Relational algebra

- A model of how to work with the database
- What to we do with the database
- Fetch data
- Maintain data
- Relational Algebra specifies the operations that may be used in computing new relations from existing ones

Relational algebra

- Both Union and Difference presuppose that the operands are compatible:
- Same number of attributes
- Corresponding columns share the same domains
- Names of the corresponding columns need not be the same
- The first operand determines the column names for the result

Relational algebra - product

- degree(R x S) = degree(R)+degree(S)
- cardinality $(\mathrm{R} \times \mathrm{S})=\operatorname{cardinality}(\mathrm{R})^{*}$ cardinality(S)
- Student relation has 30000 rows
- Studies relation has 600000 rows
- Student x Studies: 18000000000 rows
- If relations have columns with the same name:
- Attach schema name as a specifier
$-R(A, B, C) \times S(B, C, D)=>R \times S(A, R . B, R . C, S . B, S . C, D)$

Relational algebra - projection

Relational algebra - selection

- Select operation extracts from a relation the rows that fulfill a given condition
- $\sigma_{\text {condition }}(R)=\{x \mid x \in R$ and condition is true when the attribute names in it are substituted by the values of those attributes in tuple $x\}$
- Operand in a condition may be constraints or attributes. Standard comparison operations may be used $=, \neq,<,>,<=$ and $>=$.

Relational algebra - selection

\[

\]

Empty relation

- $\mathrm{S}(\mathrm{A}, \mathrm{B}, \ldots, \mathrm{N}):=$ expression.
- The result of the expressions must be compatible with the schema on the left
- Assignment is an auxiliary operation
- StudentName(Name):= $\pi_{\text {LastNamei }}$ (Student)

Relaational algebra - assignment, renaming

- Assignment renames the relation

Relational algebra - logical expressions in conditions

- It is possible to use in complex conditions using similar logical connectives that are used in programming languages. A selection with a complex condition may be reduced to selections with simple conditions
- $\sigma_{\mathrm{c} 1 \text { or } \mathrm{c} 2}(\mathrm{R}) \equiv \sigma_{\mathrm{c} 1}(\mathrm{R}) \cup \sigma_{\mathrm{c} 2}(\mathrm{R})$
- $\sigma_{\mathrm{c} 1}$ and $\mathrm{c} 2(\mathrm{R}) \equiv \sigma_{\mathrm{c} 1}(\mathrm{R}) \cap \sigma_{\mathrm{c} 2}(\mathrm{R})$
- $\sigma_{\text {not } c 1}(R) \equiv R-\sigma_{c 1}(R)$

Relational algebra

Join

Condition: R.A=S.D

Then select

\section*{| RxS | A | B | D | E |
| :--- | :--- | :--- | :--- | :--- |}

Natural join

- Let A1,...,An be attributes of R that are not included in the schema of S , and $\mathrm{C} 1, \ldots, \mathrm{Cm}$ attributes of S that are not included in the schema of R. Let B1...Bk be attributes of both R and S.

■ $R^{*} S \equiv \pi_{A 1, \ldots, A n, R . B 1, \ldots, R . B k, C 1, \ldots, C m}$
($R|\times|_{\text {R.B1=S.B1 and } \ldots . . . \text { and } R . B k=S . B k} S$)

Outer join

- Outer join is a combination of union and join. It includes in the result also such rows that in normal join would not be included because they do not have any matching pair to satisfy the join condition (below left outer join)
- $\mathrm{R} \supset<\left.\right|_{\text {condition }} \mathrm{S} \equiv$

$$
\left(R|\times|_{\text {condition }} S\right) \cup\left(R-\pi_{\text {att(R) }}\left(R|\times|_{\text {condition }} S\right)\right) \times \aleph(S)
$$

- att(R) lists the attributes of R and $\aleph(S)$ is relation with the schema of S and a single tuple each value of which is a null value.

Introduction to Databases, spring 2004

Relational algebra

