
Dessy: search and synchronization on the move
Eemil Lagerspetz, Sasu Tarkoma

Helsinki Institute for Information Technology HIIT
University of Helsinki

P.O. Box 68 FI-00014 University of Helsinki, Finland
Email: firstname.lastname@hiit.fi

Tancred Lindholm
Helsinki Institute for Information Technology HIIT

Aalto University
P.O. Box 5400 FI-02150 Espoo, Finland

Email: tancred.lindholm@hiit.fi

Abstract—Current smartphones have a storage capacity of
several gigabytes. More and more information is stored on
mobile devices. To meet the challenge of information organi-
zation, we turn to desktop search. Users often possess multiple
devices, and synchronize (subsets of) information between them.
This makes file synchronization more important. This paper
presents Dessy, a desktop search and synchronization framework
for mobile devices. Dessy supports synchronization of search
results, individual files, and directory trees. It allows finding
and synchronizing files that reside on remote computers, or
the Internet. The contributions of this paper include an energy
usage evaluation of the system. Dessy is closely integrated with
the Syxaw file synchronizer, which provides efficient file and
metadata synchronization, optimizing network usage.

I. INTRODUCTION AND RELATED WORK

The storage capacity of smartphones is growing, while
file search functionality on mobile platforms remains simple.
Existing desktop search software allows searching the content
of files on desktop computers, but not mobile platforms.
Some of the most known examples of desktop search are
Apple’s Spotlight1, the Tracker project2 and Copernic Desktop
Search3. Constraints such as limited battery life, CPU power
and memory pose additional challenges to the design of
software on mobile platforms. Crawling and indexing the file
system on the mobile may not be practical.

This paper introduces the design of a desktop search and
synchronization system for mobile devices, called Dessy. We
evaluate the performance and energy usage of our prototype
system. Dessy finds files by their content, metadata, and
context information. It enables searching for files on the local
file system, remote computers, and the Internet. Dessy supports
remote searching and index synchronization. This offloads the
indexing and crawling task from the mobile device to a more
capable machine.

Dessy differs from most desktop search software by op-
erating on multiple mobile platforms. Dessy can be used on
desktop computers, MIDP 2.04 / CLDC 1.15 smartphones, and
Java Foundation Profile PDAs.

Finding files has also been approached using virtual direc-
tories [1]. The use of context information and user–friendly

1http://www.apple.com/macosx/features/spotlight/
2http://projects.gnome.org/tracker/
3http://www.copernic.com
4http://jcp.org/aboutJava/communityprocess/final/jsr118/index.html
5http://jcp.org/aboutJava/communityprocess/final/jsr139

metadata was explored by Cuttrell et al [2]. In Dessy, queries
are represented by virtual directory paths.

To allow access to the user’s data on the desktop machine,
file synchronization can be used. Many synchronization sys-
tems for mobile devices have been presented [3], [4]. The
SyncML synchronization protocol specification [5] accommo-
dates regular file synchronization, but it has been used mostly
for personal information management. For synchronization of
files, a well–known system is Unison [6]. We use a similar
system called the Syxaw XML-aware file synchronizer [7].

II. SYSTEM DESIGN

Dessy was originally designed to bring a synchronization-
aware desktop search mechanism to mobile devices. The
design was prototyped in 2007 and results were presented in
Dessy: towards flexible mobile search [8]. The system was
later ported to MIDP [9]. The Dessy desktop search system
was designed in Java with portability in mind. The structure
of Dessy follows a modular design, as shown in Figure 1. File
indexing, querying, metadata storage and synchronization are
clearly separated. The Figure is color–coded. Yellow denotes
components of the query engine. These translate the user’s
queries to retrieval requests to the index and synchronization
requests to Syxaw. Every path is treated as a query in Dessy,
so it is natural to handle browsing of both physical and
virtual directories with the query engine. Green denotes the
indexing engine. It retrieves document identifiers from the
index implementation based on keywords. The indexing engine
also contains the interfaces for metadata sources. These allow
searching for files on the local filesystem, remote computers,
and Internet servers. The red color indicates the Syxaw file
synchronizer.

Synchronization, conflict reconciliation and associating files
with metadata in Dessy is done by the Syxaw file synchronizer.
Syxaw associates file data and metadata with a universal
identifier (UID) that Dessy then uses to identify the file.
Synchronization requests are passed to Syxaw in UID form.
For remote hosts and the Internet, host names or IP addresses
are used as prefixes of the UID to obtain Globally Unique
Identifiers or GUIDs. These are used to synchronize a group
of files with their original hosts, regardless of which files
come from which host. The synchronization protocol uses
HTTP requests initiated by the mobile client. To minimize the
impact of the high latency of current cellular data networks,



Fig. 1. A structural breakdown of Dessy.

we designed the protocol to make as few requests as possible.
In particular, we batch object requests, so that a complete file
system is typically synchronized in only two HTTP requests.
To support varying pricing and hot-spots, data synchronization
consists of two stages of network-intensive discrete runs,
where the first stage synchronizes file metadata (i.e. the layout
of the directory tree) and the second stage synchronizes file
content. We contrast this to systems that impose a continuous,
typically lighter, load on the network [10]–[12]. The Syxaw
file synchronizer supports synchronizing individual files, sets
of files, and whole file systems.

The directory tree or filesystem assigned to Dessy is crawled
by an indexer that detects file types and invokes indexing
helpers. These read their supported file types and generate
summaries that are then stored into the index. To add support
for a new file type, a developer needs to write an indexing
helper for that file type. For example, PdfHelper reads PDF
files for metadata and document text, and adds these as
properties such as author:, keywords:, title:, and
text:. Dessy stores the indexed properties in a lightweight
key–value database based on the Sdbm in–file database.

III. EVALUATION

The qualities of a desktop search system most visible to the
user relate to the speed and ease of use of common opera-
tions of the system, and the system’s ability to find desired
documents. Since synchronization and file searching are very
user-oriented tasks, we choose to evaluate the system from the
user’s perspective. We assume that most users are comfortable
with a wait time of one second between starting a search and
receiving results, and set this as a goal for Dessy. The other
common actions in Dessy are synchronizing files, adding file
tags, deleting files, and synchronizing file metadata. Adding
new tags and deleting files are fast operations, since they
require a single memory or disk access: adding a word to the
index, and removing word identifier, respectively. Therefore,
the operations that must be examined closer are search and
synchronization of file data. The synchronization time and
search time measurements were part of a Master’s thesis on
Dessy [9]. Therefore, we will only summarize them here, and

concentrate on the energy usage measurements of Dessy. To
measure the impact of Dessy on the client device, we measure
the energy usage of Dessy on the Nokia E51 with several
different usage patterns. The energy use is calculated from
power measurements taken with the Nokia Energy Profiler6.

To evaluate synchronization speed, we used a data set
made of random UK English words. We picked the words
from the UK English Wordlist With Frequency Classification7

collection, designed for spellcheckers. We created files with
20 to 900 000 randomly chosen words. The final collection
had 57 files ranging from 188 bytes to 5.2 megabytes.

The dataset was synchronized on the Sun WTK emulator
and the Nokia E51, both connected to the synchronization
server via an IEEE 802.11 wireless link. The details of the
experiment were presented in the Master’s thesis [9]. In
summary, the time to synchronize seems to grow linearly from
above 20 seconds on the E51, and from around a second
on the emulator, to around 40 seconds. We believe the large
performance gap is due to a bug, possibly to do with the way
the JSR 75 implementation on the E51 handles files. Based
on the measurements, it would appear that synchronization
of larger files is both feasible and reasonably fast on the
Nokia E51. However, the user still needs to wait for the
synchronization to complete. This suggests that more work
should be done on scheduled and background synchronization.

We also measured the time it takes to search for files
remotely, and receive results on the Nokia E51. In this
experiment, the phone connected to a laptop running the
Dessy remote API, and requested files with random queries
generated from the UK English words dataset introduced
earlier. The number of query words was normally distributed,
with the mean being 2.3 query words, as observed in mobile
search studies [13], [14]. The standard deviation was 1. Each
experiment run consisted of one thousand queries. We ran the
experiment five times. The results were shown in the Master’s
thesis [9]. The searches completed on average in under half a
second, and all completed in under 900 milliseconds. This well
achieves the goal of searching in under a second. Furthermore,
the search time of one second is extremely short compared to
the average time that users spend inputting the queries. In the
Google mobile search study [14], users took 56− 63 seconds
on average to type a query to the mobile version of Google.

Next, we compare the energy efficiency of synchroniza-
tion with different communication technologies: IEEE 802.11
wireless, 2G (EDGE) and 3G. Files on HTTP servers on the
Internet and the same files on a Dessy server on a remote
desktop machine are synchronized. We expect no differences
between Internet and Dessy Server synchronization, since
the client device is initially empty in this experiment, and
compression of file data is disabled. This makes internet
download and synchronization with a full download essentially
the same operation. If the client had a previous version of

6http://www.forum.nokia.com/Tools Docs and Code/Tools/Plug-ins/
Enablers/Nokia Energy Profiler/

7http://http://www.bckelk.ukfsn.org/words/wlist.zip [downloaded 2009-05-
27]



Experiment Lifetime (h) σ
NEP Idle 102.734800 11.506324
System Idle 60.779333 4.943411
Server WLAN 7.955036 0.409574
Internet WLAN 7.584398 0.126252
Internet 2G 7.988534 0.328137
Server 3G 4.347392 0.154648
Internet 3G 4.417638 0.219168

TABLE I
BATTERY LIFETIME IN SYNCHRONIZATION EXPERIMENTS.

Operation Battery capacity Average power
System startup 395 times 0.43 W
Initial connection 743 times 0.49 W
WLAN Synchronization 980 times 0.52 W
User interaction 15 hours 0.26 W
System idle 61 hours 0.069 W

TABLE II
BATTERY CAPACITY IN TERMS OF SYSTEM OPERATIONS.

the files, the transmission of differences instead of complete
files would decrease transmission times and work in favor of
synchronization with the desktop server.

Table I shows the battery lifetime of the E51 in different
synchronization experiments. The lifetime is shown in hours
with standard deviation (σ). We examine the battery life as
a measure of energy efficiency between different scenarios.
For comparison, we show the energy usage of the Nokia
Energy Profiler when idle (NEP Idle) and that of Dessy and
the NEP when idle (System Idle). We can see that the full
Nokia E51 battery can handle Dessy for around 61 hours. The
synchronization experiments shown in the table are: Server
WLAN – The Dessy client on the E51 is sychronizing files
through an IEEE 802.11 wireless LAN connection with the
Dessy server running on a desktop machine. Internet WLAN
– same as the former, except synchronization happens with
different file servers hosting individual files on the Internet.
In Internet 2G, the phone’s 2G (EDGE) connection is used
instead. In Server 3G, we synchronize with the Dessy server
using the mobile phone’s 3G network connection. Finally,
Internet 3G means that the client is synchronizing files from
Internet servers through a 3G connection.

Both Server WLAN and Internet WLAN have a higher
battery lifetime than 3G. However, 2G is in par with WLAN in
energy efficiency. This leads us to believe that the IEEE 802.11
connection is preferable to 2G when high speed or cost–free
synchronization is required. However, when network hotspots
are scarce, 2G is preferable to 3G, since it is more energy
efficient. The differences between synchronizing with a Dessy
server and the Internet servers are minimal.

Next, we examine the power usage profile of Dessy oper-
ations. Table II summarizes the energy usage measurements
of different Dessy operations with numbers and durations
permitted by a full standard battery of the Nokia E51 on the
device. WLAN Synchronization refers to using the Dessy

software to synchronize a PDF file 0.5 MB in size.

IV. CONCLUSION

The results in the previous section suggest that desktop
search is both feasible and searches complete quickly on
average mobile devices.

Synchronization of files could be quicker, however. The
performance gap between the emulator and the Nokia E51
in the synchronization experiments remains to be solved.

The measurements suggest that desktop search and synchro-
nization can be implemented in an energy efficient way on
mobile devices. The energy usage of Dessy is around 0.26 W
when active and 0.5 W when transmitting or receiving data.
The power usage when idle is 0.07 W, giving a standby time
of 61 hours for Dessy. For comparison, the phone uses 0.04
W when idle without running Dessy, and reaches 102 hours
of standby time. The power usage of synchronization on a 3G
network is much higher than that of IEEE 802.11 wireless.
This supports the conclusion that synchronization at a network
hotspot is preferable to 3G. Based on this work, it is possible
to develop systems that maximize battery life while providing
useful search and synchronization capabilities.

REFERENCES

[1] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. James W. O’Toole,
“Semantic file systems,” in SOSP ’91, pp. 16–25.

[2] E. Cutrell, D. Robbins, S. Dumais, and R. Sarin, “Fast, flexible filtering
with phlat,” in SIGCHI ’06, pp. 261–270.

[3] H. Mei and J. Lukkien, “A remote personal device management frame-
work based on syncml dm specifications,” in MDM ’05, pp. 185–191.

[4] T.-Y. Chang, A. Velayutham, and R. Sivakumar, “Mimic: raw activity
shipping for file synchronization in mobile file systems,” in Mobisys
2004 Workshop on Context Awareness, pp. 165–176.

[5] SyncML Sync Protocol, version 1.1, SyncML Initiative, Feb.
2002. [Online]. Available: http://www.syncml.org/docs/syncml sync
protocol v11 20020215.pdf

[6] E. I. Bolso, “File synchronization with unison,” Linux Journal, vol. 2005,
no. 132, pp. 6–6, 2005.

[7] T. Lindholm, J. Kangasharju, and S. Tarkoma, “Syxaw: Data
synchronization middleware for the mobile web,” Mobile Networks and
Applications, vol. 14, no. 5, pp. 661–676, 2009. [Online]. Available:
http://dx.doi.org/10.1007/s11036-008-0146-1

[8] E. Lagerspetz, T. Lindholm, and S. Tarkoma, “Dessy: Towards flexible
mobile desktop search,” in Proceedings of the Fourth ACM SIGACT-
SIGOPS International Workshop on Foundations of Mobile Computing.

[9] E. Lagerspetz, “Dessy: desktop search and synchronization,” Master’s
thesis, University of Helsinki, Department of Computer Science,
Helsinki, Finland, Nov. 2009. [Online]. Available: http://www.cs.
helsinki.fi/u/lagerspe/publications/lagerspe-gradu.pdf

[10] K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and A. J. Demers,
“Flexible update propagation for weakly consistent replication,” in
Proceedings of the sixteenth ACM Symposium on Operating Systems
Principles, pp. 288–301.

[11] J. Kubiatowicz et al., “Oceanstore: An architecture for global-scale
persistent storage,” in Proceedings of the Ninth international Conference
on Architectural Support for Programming Languages and Operating
Systems.

[12] L. Mummert, M. Ebling, and M. Satyanarayanan, “Exploiting weak
connectivity for mobile file access,” in Proceedings of the Fifteenth ACM
Symposium on Operating System Principles, pp. 143–155.

[13] J. Yi, F. Maghoul, and J. Pedersen, “Deciphering mobile search patterns:
a study of yahoo! mobile search queries,” in The Seventeenth World Wide
Web Conference, pp. 257–266.

[14] M. Kamvar and S. Baluja, “A large scale study of wireless search
behavior: Google mobile search,” in SIGCHI ’06, pp. 701–709.


