
Computer Organization II 6.10.2003

Ch 14, Superscalar Processors 1

16.10.2003 Copyright Teemu Kerola 2003

Superscalar Processors
Ch 14

Limitations, Hazards
Instruction Issue Policy

Register Renaming
Branch Prediction

PowerPC, Pentium 4

26.10.2003 Copyright Teemu Kerola 2003

(Fig. 13.1 [Stal99])

Superscalar Processing (5)

• Basic idea: more than one instruction completion
per cycle

• Aimed at speeding up scalar processing
– use many pipelines and

not just more pipeline phases
• Many instructions in execution phase

simultaneously
– need parallelism also in earlier & later phases
– may not execute (completely) in given order

• Multiple pipelines
– question: when can instruction be executed?

• Fetch many instructions at the same time
– memory access must not be bottleneck

Fig. 14.1

Fig. 14.2
(Fig. 13.2 [Stal99])

Computer Organization II 6.10.2003

Ch 14, Superscalar Processors 2

36.10.2003 Copyright Teemu Kerola 2003

(kontrolli-
riippuvuus)

Why couldn’t we execute this
instruction right now? (4)

• (True) Data Dependency

• Procedural or Control Dependency
– even more costlier than with normal

pipeline
– now may waste more than one instruction!

• Resource Conflict
– there is no available circuit right now
– memory buffer, FP adder, register file port

• Usual solution: circuits to detect problem
and stall pipeline when needed

(datariippuvuus)
load r4, salary(r6)

mul r2, r4, r10

(resurssi-
konflikti)

(Fig. 13.3 [Stal99])

Fig. 14.3

46.10.2003 Copyright Teemu Kerola 2003

New dependency
for superscalar case? (8)

• Name dependency
– two instructions use the same data item

• register or in memory
– no value passed from one instruction to another
– instructions have all their correct data available
– each individual result is the one intended
– overall result is not the one intended
– two cases: Output Dependency & Antidependency

• examples on next 2 slides
– what if there are aliases?

• E.g., two registers point to same physical address

(nimiriippuvuus)

(kirjoitusriippuvuus?) (antiriippuvuus)

Computer Organization II 6.10.2003

Ch 14, Superscalar Processors 3

56.10.2003 Copyright Teemu Kerola 2003

Output Dependency?

• Some earlier instruction has not yet finished
writing from the same location (register)
that we want to write to
– execution time semantics determined by the

original order of machine
instructions

• Need to preserve order

read r1, X
add r2, r1, r3
add r1, r4, r5

Want to have sum of r4 and r5 in r1
after all these three instructions were
executed (not value of variable X)

66.10.2003 Copyright Teemu Kerola 2003

Antidependency

mv r2, r1

add r1, r4, r5

Want to have original value of r1 in r2

Some earlier instruction has not yet finished reading from
the same location that we want to write to
Need to preserve order

Computer Organization II 6.10.2003

Ch 14, Superscalar Processors 4

76.10.2003 Copyright Teemu Kerola 2003

Machine Parallelism (2)

• Instruction-level parallelism (ILP)
– How much parallelism is there
– Theoretical maximum

• Machine parallelism
– How much parallelism is achieved by any specific

machine or architecture?
– At most as much as instruction-level parallelism

• dependencies?
• physical resources?
• not optimized (I.e., stupid?) design?

86.10.2003 Copyright Teemu Kerola 2003

Superscalar Processor (4)

• Instruction dispatch
– get next available executable instruction from

instruction stream
• Window of execution

– all instructions that are considered to be issued
• Instruction issue

– allow instruction to start execution
– execution and completion phase should continue

now with no stalls
– if any stalls needed, do them before issue

• Instruction reorder and commit (retiring)
– hopefully all system state changes here!
– last chance to change order or abandon results

Fig. 14.6

(Fig. 13.6 [Stal99])

Computer Organization II 6.10.2003

Ch 14, Superscalar Processors 5

96.10.2003 Copyright Teemu Kerola 2003

(Fig. 13.6 [Stal99])

Instruction Dispatch (7)

• Whenever there are both
– available slots in window of execution
– ready instructions from prefetch or

branch prediction buffer
• instructions that do not need to stall at all

during execution
• all dependencies do not need to be solved yet

Fig. 14.6

106.10.2003 Copyright Teemu Kerola 2003

Window of Execution

• Bigger is better
– easier to find a good candidate that can be

issued right now
– more work to figure out all dependencies
– too small value will limit machine parallelism

significantly
• E.g., 6th instruction could be issued,

but only 4 next ones are even considered

Fig. 14.6
(Fig. 13.6 [Stal99])

Computer Organization II 6.10.2003

Ch 14, Superscalar Processors 6

116.10.2003 Copyright Teemu Kerola 2003

Instruction Issue (3)

• Select next instruction(s) for execution
• Check first everything so that execution can

proceed with no stalls (stopping) to the end
– resource conflicts
– data dependencies
– control dependencies
– output dependencies
– antidependencies

• Simpler instruction execution pipelines
– no need to check for dependencies

Fig. 14.6
(Fig. 13.6 [Stal99])

”data in R4 is not yet
there, but it will be there in
three cycles when it is
needed by this instruction”

126.10.2003 Copyright Teemu Kerola 2003

Instruction Issue Policies (3)

• Instruction fetch policy
– constraints on how many instructions are

considered to be dispatched at a time
• E.g., 2 instructions fetched and decoded at a time

⇒ both must be dispatched before next 2 fetched

• Instruction execution policy
– constraints on which order dispatched

instructions may start execution
• Completion policy

– constraints the order of completions

Computer Organization II 6.10.2003

Ch 14, Superscalar Processors 7

136.10.2003 Copyright Teemu Kerola 2003

Example 1 of Issue Policy (7)

• In-order issue with in-order completion
– same as purely sequential execution
– no instruction window needed
– instruction issued only in original order

• many can be issued at the same time
– instructions completed only in original order

• many can be completed at the same time
– check before issue:

• resource conflicts, data & control dependencies
• execution time, so that completions occur in order:

wait long enough that earlier instructions will
complete first

– Pentium II: out-of-order middle execution for micro-
ops (µops) with in-order completion

(Fig. 13.4 (a) [Stal99])

Fig. 14.4 (a)

146.10.2003 Copyright Teemu Kerola 2003

Example 2 of Issue Policy (5)

• In-order issue with out-of-order completion
– issue in original order

• many can be issued at the same time
– no instruction window needed
– allow executions complete before those of earlier

instructions
– check before issue:

• resource conflicts, data & control dependencies
• output dependencies: wait long enough to solve

them

Fig. 14.4 (b)
(Fig. 13.4 (b) [Stal99])

Computer Organization II 6.10.2003

Ch 14, Superscalar Processors 8

156.10.2003 Copyright Teemu Kerola 2003

(Fig. 13.4 (c) [Stal99])

Example 3 of Issue Policy (5)

• Out-of-order issue with out-of-order completion
– issue in any order

• many can be issued at the same time
– instruction window for dynamic instruction scheduling
– allow executions complete before those of earlier

instructions
– Check before issue:

• resource conflicts, data & control dependencies
• output dependencies: wait for earlier instructions to

write their results before we overwrite them
• antidependencies: wait for earlier instructions issued

later to pick up arguments before overwriting them

Fig. 14.4 (c)The real

superscalar

processor

166.10.2003 Copyright Teemu Kerola 2003

Get Rid of Name Dependencies (3)

• Problem: independent data stored in locations with
the same name
– often a storage conflict: same register used for two

different purposes
– results in wait stages (pipeline stalls, “bubbles”)

• Cure: register renaming
– actual registers may be different than named registers
– actual registers allocated dynamically to named

registers
– allocate them so that name dependencies are avoided

• Cost:
– more registers
– circuits to allocate and keep track of actual registers

Computer Organization II 6.10.2003

Ch 14, Superscalar Processors 9

176.10.2003 Copyright Teemu Kerola 2003

Register Renaming (3)

• Drawback: need more registers
– Pentium II: 40 extra regs + 16 normal regs

• Why R3a & R3b?

Antidependency: I3 can not complete
before I2 has read value from R3:

R3b:=R3a + R5a (I1)
R4b:=R3b + 1 (I2)
R3c:=R5a + 1 (I3)
R7b:=R3c + R4b (I4)

Rename data in register R3
to actual hardware registers

R3a, R3b, R3c
Rename also other registers:

R4b, R5a, R7b
No name dependencies now:

Output dependency: I3 can not
complete before I1 has completed first: R3:=R3 + R5; (I1)

R4:=R3 + 1; (I2)
R3:=R5 + 1; (I3)
R7:=R3 + R4; (I4)

186.10.2003 Copyright Teemu Kerola 2003

Superscalar Implementation (7)

• Fetch strategy
– prefetch, branch prediction

• Dependency check logic
• Forwarding circuits (shortcuts) to transfer

dependency data directly instead via registers or
memory (to get data accessible earlier)

• Multiple functional units (pipelines)
• Effective memory hierarchy to service many

memory accesses simultaneously
• Logic to issue multiple instruction simultaneously
• Logic to commit instruction in correct order

Fig. 14.6
(Fig. 13.6 [Stal99])

Computer Organization II 6.10.2003

Ch 14, Superscalar Processors 10

196.10.2003 Copyright Teemu Kerola 2003

Overall Gain from Superscalar
Implementation

• ”Base” machine, starting point for comparison
– out-of-order issue

• See the effect of ...
– renaming ⇒ right graph
– issue window size ⇒ color of vertical bar
– duplicated

• data cache access ⇒ “+ld/st”
• ALU ⇒ “ALU”
• both ⇒ “both”

• Max speed-up about 4

(Fig. 13.5 [Stal99])

Fig. 14.5

206.10.2003 Copyright Teemu Kerola 2003

Computer Organization II 6.10.2003

Ch 14, Superscalar Processors 11

216.10.2003 Copyright Teemu Kerola 2003

(Fig. 13.10 [Stal99])

(Fig. 13.11 [Stal99])

Example:
PowerPC 601 Architecture (2)

• General RISC organization
– instruction formats
– 3 execution units

• Logical view
– 4 instruction window for issue
– each execution unit picks up next one for it

whenever there is room for new instruction
– integer instructions issued only when 1st

(dispatch buffer 0) in queue

Fig. 14.10

Fig. 14.11

Fig. 11.9 (Fig. 10.9 [Stal99])

226.10.2003 Copyright Teemu Kerola 2003

(Fig. 13.12 [Stal99])

PowerPC 601 Pipelines (4)

• Instruction pipelines
– all state changes in final “Write Back” phase
– up to 3 instruction can be dispatched at the

same time, and issued right after that in each
pipeline if no dependencies exist

• dependencies solved by stalls

– ALU ops place their result in one of 8 condition
code field in condition register

• up to 8 separate conditions active concurrently

Fig. 14.12

Computer Organization II 6.10.2003

Ch 14, Superscalar Processors 12

236.10.2003 Copyright Teemu Kerola 2003

PowerPC 601 Branches (4)

• Zero cycle branches
– branch target addresses computed already in

lower dispatch buffers
• before dispatch or issue!

– Easy: unconditional branches (jumps) or branch
on already resolved condition code field

– otherwise
• conditional branch backward: guess taken
• conditional branch forward: guess not taken
• if speculation ends up wrong, cancel conditional

instructions in pipeline before write-back
• speculate only on one branch at a time

246.10.2003 Copyright Teemu Kerola 2003

(Fig. 13.14 [Stal99])

(Fig. 13.13 [Stal99])

PowerPC 601 Example

• Conditional branch example
– Original C code
– Assembly code

• predict branch not taken

– Correct branch prediction
– Incorrect branch prediction

Fig. 14.13 (a)

Fig. 14.14 (a)

Fig. 14.14 (b)

Fig. 14.13 (b)

Computer Organization II 6.10.2003

Ch 14, Superscalar Processors 13

256.10.2003 Copyright Teemu Kerola 2003

PowerPC 620 Architecture

• 6 execution units
• Up to 4 instructions dispatched simultaneously
• Reservation stations to store dispatched

instructions and their arguments
– kind of rename registers also!

[HePa96] Fig. 4.49

266.10.2003 Copyright Teemu Kerola 2003

PowerPC 620 Rename Registers (7)

• Rename registers to store results not yet
committed
– normal uncompleted and speculative instructions
– 8 int and 12 FP extra rename registers

• in same register file as normal registers
– results copied to normal registers at commit
– information on what to do at commit is in completion

unit in reorder buffers

• Instruction completes (commits) from completion
unit reorder buffer once all previous instructions
are committed
– max 4 instructions can commit at a time

[HePa96] Fig. 4.49

Computer Organization II 6.10.2003

Ch 14, Superscalar Processors 14

276.10.2003 Copyright Teemu Kerola 2003

PowerPC 620 Speculation

• Speculation on branches
– 256-entry branch target buffer

• two-way set-associative
– 2048-entry branch history table

• used when branch target buffer misses
– speculation on max 4 unresolved branches

286.10.2003 Copyright Teemu Kerola 2003

Computer Organization II 6.10.2003

Ch 14, Superscalar Processors 15

296.10.2003 Copyright Teemu Kerola 2003

Intel Pentium II speculation
• 512-entry branch target buffer

– 4-bit prediction state, 4-way set-associative

• Static prediction
– used before dynamic will work
– forward ”not taken”, backward ”taken”

• In-order-completion for 40 µops (micro-
operations) limits speculation

• 4-entry Return Stack Buffer (RSB)
– return addresses are often found quickly without

accessing Activation Record Stack

306.10.2003 Copyright Teemu Kerola 2003

Computer Organization II 6.10.2003

Ch 14, Superscalar Processors 16

316.10.2003 Copyright Teemu Kerola 2003

Example: Pentium 4
• Outside: CISC ISA
• Inside: full superscalar RISC core with micro-

operations (µops)
• Very long pipeline

– get next ISA instruction (rarely)
• map it to µops

– get µops from Trace Cache (usually)
• Trace Cache = L1 Instruction Cache
• additional µops from ROM, if needed

– finish with µops
– drive stages just to make up for the time for the signal

to traverse the chip

Fig. 14.7

Fig. 14.8

326.10.2003 Copyright Teemu Kerola 2003

Pipeline Front End
a) Fetch instruction from L2 cache and

generate µops when needed
– store them to Trace Cache
– static branch prediction

• backward ”taken”, forward ”not taken”

b) Get new trace cache IP (for µops)
– dynamic 4-bit branch prediction with 512

entry BTB
c) Trace cache fetch
d) Drive – let data traverse the chip

Fig. 14.9 (a-f)

Computer Organization II 6.10.2003

Ch 14, Superscalar Processors 17

336.10.2003 Copyright Teemu Kerola 2003

Pipeline Out-of-Order Execution
e) Allocate resources

– reorder buffer (ROB) entry (one of 126)
• state: scheduled, dispatched, completed, ready
• original IA-32 instruction address
• µop and which operands for it are available
• alias register for result (one of 128 ROB registers

referencing one of 8 IA-32 register, or one of 48
load or 24 store buffers)
– true data dependencies solved with these
– false dependencies avoided by these

• 2 Register Alias Tables (RAT) keep track where
current version of each 8 IA-32 register (E.g.,
EAX) is

Fig. 14.9 (a-f)

346.10.2003 Copyright Teemu Kerola 2003

Pipeline Out-of-Order Execution
f) 2 FIFO queues for µop scheduling

• memory µops
• non-memory µops
• instruction ”dispatch” to execution window from

these queues
• in-order from each queue, out-of-order globally

g) Schedule and (h) dispatch µops (superscalar)
• window of execution = ??? µops
• max 6 instructions ”issued” each cycle
• out-of-order scheduling

(because of 2 queues)

Fig. 14.9 (g-l)

Fig. 14.9 (a-f)

Computer Organization II 6.10.2003

Ch 14, Superscalar Processors 18

356.10.2003 Copyright Teemu Kerola 2003

Pipeline Int and FP Units

i) Register access, data cache access
j) Execute, set flags

• Many different, pipelined execution units
• E.g., double speed ALU for most common cases

• Update RAT, allow new µops to issue

k) Branch checking
• ”kill” bad instructions in pipeline

l) Give branch prediction
• let signals propagate

Fig. 14.9 (g-l)

366.10.2003 Copyright Teemu Kerola 2003

-- End of Chapter 14: Superscalar --
Figure 4: Pentium® 4 processor microarchitecture

http://www.intel.com/technology/itj/q12001/articles/art_2.htm

