only if the loads and stores involved have little
chance of overlapping.

Software Pipelining

Consider the following loop:

L1: ld4 r4 = [r5], 4 ;; // Cycle 0; load postinc 4

add r7 = r4, r9 ;; // Cycle 2

st4 [r6] = r7, 4 // Cycle 3; store postinc 4

br.cloop L1 ;; // Cycle 3

This loop adds a constant to one vector and stores the result in another vector
(e.g. y[i] � x[i] � c). The ld4 instruction loads 4 bytes from memory. The qualifier
“, 4” at the end of the instruction signals that this is the base update form of the load
instruction; the address in r5 is incremented by 4 after the load takes place. Simi-
larly, the st4 instruction stores four bytes in memory and the address in r6 is incre-
mented by four after the store. The br.cloop instruction, known as a counted loop
branch, uses the Loop Count (LC) application register. If the LC register is greater
than zero, it is decremented and the branch is taken. The initial value in LC is the
number of iterations of the loop.

Notice that in this program, there is virtually no opportunity for instruction-
level parallelism within a loop. Further, the instructions in iteration x are all exe-
cuted before iteration x � 1 begins. However, if there is no address conflict between
the load and store (r5 and r6 point to nonoverlapping memory locations), then uti-
lization could be improved by moving independent instructions from iteration x � 1
to iteration x. Another way of saying this is that if we unroll the loop code by actually
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writing out a new set of instructions for each iteration, then there is opportunity to
increase parallelism. Let’s see what could be done with five iterations:

ld4 r32 = [r5], 4 ;; // Cycle 0

ld4 r33 = [r5], 4 ;; // Cycle 1

ld4 r34 = [r5], 4 // Cycle 2

add r36 = r32, r9 ;; // Cycle 2

ld4 r35 = [r5], 4 // Cycle 3

add r37 = r33, r9 // Cycle 3

st4 [r6] = r36, 4 ;; // Cycle 3

ld4 r36 = [r5], 4 // Cycle 3

add r38 = r34, r9 // Cycle 4

st4 [r6] = r37, 4 ;; // Cycle 4

add r39 = r35, r9 // Cycle 5

st4 [r6] = r38, 4 ;; // Cycle 5

add r40 = r36, r9 // Cycle 6

st4 [r6] = r39, 4 ;; // Cycle 6

st4 [r6] = r40, 4 ;; // Cycle 7

This program completes 5 iterations in 7 cycles, compared with 20 cycles in the
original looped program. This assumes that there are two memory ports so that a
load and a store can be executed in parallel. This is an example of software pipelin-
ing, analogous to hardware pipelining. Figure 15.6 illustrates the process. Parallelism
is achieved by grouping together instructions from different iterations. For this to
work, the temporary registers used inside the loop must be changed for each itera-
tion to avoid register conflicts. In this case, two temporary registers are used (r4 and
r7 in the original program). In the expanded program, the register number of each
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Figure 15.6 Software Pipelining Example 
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register is incremented for each iteration, and the register numbers are initialized
sufficiently far apart to avoid overlap.

Figure 15.6 shows that the software pipeline has three phases. During the pro-
log phase, a new iteration is initiated with each clock cycle and the pipeline gradu-
ally fills up. During the kernel phase, the pipeline is full, achieving maximum
parallelism. For our example, three instructions are performed in parallel during the
kernel phase, but the width of the pipeline is four. During the epilog phase, one iter-
ation completes with each clock cycle.

Software pipelining by loop unrolling places a burden on the compiler or
programmer to assign register names properly. Further, for long loops with many
iterations, the unrolling results in a significant expansion in code size. For an inde-
terminate loop (total iterations unknown at compile time), the task is further com-
plicated by the need to do a partial unroll and then to control the loop count. IA-64
provides hardware support to perform software pipelining with no code expansion
and with minimal burden on the compiler. The key features that support software
pipelining are as follows:

• Automatic register renaming: A fixed-sized area of the predicate and floating-
point register files (p16 to p63; fr32 to fr127) and a programmable-sized area
of the general register file (maximum range of r32 to r127) are capable of rota-
tion. This means that during each iteration of a software-pipeline loop, regis-
ter references within these ranges are automatically incremented. Thus, if a
loop makes use of general register r32 on the first iteration, it automatically
makes use of r33 on the second iteration, and so on.

• Predication: Each instruction in the loop is predicated on a rotating predicate
register. The purpose of this is to determine whether the pipeline is in prolog,
kernel, or epilog phase, as explained subsequently.

• Special loop terminating instructions: These are branch instructions that cause
the registers to rotate and the loop count to decrement.

This is a relatively complex topic; here, we present an example that illustrates
some of the IA-64 software pipelining capabilities. We take the original loop pro-
gram from this section and show how to program it for software pipelining, assum-
ing a loop count of 200 and that there are two memory ports:

mov lc = 199 // set loop count register to 199,

// which equals loop count - 1

mov ec = 4 // set epilog count register equal

// to number of epilog stages + 1

mov pr.rot = 1<<16;; // pr16 = 1; rest = 0

L1: (p16) ld4 r32 = [r5], 4 // Cycle 0

(p17) --- // Empty stage

(p18) add r35 = r34, r9 // Cycle 0

(p19) st4 [r6] = r36, 4 // Cycle 0

br.ctop L1 ;; // Cycle 0

We summarize the key points related to this program:
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1. The loop body is partitioned into multiple stages, with zero or more instruc-
tions per stage.

2. Execution of the loop proceeds through three phases. During the prolog
phase, a new loop iteration is started each time around, adding one stage to
the pipeline. During the kernel phase, one loop iteration is started and one
completed each time around; the pipeline is full, with the maximum number
of stages active. During the epilog phase, no new iterations are started and one
iteration is completed each time around, draining the software pipeline.

3. A predicate is assigned to each stage to control the activation of the instruc-
tions in that stage. During the prolog phase, p16 is true and p17, p18, and p19
are false for the first iteration. For the second iteration, p16 and p17 are true;
during the third iteration p16, p17, and p18 are true. During the kernel phase,
all predicates are true. During the epilog phase, the predicates are turned to
false one by one, beginning with p16. The changes in predicate values are
achieved by predicate register rotation.

4. All general registers with register numbers greater than 31 are rotated with
each iteration. Registers are rotated toward larger register numbers in a wrap-
around fashion. For example, the value in register x will be located in register
x � 1 after one rotation; this is achieved not by moving values but by hard-
ware renaming of registers. Thus, in our example, the value that the load
writes in r32 is read by the add two iterations (and two rotations) later as r34.
Similarly, the value that the add writes in r35 is read by the store one iteration
later as r36.

Table 15.4 Loop Trace for Software Pipelining Example

Cycle
Execution Unit/Instruction State before br.ctop

M I M B P16 P17 P18 P19 LC EC

0 ld4 br.ctop 1 0 0 0 199 4

1 ld4 br.ctop 1 1 0 0 198 4

2 ld4 add br.ctop 1 1 1 0 197 4

3 ld4 add st4 br.ctop 1 1 1 1 196 4

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

100 ld4 add st4 br.ctop 1 1 1 1 99 4

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

199 ld4 add st4 br.ctop 1 1 1 1 0 4

200 add st4 br.ctop 0 1 1 1 0 3

201 add st4 br.ctop 0 0 1 1 0 2

202 st4 br.ctop 0 0 0 1 0 1

0 0 0 0 0 0
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5. For the br.ctop instruction, the branch is taken if either LC � 0 or EC � 1.
Execution of br.ctop has the following additional effects: If LC � 0, then LC
is decremented; this happens during the prolog and kernel phases. If LC � 0
and EC � 1, EC is decremented; this happens during the epilog phase. The
instruction also control register rotation. If LC � 0, each execution of br.ctop
places a 1 in p63. With rotation, p63 becomes p16, feeding a continuous
sequence of ones into the predicate registers during the prolog and kernel
phases. If LC � 0, then br.ctop sets p63 to 0, feeding zeros into the predicate
registers during the epilog phase.

Table 15.4 shows a trace of the execution of this example.

15.4 IA-64 INSTRUCTION SET ARCHITECTURE

Figure 15.7 shows the set of registers available to application programs. That is,
these registers are visible to applications and may be read and, in most cases, written.
The register sets include the following:

• General registers: 128 general-purpose 64-bit registers. Associated with each
register is a NaT bit used to track deferred speculative exceptions, as explained
in Section 15.3. Registers r0 through r31 are referred to as static; a program
reference to any of these references is literally interpreted. Registers r32
through r127 can be used as rotating registers for software pipelining (dis-
cussed in Section 15.3) and for register stack implementation (discussed sub-
sequently in this section). References to these registers are virtual, and the
hardware my perform register renaming dynamically.

• Floating-point registers: 128 82-bit registers for floating-point numbers. This
size is sufficient to hold IEEE 754 double extended format numbers (see Table
9.3). Registers fr0 through fr31 are static, and registers fr32 through fr127 can
be used as rotating registers for software pipelining.

• Predicate registers: 64 1-bit registers used as predicates. Register pr0 is always
set to 1 to enable unpredicated instructions. Registers pr0 through pr15 are
static, and registers pr16 through pr63 can be used as rotating registers for soft-
ware pipelining.

• Branch registers: 8 64-bit registers used for branches.
• Instruction pointer: Holds the bundle address of the currently executing IA-

64 instruction.
• Current frame marker: Holds state information relating to the current general

register stack frame and rotation information for fr and pr registers.
• User mask: A set of single-bit values used for alignment traps, performance

monitors, and to monitor floating-point register usage.
• Performance monitor data registers: Used to support performance monitor

hardware.
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Table 15.5 IA-64 Application Registers

Kernel registers (KR0-7) Convey information from the operating system to the
application.

Register stack configuration (RSC) Controls the operation of the register stack engine (RSE).

RSE Backing store pointer (BSP) Holds the address in memory that is the save location for
r32 in the current stack frame

RSE Backing store pointer to memory Holds the address in memory to which the RSE will spill 
stores (BSPSTORE) the next value.

RSE NaT collection register (RNAT) Used by the RSE to temporarily hold NaT bits when it is
spilling general registers.

Compare and exchange value (CCV) Contains the compare value used as the third source
operand in the cmpxchg instruction.

User NaT collection register (UNAT) Used to temporarily hold NaT bits when saving and
restoring general registers with the ld8.fill and st8.spill
instructions.

Floating-point status register (FPSR) Controls traps, rounding mode, precision control, flags,
and other control bits for floating-point instructions.

Interval time counter (ITC) Counts up at a fixed relationship to the processor clock
frequency.

Previous function state (PFS) Saves value in CFM register and related information.

Loop count (LC) Used in counted loops and is decremented by counted-
loop-type branches.

Epilog count (EC) Used for counting the final (epilog) state in modulo-
scheduled loops.

• Processor identifiers: Describe processor implementation-dependent features.
• Application registers: A collection of special-purpose registers. Table 15.5 pro-

vides a brief definitsion of each.

Register Stack

The register stack mechanism in IA-64 avoids unnecessary movement of data into
and out of registers at procedure call and return. The mechanism automatically pro-
vides a called procedure with a new frame of up to 96 registers (r32 through r127)
upon procedure entry. The compiler specifies the number of registers required by a
procedure with the alloc instruction, which specifies how many of these are local
(used only within the procedure) and how many are output (used to pass parame-
ters to a procedure called by this procedure). When a procedure call occurs, the
IA-64 hardware renames registers so that the local registers from the previous frame
are hidden and what were the output registers of the calling procedure now have
register numbers starting at r32 in the called procedure. Physical registers in the
range r32 through r127 are allocated in a circular-buffer fashion to virtual registers
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Caller's frame (procA)

Instruction execution Stacked general
registers

Frame markers

CFM

Local A Output A 14 21

sol sof
PFS(pfm)

x x

0 7 14 21

16 19 14 21

14 21 14 21

sol sof

call

sofa = 21

Output B1

sofb1 = 7

sola = 14

Local A Output A

sofa = 21
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Local B

Output B2

solb2 = 16

alloc

return

Callee's frame (procB)
after call

Caller's frame (procB)
affter alloc

Caller's frame (procA)
after return

sofb2 = 19

Figure 15.8 Register Stack Behavior on Procedure Call and Return 

associated with procedures. That is, the next register allocated after r127 is r32.
When necessary, the hardware moves register contents between registers and mem-
ory to free up additional registers when procedure calls occur, and restores contents
from memory to registers as procedure returns occur.

Figure 15.8 illustrates register stack behavior. The alloc instruction includes
sof (size of frame) and sol (size of locals) operands to specify the required number
of registers. These values are stored in the CFM register. When a call occurs, the sol
and sof values from the CFM are stored in the sol and sof fields of the previous func-
tion state (PFS) application register (Figure 15.9). Upon return these sol and sof
values must be restored from the PFS to the CFM. To allow nested calls and returns,
previous values of the PFS fields must be saved through successive calls so that they
can be restored through successive returns. This is a function of the alloc instruc-
tion, which designates a general register to save the current value of the PFS fields
before they are overwritten from the CFM fields.
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Current Frame Marker and Previous Function State

The CFM register describes the state of the current general register stack frame,
associated with the currently active procedure. It includes the following fields:

• sof: Size of stack frame
• sol: Size of locals portion of stack frame
• sor: Size of rotating portion of stack frame; this is a subset of the local portion

that is dedicated to software pipelining
• register rename base values: Values used in performing register rotation gen-

eral, floating-point and predicate registers

The PFS application register contains the following fields:

• pfm: Previous frame marker; contains all of the fields of the CFM
• pec: Previous epilog count
• ppl: Previous privilege level

15.5 ITANIUM ORGANIZATION

Intel’s Itanium processor is the first implementation of the IA-64 instruction set
architecture. The Itanium organization blends superscalar features with support for
the unique EPIC-related IA-64 features. Among the superscalar features are a six-
wide, ten-stage-deep hardware pipeline, dynamic prefetch, branch prediction, and a
register scoreboard to optimize for compile time nondeterminism. EPIC-related
hardware includes support for predicated execution, control and data speculation,
and software pipelining.

Figure 15.10 is a general block diagram of the Itanium organization. The Ita-
nium includes nine execution units: two integer, two floating-point, two memory,
and three branch execution units. Instructions are fetched through an L1 instruction
cache and fed into a buffer that holds up to eight bundles of instructions. When
deciding on functional units for instruction dispersal, the processor views at most
two instruction bundles at a time. The processor can issue a maximum of six instruc-
tions per clock cycle.

The organization is in some ways simpler than a conventional contemporary
superscalar organization. The Itanium does not use reservation stations, reorder
buffers, and memory ordering buffers, all replaced by simpler hardware for specu-
lation. The register remapping hardware is simpler than the register aliasing typical
of superscalar machines. Register dependency-detection logic is absent, replaced by
explicit parallelism directives precomputed by the software.

Using branch prediction, the fetch/prefetch engine can speculatively load an
L1 instruction cache to minimize cache misses on instruction fetches. The fetched
code is fed into a decoupling buffer that can hold up to eight bundles of code.

Three levels of cache are used. The L1 cache is split into a 16-kbyte instruc-
tion cache and a 16-kbyte data cache, each 4-way set associative with a 32-byte
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line size. The 96-kbyte L2 cache is 6-way set associative with a 64-byte line size. The
4-Mbyte L3 cache is 4-way set associative with a 64-byte line size. The L1 and L2
caches are on the processor chip; the L3 cache is off-chip but on the same package
as the processor.

15.6 RECOMMENDED READING AND WEB SITES

[HUCK00] provides an overview of IA-64; another overview is [DULO98]. [SCHL00a] pro-
vides a general discussion of EPIC; a more thorough treatment is provided in [SCHL00b].
Two other good treatments are [HWU01] and [KATH01]. [CHAS00] and [HWU98] provide
introductions to predicated execution. Volume 1 of [INTE00a] contains a detailed treatment
of software pipelining; two articles that provide a good explanation of the topic, with exam-
ples, are [JARP01] and [BHAR00].

For an overview of the Itanium processor architecture, see [SHAR00]; [INTE00b] pro-
vides a more detailed treatment.

Both [TRIE01] and [MARK00] contain more detailed treatments of the topics of this chap-
ter. Finally, for an exhaustive look at the IA-64 architecture and instruction set, see [INTE00a].
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Recommended Web Sites:

• Itanium: Intel’s site for the latest information on IA-64 and Itanium.

• IMPACT: This is a site at the University of Illinois, where much of the research on
predicated execution has been done. A number of papers on the subject are available.

15.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS
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Review Questions
15.1 What are the different types of execution units for IA-64?
15.2 Explain the use of the template field in an IA-64 bundle.
15.3 What is the significance of a stop in the instruction stream?
15.4 Define predication and predicated execution.
15.5 How can predicates replace a conditional branch instruction?
15.6 Define control speculation.
15.7 What is the purpose of the NaT bit?
15.8 Define data speculation.
15.9 What is the difference between a hardware pipeline and a software pipeline?

15.10 What is the difference between stacked and rotating registers?

Problems
15.1 Suppose that an IA-64 opcode accepts three registers as operands and produces one

register as a result. What is the maximum number of such opcodes that can be defined
in one major opcode family? 

15.2 At a certain point in an IA-64 program, there are 10 A-type instructions and six
floating-point instructions that can be issued concurrently. How many syllables may
appear without any stops between them? 

15.3 In Problem 15.2,
a. How many cycles are required for a small IA-64 implementation having one floating-

point unit, two integer units, and two memory units?
b. How many cycles are required for the Itanium organization of Figure 15.10? 

15.4 An algorithm that can utilize four floating-point instructions per cycle is coded for IA-
64. Should instruction groups contain four floating-point operations? What are the
consequences if the machine on which the program runs has fewer than four floating-
point units? 

15.5 In Section 15.3, we introduced the following constructs for predicated execution:
cmp.crel p2, p3 = a, b

(p1) cmp.crel p2, p3 = a, b

where crel is a relation, such as eq, ne, etc.; p1, p2, and p3 are predicate registers; a is
either a register or an immediate operand; and b is a register operand.
Fill in the following truth table: 

predicate register speculative loading template field
predication stack frame very long instruction word
register stack stop (VLIW)
software pipeline syllable

p1 comparison p2 p3

not present 0

not present 1

0 0

0 1

1 0

1 1
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15.6 For the predicated program in Section 15.3, which implements the flowchart of Fig-
ure 15.4, indicate
a. Those instructions that can be executed in parallel
b. Those instructions that can be bundled into the same IA-64 instruction bundle

15.7 Consider the following source code segment:
for ( i = 0; i < 100; i++ )

if (A[i] < 50 )
j = j + 1;

else
k = k + 1;

a. Write a corresponding Pentium assembly code segment.
b. Rewrite as an IA-64 assembly code segment using predicated execution techniques. 

15.8 Consider the following C program fragment dealing with floating-point values.
a[i] = p * q;
c = a[j];

The compiler cannot establish that i � j, but has reason to believe that it probably is.
a. Write an IA-64 program using an advanced load to implement this C program.

Hint: the floating-point load and multiply instructions are ldf and fmpy, respectively.
b. Recode the program using predication instead of the advanced load.
c. What are the advantages and disadvantages of the two approaches compared with

each other? 
15.9 Assume that a stack register frame is created with size equal to SOF � 48. If the size

of the local register group is SOL � 16,
a. How many output registers (SOO) are there?
b. Which registers are in the local and output register groups? 
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