An Introduction to Specification and Verification

Exercise 3, Feb. 1st 2008

1. We look at the labelled transition systems:

- Draw the global state graph of the P|[b,c]|Q.
- Draw the global state graph of the R||Q.
- 2. Draw the global state graph of the Q|||R and P|[b]|R. Labelled transition systems of P, Q, and R are in exercise 1.
- 3. Is it true for the labelled transition systems given in exercise 1, that

$$P |[a, b]| (Q |[a, b]| R) \equiv (P |[a, b]| Q) |[a, b]| R,$$

where \equiv means isomorphism, i.e. the states in the transition systems P|[a,b]|(Q|[a,b]|R)and P|[a,b]|Q)|[a,b]|R correspond bijectively each other and the transitions between corresponding states are labeled with same actions.

- 4. Give an example where synchronous, blocking parallel composition is not associative. ($P | A_1 | (Q | A_2 | R) \equiv (P | A_1 | Q) | A_2 | R$ is not true.)
- 5. Let P, Q, and R be processes and A_P, A_Q , and A_R are action set of these processes. Prove that

$$P |A_P \cap (A_Q \cup A_R)| (Q |A_Q \cap A_R| R) \equiv (P |A_P \cap A_Q| Q) |(A_P \cup A_Q) \cap A_R| R,$$

where \equiv means isomorphism, i.e. the states in the transition systems correspond bijectively each other and the transitions between corresponding states are labeled with same actions. Prove at least the situation where

 $a\not\in A_P\cap (A_Q\cup A_R),\,a\not\in A_Q\cap A_R$ and

$$P |A_P \cap (A_Q \cup A_R)| (Q |A_Q \cap A_R| R) \xrightarrow{a} P |A_P \cap (A_Q \cup A_R)| (Q' |A_Q \cap A_R| R).$$

6. Prove that using arbitrary set B

$$P|B|(Q|B|R) \equiv (P|B|Q)|B|R.$$