Relational algebra

- Union
- Difference
- Cross product
- Intersection
- Projection
- Selection
- Joins
- Normal join (theta join, equijoin)
- Natural join
- Outer join

Cardinality of results: R op S

- Product: each row of R connected to each row of S
$-\mathbf{c}(\mathbf{R} \times \mathbf{S})=\mathbf{c}(\mathbf{R}) * \mathbf{c}(\mathbf{S})$
- Projection: pick up distinct values appearing in a column collection
$-c\left(\pi_{a}(R)\right) \leq c(R)$
$-c\left(\pi_{a}(R)\right) \leq c\left(\pi_{a, b}(R)\right)$
- if a contains a key: $c\left(\pi_{a}(R)\right)=c(R)$
$-c\left(\pi_{a}(R)\right)=0$ only if $c(R)=0$

Cardinality of results: R op S
- Product: each row of R connected to each row of S $-c(R \times S)=c(R) * c(S)$
- Projection: pick up distinct values appearing in a column collection $-c\left(\pi_{a}(R)\right) \leq c(R)$
- $\mathrm{c}\left(\pi_{\mathrm{a}}(\mathrm{R}) \mathrm{)} \leq \mathrm{c}\left(\pi_{\mathrm{a}, \mathrm{b}}(\mathrm{R})\right.\right.$)
- if a contains a key: $c\left(\pi_{a}(R)\right)=c(R)$
- $\mathrm{c}\left(\pi_{\mathrm{a}}(\mathrm{R}) \mathrm{)}=0\right.$ only if $\mathrm{c}(\mathrm{R})=0$

Cardinality of results: R op S

- $c(R)=$ cardinality (number of rows) of R
- Union: rows of both relations, common ones only once
$-c(R \cup S)=c(R)+c(S)-c(R \cap S) \geq \max (c(R), c(S))$
- Difference: Rows of R that are not in S
$-c(R-S)=c(R)-c(R \cap S) \leq c(R)$
- Intersection: Rows common to R and S
$-0 \leq \mathrm{c}(\mathrm{R} \cap \mathrm{S}) \leq \min (\mathrm{c}(\mathrm{R}), \mathrm{c}(\mathrm{S}))$

Cardinality of results: R op S

- Selection: pick up rows that conform to the selection criteria
$-0 \leq c\left(\sigma_{e}(R)\right)$
$-0 \leq c\left(\sigma_{k=c o n s t a n t}(R)\right) \leq 1$, when k is a key of R
$-c(R)-1 \leq c\left(\sigma_{k \neq c o n s t a n t}(R)\right) \leq c(R)$, when k is a key of R
$-c\left(\sigma_{e \text { and } f}(R)\right) \leq \min \left(c\left(\sigma_{e}(R), c\left(\sigma_{f}(R)\right)\right.\right.$
$-c\left(\sigma_{e}\right.$ orf $\left.(R)\right) \geq \max \left(c\left(\sigma_{e}(R), c\left(\sigma_{f}(R)\right)\right.\right.$

Cardinality of results: R op S

- Join: row of R and S are connected based on connection criteriai
- $0 \leq c\left(R \triangleright \triangleleft_{e} S\right) \leq c(R \times S)$
- Let k be the key of R and v a foreing key in S that refers to R
- $c\left(R \triangleright \triangleleft_{k=v} S\right) \leq c(S)$, if null values are allowed for v
- $c\left(R \triangleright \triangleleft_{k=v} S\right)=c(S)$, if null values are not allowed for v

Cardinality of results: R op S

- $\mathbf{c}\left(\mathbf{R} \triangleright \triangleleft_{k \neq v} S\right)=c(R \times S)-c(S)$, if null values are not allowed for v

Natural join:

- $c(R * S)=c(R \times S)$, if R and S do not have columns with common name
- mostly natural joins carry out a join based on the equality of foreing key and the corresponding primary key
- If both R and S have a common schema, natural join equals to intersection

Introduction to Databases, s 2004
Relational algebra -revision

