
Dessy: Towards Flexible Mobile Desktop Search

Eemil Lagerspetz
Helsinki Institute of

Information Technology
P.O. Box 9800

FIN-02015 HUT, Finland
NOSPAMlagerspe42@cs.helsinki.fi

Tancred Lindholm
Helsinki Institute of

Information Technology
P.O. Box 9800

FIN-02015 HUT, Finland
tancred.NOSPAMlindholm42@hiit.fi

Sasu Tarkoma
Helsinki Institute of

Information Technology
P.O. Box 9800

FIN-02015 HUT, Finland
NOSPAMstarkoma42@hiit.fi

ABSTRACT
In the near future, mobile devices are expected to have a
storage capacity comparable to today’s desktop machines.
As the amount of infomation grows, conventional search
tools become less effective. To meet these challenges, we
turn to desktop search. This paper presents Dessy, a DESktop
Search directorY system for mobile and desktop computers
alike. It allows a user to find files by their content, metadata,
and context information, provides an interface for locating
files for both users and applications, and allows finding files
with just their metadata available. Dessy supports separate
synchronization of file metadata and data. Dessy is unique
among desktop search software in that it clearly separates
extraction, exchange, and querying of search metadata. In
particular, metadata extraction may be performed on one
device and querying on another, with only search metadata
being exchanged between the devices. Dessy emphasizes ex-
tensibility: adding new indexed file types, metadata fields,
and index storage methods is easy. Finding files is done
with virtual directories, which are views into the user’s files,
browseable by regular file managers.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Content Anal-
ysis and Indexing, Information Storage, Information Search
and Retrieval

General Terms
Mobile computing

Keywords
desktop search, synchronization, mobile computing, meta-
data

1. INTRODUCTION
In the near future, mobile devices are expected to have a
storage capacity comparable to today’s desktop machines.
As the amount of information grows, conventional search

Figure 1: Dessy separates metadata extraction, ex-
change and use.

tools become less effective. To meet these challenges, we
turn to desktop search.

This paper presents Dessy, a DESktop Search directorY
system. Dessy allows a user to find files by their content,
metadata, and context information. It provides an interface
for locating files for both users and applications, and allows
finding files with just the files’ metadata available. Dessy
is built with data synchronization in mind. Finding files
is performed by virtual directories [4]. These can be used
from applications and by the user by directly browsing them
with a file manager. The Dessy GUI provides easy access to
the features of the virtual directory system. The virtual di-
rectories are provided through an NFS [12] interface, which
allows applications unaware of Dessy to browse them.

Dessy clearly separates extraction, exchange, and querying
of search metadata. In particular, metadata extraction may
be performed on one device and querying on another, with
only search metadata being exchanged between the devices.

The exchanged metadata is in a simple plaintext format that
is agnostic to query engine implementations, and well suited
for network protocols. Thus, one device may implement
queries on search metadata using an SQL database, and
another may use a simple and query-wise more limited key-
value database suited for limited devices. Still, these devices
exchange the search metadata in a common format over the
network.

The same reasoning applies to search metadata extraction,
i.e., indexing. On a powerful machine, advanced algorithms
may be used to extract high-quality search metadata, whereas
on a limited device, a lighter approach may be used to ex-
tract some simple metadata. Again, regardless of its origin,
the metadata is exchanged in the same format. Figure 1 il-
lustrates this separation of metadata extraction and query-
ing. The simple metadata exchange format could be used
to exchange metadata with existing systems, such as Google
Desktop1 or Beagle2.

When combining the standard metadata exchange format
with a synchronization system that supports separate syn-
chronization of data and metadata, we get a flexible search
architecture that allows decoupling of search metadata pro-
ducers from consumers, and metadata from actual data.
Since query indexes are built from search metadata, rather
than the actual data, we may query files for which we have
only synchronized the metadata. The actual content need
only be synchronized when the required file has been found
and is opened for viewing or editing. In this paper, we use
the Syxaw file synchronizer, which supports separate syn-
chronization of data and metadata.

Dessy is extensible in many ways. Users can add tags similar
to the ones used in other desktop search software to repre-
sent context associations of files. Tags can also be used by
context-aware applications to add context information to
files. Developers can easily add Indexing helpers that han-
dle new file types and add new properties used to find files.
Changing the indexing is possible by adding a new Indexer,
while storage in on-disk indexes can be changed by writing
a new Index, and handling of user queries is modifiable with
new QueryPlugins.

The features that distinguish Dessy from other systems are
the following. The main feature is the support for both
mobile and desktop systems. Dessy has integrated support
for file data and metadata synchronization between desk-
top systems and mobile terminals. It separates metadata
extraction, exchange and use. Dessy integrates seamlessly
in the current file system scheme and can be used through
any file manager on desktop machines. Finally, the system
emphasizes extensibility through pluggable file indexers.

Dessy is implemented on top of the file system layer, between
the file system and applications. It runs on Java Personal
Profile [17], Linux, and Windows desktops. The Dessy pro-
totype is implemented in Java 1.5. The Dessy GUI is written
in Java AWT.

The structure of the rest of this paper is as follows: Sec-
tion 2 discusses related work and introduces terms and con-
cepts used in the rest of the paper. Section 3 explains the
synchronization model used in Dessy. Section 4 contains
an example use case. Section 5 presents the architecture
of Dessy. Section 6 shows scalability and performance ex-
periments and discusses central implementation concepts.
Section 7 concludes the paper and outlines future plans.

1http://desktop.google.com/features.html
2http://beagle-project.org/Main Page

2. RELATED WORK
Due to recent improvements in desktop computer disk space
availability, more files are stored on home and work com-
puters. The inefficiency in finding files on one’s own disk
compared to the speed of Internet searches has prompted a
rise in desktop search software development.

Recent years have seen a multitude of desktop search appli-
cations being developed. Some of the most known examples
of these are Apple’s Spotlight3, Novell’s open-source project
Beagle4, Copernic Desktop Search5, Google Desktop6, Mi-
crosoft’s SiS [2], and Windows Desktop Search7.

Beside the usual user interfaces for queries, finding files has
also been approached in different manners, such as using
virtual directories [4] and directory namespaces [6]. A vir-
tual directory (also called a virtual folder) is a directory
that does not exist in the file system hierarchy, but instead
shows found documents according to search criteria speci-
fied for the directory. In [4], two types of virtual directo-
ries were used: field virtual directories, that denoted a field
or property name, and value virtual directories, that indi-
cated the value of the property that the parent field virtual
directory identified. For example, a file having the value
bob for the field owner: would be found in the virtual di-
rectory owner:/bob. A virtual directory-like approach is
also present in later versions of Apple’s Spotlight. There it
is called Smart Folders. In Windows Vista saved desktop
searches are called Search Folders. In [4], the virtual direc-
tories were accessed through one server, and indexes were
not transferrable to other devices. Dessy adopts the virtual
directories for desktop searching, using the local device for
index storage instead of a server. This allows offline brows-
ing. In the rest of this paper, field virtual directories will be
called property virtual directories to better match their use
in Dessy.

In many desktop search applications, such as Beagle and [4],
indexing of different file types is done by indexing helpers.
Indexing helpers are specialized property and text extrac-
tors designed to handle one or more file types. Dessy uses
indexing helpers also.

Many of today’s desktop search applications look for files
according to their content or fields specific to file types. In
Connections [16], document creation and modification times
were used to create links between documents to help the
user find related files. This technique was used to improve
a regular desktop search system. The use of context infor-
mation and user-friendly metadata was explored in [3] and
[6] by using application- and user-defined tags. A tag is a
keyword or a (property, value) pair assigned to an object.
In Dessy, modification dates and other metadata properties
can be used to search for a file. Adding custom metadata
and context tags is possible.

In search engine research, two common indexing techniques

3http://www.apple.com/macosx/features/spotlight/
4http://beagle-project.org/Main Page
5http://www.copernic.com/en/company/index.html
6http://desktop.google.com/features.html
7http://www.microsoft.com/windows/desktopsearch/
search/default.mspx

http://desktop.google.com/features.html
http://beagle-project.org/Main_Page
http://www.apple.com/macosx/features/spotlight/
http://beagle-project.org/Main_Page
http://www.copernic.com/en/company/index.html
http://desktop.google.com/features.html
http://www.microsoft.com/windows/desktopsearch/search/default.mspx
http://www.microsoft.com/windows/desktopsearch/search/default.mspx

exist. In inverted file [5] indexing, a list of file identifiers
is stored for each keyword. When the keyword appears in
a query, the list is added to the results or intersected with
them, depending on whether the query was a boolean or
or and. In signature file indexing, a hash function is used
on the words in a file to determine the signature of the file.
Queries are then hashed and matched against this signature
to determine if files match. These methods of indexing are
compared in [19]. According to the results of the compari-
son, inverted file indexing is superior. The index is smaller
since compression can be used to reduce index size without
sacrificing too much query performance, unlike when using
signature file indexing. Inverted file query performance is
generally better, since checking for false positives is not nec-
essary. Inverted file indexing is used in Dessy.

In [10], n-grams, which are word fragments of length n, were
used instead of words in an inverted index. As the number
of alphabetical 2-grams and 3-grams is relatively small (676
and 17 576, respectively), using these instead of words limits
the size of an index. However, this technique causes false
positives, since a phrase can include the n-grams of another,
even though it does not contain the words of the latter.

To better match queries to words occurring in indexed files,
it is common to stem query terms and indexed words. The
process of stemming reduces a word to a form near its ba-
sic dictionary form. For example, stemming, stemmer and
stemmed could be reduced to stem. One popular stemming
algorithm is the Porter Stemming algorithm [14]. This al-
gorithm is used in Dessy.

3. SYNCHRONIZATION MODEL
For file synchronization, we use the Syxaw file synchronizer [18].
The model for sharing data in Syxaw is based on establish-
ing synchronization links between local and remote objects,
i.e., files and directory trees. The link is persistently stored
along with other object metadata. When synchronizing an
object a linked to an object b, we propagate changes made to
these objects since the last point of synchronization. In the
case that the objects are directory trees, the full contents,
including contained files and directories, are synchronized.
Links are unidirectional, meaning that only the device from
which the link originates knows about the link. We use the
term client for the link originator, and server for the link
target.

From a synchronization point of view, we model data objects
as follows. Each object is identified by a unique identifier
(UID), which is an opaque string of bits. UIDs are used in
the synchronization protocol, rather than file paths. Ob-
jects have both a metadata and a data part. These may be
synchronized separately. In particular, for some collection
of objects, we may retrieve the metadata before fetching the
actual data. Finally, there are objects that enumerate other
objects. The directory tree object, which provides a map-
ping between hierarchical file names and UIDs, is the most
prominent example of such an object.

Syxaw synchronization links are illustrated in Figure 2 in
the form of a photo archive setup. Let us call the fictive
user of the setup Bob. Initially, Bob stored his pictures in
a directory subtree (photos/) on his PC. He put unsorted

File

/home/ctl
data

photos
incoming

anne.jpg

archive
family
friends

File

File

File

C:\
My Documents

Images
anne.jpg
poster.jpg
vacation.jpg

C:\
data

photos
incoming

anne.jpg

Users
ctl

photos
incoming

joe

ISP

H
TTPS

W
LA

N

G
PRS

PC

Figure 2: Syxaw synchronization links.

images in the incoming/ directory. When Bob got a camera
phone, he created a synchronization link from its Images

directory, in which the camera phone stores pictures, to the
incoming/ directory. This lets him synchronize new pictures
to the PC over the network.

Later Bob got a laptop, and also decided he wanted to store
his photos in a more durable location. For this purpose,
he rented properly backed up storage space from an Inter-
net Service Provider (ISP), created a synchronization link
to the space, and regularly synchronizes the photos to this
space, thus ensuring they are backed up. To be able to view
and modify the photos on the laptop, he also creates a syn-
chronization link from its photos/ folder to the PC.

Our concurrency model is optimistic [15], which is well suited
for the mobile environment [8]. Optimistic concurrency does,
however, introduce the need for data reconciliation. In ad-
dressing this need, we looked beyond the intrinsic require-
ments of the file synchronizer, towards a more general goal
of providing a generic reconciliation framework for applica-
tions aware of the ongoing file sharing. The chosen design
provides reconciliation services for XML data by utilizing
the XML three-way merging algorithm developed by us in
[9].

We built the synchronization protocol using HTTP requests
initiated by the mobile client. To minimize the impact of
the high latency of current cellular data networks, we de-
signed the protocol to make as few requests as possible. In
particular, we batch object requests, so that a complete file

system is typically synchronized in only two HTTP requests.
To support varying pricing and hot-spots, data synchroniza-
tion consists of two stages of network-intensive discrete runs,
where the first stage synchronizes file metadata (i.e., the lay-
out of the directory tree) and the second stage synchronizes
file content. We contrast this to systems that impose a con-
tinuous, typically lighter, load on the network [13, 7, 11].

4. A SEARCH USE CASE
Researcher Ralph works at HIIT. During the writing of a
paper, he often gathers a lot of documents in one place.
Considering himself an efficient worker, he sometimes reads
papers while commuting. Ralph stays on the leading edge
of current technology, and prefers not to carry extra papers,
so he reads them on his Nokia8 9500, a mobile device with
a display well suited for reading. Let us say Ralph wanted
to read a paper that mentions his name. There are about
twenty PDF files in his documents directory. Downloading
all of them to his 9500 over the cellular network would be
expensive and take a lot of time. Luckily, his 9500 has a syn-
chronization link to the directory on the desktop machine,
which is indexed by Dessy. Ralph synchronizes the meta-
data of the PDF files in a fraction of the time required for
downloading them all. He then queries for his name with
Dessy, and gets the name of the one document containing
it. He then presses the ”synchronize results” button, and his
9500 retrieves the file. He can then start reading it, knowing
it is the correct paper.

5. DESSY ARCHITECTURE
In the example use case, file metadata plays a major part.
Metadata used in Dessy consists of (property, value) pairs.
A property is a lowercase text string that ends with a colon.
Adding a colon to the end of properties simplifies implemen-
tation and serves as a clear indicator whether the virtual
directory is a property virtual directory or a value virtual
directory. For example, property virtual directories author:
and text: are used. A value of a property, and is a lower-
case text string, such as bob or disambiguation.

Figure 3 shows an example file with its Dessy metadata. The
metadata is obtained when Dessy indexes the file. For ex-
ample, the Email indexing helper finds the subject:, from:
and to: fields from an email file, and collects and stems its
text words to obtain the values of the text: property. Sim-
ilarly, the modification date helper records the week, date,
and full date and time when the file was last modified.

Dessy metadata is stored in an index. Dessy implemen-
tations on different devices can use different index storage
methods. The synchronization of metadata is independent
of the index storage method.

Figure 4 shows synchronization of Dessy metadata. When
synchronizing changed metadata, the client reads the meta-
data of files from the index and sends it to the server as
plain text words. On the server side, received metadata is
compared with the last version of metadata for the file. If
the client’s version is newer, that metadata is used.

If only the server has modifications, the client retrieves meta-

8Nokia website. http://www.nokia.com

[Example file: excerpt from
enron/quenet-j/inbox/10.eml,
last modified 2004-02-04 04:27]
From: cory.willis@enron.com

To: stephanie.sever@enron.com

Subject:

I will be managing Joe Quenet’s stack

and will need his password reset.

Also, I request trader access

to manage my own products.

Thank you,

Cory Willis

East Power Trading

[Example Dessy Metadata for the file]
from: cory.willis@enron.com

subject:

to: stephanie.sever@enron.com

text: password, access, product,

servic, east, thank, manag, joe,

trader, reset, stack, need, trade,

cori, willi, quenet, request

mod-date: week_6, 2004-02-04, 2004-02-04-04:27:29

name: 10

ext: eml

Figure 3: An example file and its metadata.

Figure 4: A sequence diagram of synchronization of
Dessy metadata.

http://www.nokia.com

Figure 5: Sequence diagram from file modification
to the updating of the application’s view.

data from the server and stores it in its Index implementa-
tion.

In the case that both ends have modifications, instead of us-
ing either version, file content is synchronized, and then the
file is re-indexed on the client side. The resulting metadata
is synchronized.

Dessy search results are shown in virtual directories. The
search system is browseable by regular file managers on desk-
top systems and through a Java API on mobile devices.
Synchronization of files contained in a virtual directory is
straightforward. A set of results in a virtual directory is a
set of Syxaw UIDs. UIDs are independent from file paths,
so files in a virtual directory are identified the same way as
files in physical directories. To synchronize the files, Dessy
just tells Syxaw to synchronize the set of UIDs.

In the indexing process, gathering of file properties is done
by indexing helpers. The MIME [1] type of each file is de-
termined and indexing helpers registered for that type are
used to gather properties. The property names are used as
the names of property virtual directories and their values as
value virtual directories when finding files. For example, the
PDF file helper produces the property author: among oth-
ers. To find files with the author bob, we look in the virtual
directory called author:/bob. New indexing helpers can be
added by implementing the IndexingHelper interface.

Figure 5 shows the sequence of events from modifying a file
to the view of the application being updated. File modifi-
cations are detected by the Dessy NFS server. In the mobile
version, the NFS server is replaced by a Java API. Then
the server tells Indexing to re-index the modified file. Files
scheduled for indexing are indexed after a period of one sec-
ond without file modifications. The Index updates the time
stamp of the virtual directories that correspond to the prop-
erties of the file, and Indexing clears old results from the
Index Cache. The next time a corresponding virtual direc-
tory is read, the time stamp has been changed so that file
managers can get new entries instead of their cached infor-
mation. The read request is passed to Dessy and new results
are retrieved from the Index.

The user can add or remove context tags and metadata us-
ing the symbolic link facility of the Dessy NFS server. If a

Figure 6: A screenshot of the Dessy mobile version
GUI.

symbolic link pointing, for example, to the file
william-k/123.eml is created in the virtual directory
tag:/board meeting, the file william-k/123.eml is added
the value board meeting for the property tag and can then
be found by the query tag:board meeting. Similarly, if a
user deletes the file tag:/board meeting/123.eml, the orig-
inal file will not be deleted, but the tag tag:board meeting

is removed. Handling tags is done by the tag() and untag()

operations of the API on mobile platforms.

To speed up queries, a query is not evaluated when entering
a virtual directory, only when a directory listing is read.

6. IMPLEMENTATION
The current implementation of the Dessy prototype runs on
Personal Profile Java (we use a Nokia 9500) and Linux and
Windows desktops. Figure 6 shows a screenshot of the mo-
bile version graphical user interface. The GUI allows finding
files, listing choices for property values, synchronizing the
metadata of all files, synchronizing the data of query result
files, and tagging files with custom properties. The names
of query result files are shown on the right side, with the
full virtual directory path of the last few queries. Figure 7
shows a Nokia 9500 running the Dessy mobile version.

The Dessy prototype indexes these file MIME types:

• text/plain - Plain text files are currently found by
words contained in them.

• text/x-mail - Email files are searched for subject, from
and to fields, and their text is searched for words.
Email attachments of non-text types are ignored. Emails
are identified by text content and the .eml suffix.

• application/pdf - PDF files’ author, creator, keywords,
number of pages, subject and title fields are indexed.
A PDF file’s extracted text is used for the text: prop-
erty.

• all - The modification dates of all files are checked and
a virtual directory called mod-date: allows to search
for them. Also, file extensions and names are indexed.
Note that custom tags can be added to the index for
files of any type.

6.1 Indexing Performance
Figure 8 shows the indexing performance of Dessy using a
simple file-based index and a MySQL9 index, without lim-
9The MySQL open-source database. http://www.mysql.
com/

http://www.mysql.com/
http://www.mysql.com/

Figure 7: A photo of a 9500 running the Dessy mobile version.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 8 9 10 11 12 13 14 15

M
ill

is
ec

on
ds

 u
se

d

log of file size (bytes)

Mysql-based indexing
File-based indexing

Figure 8: Indexing performance.

iting the number of words stored. Files are represented by
points; the x-axis shows the logarithm of the file length in
bytes, and the y-axis displays the number of milliseconds it
took to index the file. In the two indexing methods, as new
words are met, they are added into a word dictionary and
given a unique number. This way the words of a file can be
stored efficiently as numbers. The high variability might be
due to the construction of the word dictionary.

The results suggest that both indexing methods scale well.
The file-based index seems to have performance comparable
to that of the Mysql-based index, if not better. On mobile
devices, Dessy uses the file-based indexing, since it is more
lightweight and fully implemented in Java.

The experiments were carried out by indexing a subset of
the Enron Email Data set10. The subset contained approxi-
mately 300 000 files, and amounted to a total of 1.4 GB. The
size of the largest file was 1.6 MB, while the smallest files
were around 4 KB. The machine running the experiments
was a PC with an AMD Athlon 64 X2 Dual Core 4200+
processor running GNU/Linux.

6.2 Querying performance
This section shows query performance measurements which
were obtained from the mobile version of Dessy running on
a Nokia 9500. In this case, the index of Dessy is not com-
pressed and inverted lists of matching documents for a given
query word are stored in the file-based index. This makes

10Publicly available from http://www.cs.cmu.edu/∼enron/.
Contact the authors for information on reconstructing the
subset.

http://www.cs.cmu.edu/~enron/

Properties Results Time (ms) σ
1 151,30 2649,37 2977,28
2 17,44 532,13 544,08
3 4,71 308,38 222,50
4 3,00 311,74 206,19
5 2,40 313,97 220,98
6 2,40 315,67 194,00
7 2,50 335,43 199,46
8 2,46 369,00 193,70
9 2,00 497,14 268,87
10 1,17 515,67 233,82

Table 1: Query performance

query evaluation faster for devices with limited CPU power,
such as the 9500.

Table 1 shows the measurement results. The first column
displays the number of (property, value) pairs used. The sec-
ond column shows the average number of results returned
for the queries, the third shows the average time taken in
milliseconds, while the last shows the standard deviation of
the time. The measurements were taken from a small subset
of the Enron data set, with a total of approximately 14 000
files and a size of 66 MB. The measurements were obtained
in the following way: first, 100 files of the data set were
chosen at random. The choice of a file depended on its size:
Larger files were given higher probability than small files.
Values of all properties of the file were used as queries of
one (property, value) pair (the first row in the table). Mul-
tiple values were obtained for the text: property only (rows
after the first in the table), since most other properties, such
as author:, subject:, mod-date: and ext:, have just one
value for a given document and are highly document type
- specific. text: has multiple values for documents with
text content and is available for all files that contain a form
of text in the dataset. Queries of 2 to 10 values were con-
structed using the first 2 text: values in a document, then
the first 3, and so on, finally querying with the first 10 val-
ues. All queries that returned results were included in the
measurements.

The high standard deviation in one-property queries is prob-
ably due to the high variability in the number of results for
queries of one property. For example, the query for the
modification date of a file would return all the files, since
the dataset was created on the same day.

The measurements suggest that the increase in queried pairs
does not significantly increase the time taken by the query.
This might be because the queries were Boolean and queries,
and with more query terms, the result set diminishes rapidly.
This makes the combining of further query results faster.
Also, the caching of previous results made subsequent queries
with the same pairs faster. For example, a query with the
first 2 pairs of a file was executed before the one with the
first 3, so the results of the first 2 pairs were already cached.

The Dessy prototype will be released in 2008 under the MIT
License. Contact the authors 11 for details.

11http://www.hiit.fi/fi/fc

7. CONCLUSIONS AND FUTURE WORK
This paper presented Dessy, a flexible desktop search system
for mobile devices. Dessy separates metadata extraction,
exchange and use. It has separate synchronization support
for file metadata and data. It uses virtual directories to
find files. Dessy is extensible through changeable indexing
helpers, indexes and query plugins. Our work on the Dessy
prototype supports the conclusion that desktop search is
feasible on mobile devices.

We will continue to explore desktop search on mobile plat-
forms through improving Dessy. As the emphasis of Dessy
has not been on efficient indexing, this is something to con-
centrate on next. Index compression should be implemented.
Implementing an NFS-like system for mobile devices and a
Dessy-aware file manager are among future plans for the
Dessy project.

8. REFERENCES
[1] N. Borenstein and N. Freed. RFC 1521: MIME

(Multipurpose Internet Mail Extensions) Part One:
Mechanisms for Specifying and Describing the Format
of Internet Message Bodies. Internet Engineering Task
Force, Sept. 1993.

[2] E. Cutrell, S. T. Dumais, and J. Teevan. Searching to
eliminate personal information management.
Communications of the ACM, 49(1):58–64, Jan. 2006.

[3] E. Cutrell, D. Robbins, S. Dumais, and R. Sarin.
Fast,flexible filtering with phlat. In R. E. Grinter,
T. Rodden, P. M. Aoki, E. Cutrell, R. Jeffries, and
G. M. Olson, editors, Proceedings of the SIGCHI
conference on Human Factors in computing systems,
pages 261–270. ACM Press, Apr. 2006.

[4] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and
J. James W. O’Toole. Semantic file systems. In SOSP
’91: Proceedings of the thirteenth ACM symposium on
Operating systems principles, pages 16–25. ACM
Press, 1991.

[5] D. Harman, R. Baeza-Yates, E. Fox, and W. Lee.
Inverted files. In W. B. Frakes and R. Baeza-Yates,
editors, Information Retrieval: Data Structures and
Algorithms, pages 28–43. Prentice Hall, Upper Saddle
River, New Jersey, USA, 1992.

[6] C. K. Hess and R. H. Campbell. An application of a
context-aware file system. In G. Cockton and
P. Korhonen, editors, CHI ’03 extended abstracts on
Human factors in computing systems, pages 339–352,
Apr. 2003.

[7] J. Kubiatowicz et al. Oceanstore: An architecture for
global-scale persistent storage. In Proceedings of the
Ninth international Conference on Architectural
Support for Programming Languages and Operating
Systems, Nov. 2000.

[8] T. Lindholm. XML three-way merge as a
reconciliation engine for mobile data. In Third ACM
International Workshop on Data Engineering for
Wireless and Mobile Access, pages 93–97, Sept. 2003.

[9] T. Lindholm. A three-way merge for XML documents.
In E. V. Munson and J.-Y. Vion-Dury, editors, ACM
Symposium on Document Engineering, pages 1–10,
Milwaukee, Wisconsin, USA, Oct. 2004. ACM Press.

[10] C. P. Mah and R. J. D’Amore. Complete statistical

http://www.hiit.fi/fi/fc

indexing of text by overlapping word fragments. ACM
SIGIR Forum, 17(3):6–16, Jan. 1983.

[11] L. Mummert, M. Ebling, and M. Satyanarayanan.
Exploiting weak connectivity for mobile file access. In
Proceedings of the Fifteenth ACM Symposium on
Operating System Principles, pages 143–155, Dec.
1995.

[12] B. Nowicki. RFC 1094: NFS Network File System
Protocol Specification. Internet Engineering Task
Force, Mar. 1989.

[13] K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and
A. J. Demers. Flexible update propagation for weakly
consistent replication. In Proceedings of the sixteenth
ACM Symposium on Operating Systems Principles,
pages 288–301, Sept. 1997.

[14] M. Porter. An algorithm for suffix stripping. Program,
14(3):130–137, July 1980.

[15] Y. Saito and M. Shapiro. Optimistic replication. ACM
Computing Surveys, 37(1):42–81, 2005.

[16] C. A. N. Soules and G. R. Ganger. Connections: using
context to enhance file search. In A. Herbert and K. P.
Birman, editors, SOSP ’05: Proceedings of the
twentieth ACM symposium on Operating systems
principles, pages 119–132, Oct. 2005.

[17] Sun Microsystems Inc., Santa Clara, California, USA.
JSR 62: Personal Profile Specification, Sept. 2002.
[JCP Final].

[18] S. Tarkoma, J. Kangasharju, T. Lindholm, and
K. Raatikainen. Fuego: Experiences with mobile data
communication and synchronization. In 17th Annual
IEEE International Symposium on Personal, Indoor
and Mobile Radio Communications (PIMRC), Sept.
2006.

[19] J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted
files versus signature files for text indexing. ACM
Transactions on Database Systems, 23(4):453–490,
Dec. 1998.

	Introduction
	Related work
	Synchronization Model
	A Search Use Case
	Dessy Architecture
	Implementation
	Indexing Performance
	Querying performance

	Conclusions and Future Work
	References

