
University of Helsinki /CS
Introduction to Databases, Spring 2004

4.2.04

Harri Laine 1

Database design

Usually designing a database consists of
three tasks:
– conceptual design - what data to include and how

these data are inter-related
– logical design - how the data are presented as

logical data structures
– physical design - how the data are organized as

files and indexes.

Database design

Conceptual design produces an abstract
model of data to be included in the database
This model
– is independent of any database management

system
– reflects the structure of the universe of discourse

(i.e. the topic about which data will be gathered)
– is based on some dedicated modeling technique

(Entity-Relationship, UML) - these are discussed
in the course Introduction to Application Design
and Analysis)

Database design

Conceptual design is actually analyzing the
universe of discourse in order to find out
which phenomena are such that should be
represented as data in the database
The result of this analysis
– identifies the types of objects about which data will

be collected
– identifies the properties of objects that will be

presented as data items
– identifies such dependencies among objects and

data items that should be reflected in the database

Database design

customer
ssn {id}
name
address

pledge
receipt_no{id}
type
age
value

loan
loan_no {id}
amount

clerk
cno {id}
name payment

due_to_date {id}
date_paid
amount

Payment_plan
plan_id {+id}
interest%

1
1..*

1

0..*

1..*

1..*

0..*

1..* 0..*
1

evaluator

Accepted_by

{id}

{id}

Loan_taker

Pledge_to

Payments_according_to

Belongs_to

Database design

Logical design defines the database for some
type of database management system, for
example, for a relational dbms.
It considers how the data are represented
using the structures offered by the dbms:
– what datatypes to use
– how to organize the data into tables
– what are the keys
– how to connect rows

Database design

If we had done the conceptual design using
the E-R or the UML technique, there is a
straight forward way to transform the
obtained data model into a schema of a
relational database.

University of Helsinki /CS
Introduction to Databases, Spring 2004

4.2.04

Harri Laine 2

Database design

Physical design is concerned on how the
database is organized as files and what kind
of structures to use for efficiency of database
processing

Database design - Logical Design

In the design of relational databases the main
issue is to organize the data in relations in a
way that avoids redundancy i.e. to store each
piece of information only once
This makes the database easier to maintain
Storing the same information many times
causes problems

• storage space is wasted
• updating of data becomes complex
• modification operations may have unexpected side-

effects

Database design - Logical Design

An example of a table that has redundancy:
EMP_DEPT:

E_no E_name E_bdate D_no D_name D_location

1 M.Smith 1.3.59 3 Sales Helsinki
2 D.Lowe 4.10.40 3 Sales Helsinki
3 K.Knuth 30.1.66 4 Admin Lahti
4 B.West 2.5.65 4 Admin Lahti
5 O.East 10.2.55 6 Production Helsinki

Key: E_no
Location must
be repeated if O.East is deleted,

also information about
Production dept is lost

If Admin dept.
Moves to Espoo
we must update
many roles

Database design - Logical Design

We get rid of the problems with tables
Employee eNo eName bDate Dept

10 M.Smith 1.3.59 3

20 D.Lowe 4.5.40 3

30 S.Knuth 8.6.66 4

40 B.West 2.4.65 4

50 O.East 1.2.55 6

Department dNo dName dLocation

3 Sales Helsinki

4 Admin Espoo

6 Production Espoo

Database design - Logical Design

The re-organization was made based on
dependencies among data items. We may
use the dependencies to determine which
data items belong together (into the same
table).

Actually we used only one type of
dependency - the functional dependency

Database design - Logical Design

Functional dependency
Let columns A and B belong to the same relation
schema R. Column A determines column B
functionally, if no value of A is associated to more
than one value of B (in whatever instance of schema
R)
(to be associated= values are in the same row)
Notation A ->B
A may be a single column or a collection of columns

University of Helsinki /CS
Introduction to Databases, Spring 2004

4.2.04

Harri Laine 3

Database design - Logical Design

A B C D
aaa bbb ccc dda
aaa bbb cca ddb
aab bbc ccd ddd
aab bbc cca dde

aab bbc ccc ddc

According to this table instance it seems that

A->B, D->A, D->B, D->C , AC->D, BC->A

Database design - Logical Design

Dependencies D->A, D->B, D->C are ‘true’
because each D value is unique,
Similarly each BC and AC combined value is
unique
A-values are not unique but no A-value
appears together with more than one B-value
We may not, anyhow, determine functional
dependencies relying on one instance of a
table - the condition must be true in all
potential instances

Database design - Logical Design

Thus the dependencies truly exist, if D-
values,and AC-and BC -combined values are
unique in all possible instances.

Let’s use a more concrete example with the
same template

Database design - Logical Design

Job Salary Address EmpNo
clerk 2000 ccc 10
clerk 2000 cca 20
analyst 3000 ccd 30
analyst 3000 cca 40

analyst 3000 ccc 50

OK: EmpNo->Job, EmpNo->Salary, EmpNo->Address
OK?: Job->Salary
Not always: Salary,Address->Job
Not always: Job,Address-> EmpNo

Database design - Logical Design
EmpNo->Job
– (each employee has one job)

EmpNo->Salary
– (there is only one salary for each employee)

EmpNo->Address
– (each employee has only one address)

Job->Salary
– (salaries are job specific)

NO: Salary,Address->Job
– (if we know employee’s salary and address we are able to

determine his job)

NO: Job,Address-> EmpNo

Database design - Logical Design

There are also other functional dependencies
like
– EmpNo, Salary -> Address

This is however derivable because
– EmpNo->Salary and there is a rule saying that
– if X->Y then XZ->Y for any Z

There are also other rules (Armstrong
axioms) on how to derive dependencies, an
important rule is transitivity:
– if X->Y and Y->Z then X->Z

University of Helsinki /CS
Introduction to Databases, Spring 2004

4.2.04

Harri Laine 4

Database design - Logical Design

Keys and fuctional dependencies
– The key of a relation may be defined based on

functional dependencies as follows
– Attribute collection K is the key of relation R if

K->X for each attribute X in R and no subset of
K has this same property.

– Thus the key for relation
– Emp(Job,Salary,Address,EmpNo) is EmpNo

Database design - Logical Design

Boyce-Codd normal form (BCNF) is one
criteria for a good relational schema (table
structure).
A relation is in Boyce-Codd normal form, if
there are no fuctional dependencies X->Y
related to it such that X does not contain a
key of the relation
Emp(Job,Salary,Address,EmpNo) is not in
BCNF because its key is EmpNo and there is
the dependency Job->Salary, where EmpNo
is not part of Job.

Database design - Logical Design

Example
Shopping(productId, productName, listPrice,
buyerName, reduction%, paidPrice, whenMade)

productId -> productName (OK)
productId -> listPrice(OK)
productId -> buyerName (NO) {only one buyer for each product}
productId -> reduction% (NO) {reduction is product specific}
productId -> paidPrice (NO) {paid prise depends on product only}
productId -> whenMade (NO) {only one shopping for a product}

Database design - Logical Design

Example
Shopping(productId, productName, listPrice,
buyerName, reduction%, paidPrice, whenMade)

productName -> productId (perhaps, No)
buyerName -> productId (NO) {nobody buys more than one

product}
buyerName -> reduction% (Maybe, OK)
listPrice, reduction% -> paidPrice (OK)

Database design - Logical Design

Example
Shopping(productId, productName, listPrice,

buyerName, reduction%, paidPrice, whenMade)

ProductID , WhenMade and buyerName together
determine all attributes and form the key, there are
no other keys
– (note: attributes that are not determined by any other

attributes must be included in all keys)

Shopping is not in BCNF (many dependencies violate
the rule)

Database design - Logical Design

How to form relations of BCNF
1. Define the functional dependencies,
eliminate derivable dependencies
2. Define the keys of the relation
3. Group the dependencies by the common
determinant (left hand side, in X->Y attribute
X is the determinant)
4. Form a relation for each group, include in
the schema all the attributes in the
dependencies of the group

University of Helsinki /CS
Introduction to Databases, Spring 2004

4.2.04

Harri Laine 5

Database design - Logical Design

5. If no key of the original relation is included
in any of the relations make a new relation for
one of the keys.
6. If some information is expressed
redundantly eliminate this.
7. Define names for the schemas. If it’s easy
to find descriptive names for relations your
solution is good.

Database design - Logical Design

Example
Shopping(productId, productName, listPrice,
buyerName, reduction%, paidPrice, whenMade)

productId -> productName
productId -> listPrice

==> (productId, productName, listPrice)
buyerName -> reduction%

==> (buyerName, reduction%)
listPrice, reduction% -> paidPrice

==>(listPrice, reduction%, paidPrice)

Database design - Logical Design

Example
Shopping(productId, productName, listPrice,
buyerName, reduction%, paidPrice, whenMade)

Key was not included
==> (productId, buyerName, whenMade)

Database design - Logical Design

Product(productId, productName, listPrice)
Customer(buyerName, reduction%)
MayBeComputed(listPrice, reduction%, paidPrice)
– may be computed, need not be stored in database

Shopping(productId, buyerName, whenMade)

Database design - Logical Design

In analysing an order form we found the following
attributes:
form_number,
who_ordered_id,
who_ordered_name,
who_ordered_address,
who_ordered_phone,
delivery_address,
row_no,
product_code,
product_name,
amount_ordered, and
date_ordered.

Database design - Logical Design

• form_number who_ordered_id
• who_ordered_id who_ordered_name
• who_ordered_id who_ordered_address
• who_ordered_id who_ordered_address
• form_number delivery_address

University of Helsinki /CS
Introduction to Databases, Spring 2004

4.2.04

Harri Laine 6

Database design - Logical Design

• Product_code product_name
• form_number, row_no product_code
• form_number, row_no amount_ordered
• form_number date_ordered

Database design - Logical Design

relations

X(who_ordered_id,who_ordered_name,
who_ordered_address, who_ordered_phone)
Y(product_code, product_name)
Z(form_number,date_ordered,who_ordered_id,
delivery_address)
T(form_number,row_no,product_code,
amount_ordered)

Database design - Logical Design

Renamed
– Customer(who_ordered_id,who_ordered_name,

who_ordered_address, who_ordered_phone)
– Product (product_code, product_name)
– Order(form_number,date_ordered,who_ordered_id,

delivery_address)
– OrderItem(form_number,row_no,product_code,

amount_ordered)

