University of Helsinki /CS
Introduction to Databases, Spring 2004

TH I

Database design

= Usually designing a database consists of
three tasks:

— conceptual design - what data to include and how
these data are inter-related

— logical design - how the data are presented as
logical data structures

— physical design - how the data are organized as
files and indexes.

4.2.04

TH I

Database design

= Conceptual design is actually analyzing the
universe of discourse in order to find out
which phenomena are such that should be
represented as data in the database

= The result of this analysis
— identifies the types of objects about which data will
be collected
— identifies the properties of objects that will be
presented as data items
— identifies such dependencies among objects and
data items that should be reflected in the database

TH I

Database design

= Conceptual design produces an abstract
model of data to be included in the database

= This model

— is independent of any database management
system

— reflects the structure of the universe of discourse
(i.e. the topic about which data will be gathered)

— is based on some dedicated modeling technique
(Entity-Relationship, UML) - these are discussed
in the course Introduction to Application Design
and Analysis)

TH I

Database design

= Logical design defines the database for some
type of database management system, for
example, for a relational dbms.

= It considers how the data are represented
using the structures offered by the dbms:
— what datatypes to use
— how to organize the data into tables
— what are the keys
— how to connect rows

TH I

Database design

Loan_taker
1 ‘ o= loan _
o loan_no {id}
customer P'ed_get T 1 | amount
ssn {id} receipt_noql
name itype Pledge_to ’
address age Payments_according_to
value {id}|1.x
0.%
payment plan
1..» —€valuator 0.+ plan_id {+id}
clerk interest%
eno {id} 1 Accepted_by
name payment {id} ?
due_to_date {if}..*
date_paid Belongs_to
amount

Harri Laine

TH I

Database design

= If we had done the conceptual design using
the E-R or the UML technique, there is a
straight forward way to transform the
obtained data model into a schema of a
relational database.

University of Helsinki /CS
Introduction to Databases, Spring 2004

TH I

Database design

= Physical design is concerned on how the
database is organized as files and what kind
of structures to use for efficiency of database
processing

4.2.04

I EUE » e

B

Database design - Logical Design

= An example of a table that has redundancy:
EMP_DEPT:

E_no E_name E_bdate D_no D_name D_location

1 M.Smith 1.3.59 3 Sales Helsinki

2 D.Lowe 4.10.40 3 Sales Helsinki

8 K.Knuth 30.1.66 4 Admin Lahti

4 B.West 2.5.65 4 Admin Lahti

5 0.East \ 10.2.55 Productipn Helsinki
Key: E_no

If Admin dept.
Moves to Espoo
we must update
many roles

Location must

if O.East is deleted, be repeated

also information about
Production dept is lost

TH I

Database design - Logical Design

= In the design of relational databases the main
issue is to organize the data in relations in a
way that avoids redundancy i.e. to store each
piece of information only once

= This makes the database easier to maintain

= Storing the same information many times

causes problems
* storage space is wasted
* updating of data becomes complex

« modification operations may have unexpected side-
effects

)
:

Database design - Logical Design

= The re-organization was made based on
dependencies among data items. We may
use the dependencies to determine which
data items belong together (into the same
table).

= Actually we used only one type of
dependency - the functional dependency

TH I

Database design - Logical Design

= We get rid of the problems with tables

Employee eNo eName bDate | Dept

10 M.Smith 1.3.59(3

20 D.Lowe 4.5.40| 3

30 S.Knuth 8.6.66| 4

40 B.West 2.4.65| 4

50 0.East 1.2.55| 6
Department dNo dName dLocation

3 Sales Helsinki

4 Admin Espoo

6 Production Espoo

Harri Laine

TH I

Database design - Logical Design

= Functional dependency

m Let columns A and B belong to the same relation
schema R. Column A determines column B
functionally, if no value of A is associated to more
than one value of B (in whatever instance of schema
R)

= (to be associated= values are in the same row)

= Notation A ->B

= A may be a single column or a collection of columns

University of Helsinki /CS
Introduction to Databases, Spring 2004

TH I

Database design - Logical Design

A B C D

aaa bbb cce dda
aaa bbb cca ddb
aab bbc ccd ddd
aab bbc cca dde
aab bbc cce ddc

According to this table instance it seems that
A->B, D->A, D->B, D->C, AC->D, BC->A

4.2.04

TH I

Database design - Logical Design

= Thus the dependencies truly exist, if D-
values,and AC-and BC -combined values are
unique in all possible instances.

= Let's use a more concrete example with the
same template

TH I

Database design - Logical Design

= Dependencies D->A, D->B, D->C are ‘true’
because each D value is unique,

= Similarly each BC and AC combined value is
unique

= A-values are not unique but no A-value
appears together with more than one B-value

= We may not, anyhow, determine functional
dependencies relying on one instance of a
table - the condition must be true in all
potential instances

TH I

Database design - Logical Design

= EmpNo->Job
— (each employee has one job)
= EmpNo->Salary
— (there is only one salary for each employee)
= EmpNo->Address
— (each employee has only one address)
= Job->Salary
— (salaries are job specific)
m NO: Salary,Address->Job

— (if we know employee’s salary and address we are able to
determine his job)

= NO: Job,Address-> EmpNo

TH I

Database design - Logical Design

Job Salary Address EmpNo
clerk 2000 cce 10
clerk 2000 cca 20
analyst 3000 ccd 30
analyst 3000 cca 40
analyst 3000 cce 50

OK: EmpNo->Job, EmpNo->Salary, EmpNo->Address
OK?: Job->Salary

Not always: Salary,Address->Job

Not always: Job,Address-> EmpNo

Harri Laine

TH I

Database design - Logical Design

= There are also other functional dependencies
like
— EmpNo, Salary -> Address

= This is however derivable because
— EmpNo->Salary and there is a rule saying that
— if X->Y then XZ->Y for any Z

= There are also other rules (Armstrong
axioms) on how to derive dependencies, an
important rule is transitivity:
— if X->Y and Y->Z then X->Z

University of Helsinki /CS
Introduction to Databases, Spring 2004

TH I

Database design - Logical Design

= Keys and fuctional dependencies

— The key of a relation may be defined based on
functional dependencies as follows

— Attribute collection K is the key of relation R if

K->X for each attribute X in R and no subset of
K has this same property.

— Thus the key for relation
— Emp(Job,Salary,Address,EmpNo) is EmpNo

4.2.04

Database design - Logical Design

Boyce-Codd normal form (BCNF) is one
criteria for a good relational schema (table
structure).

= A relation is in Boyce-Codd normal form, if
there are no fuctional dependencies X->Y
related to it such that X does not contain a
key of the relation

= Emp(Job,Salary,Address,EmpNo) is not in
BCNF because its key is EmpNo and there is
the dependency Job->Salary, where EmpNo
is not part of Job.

TH I

Database design - Logical Design

= Example
= Shopping(productld, productName, listPrice,
buyerName, reduction%, paidPrice, whenMade)

productld -> productName (OK)

productld -> listPrice(OK)

productld -> buyerName (NO) {only one buyer for each product}
productld -> reduction% (NO) {reduction is product specific}
productld -> paidPrice (NO) {paid prise depends on product only}
productld -> whenMade (NO) {only one shopping for a product}

TH I

Database design - Logical Design

= Example
= Shopping(productld, productName, listPrice,
buyerName, reduction%, paidPrice, whenMade)

productName -> productld (perhaps, No)

buyerName -> productld (NO) {nobody buys more than one
product}

buyerName -> reduction% (Maybe, OK)

listPrice, reduction% -> paidPrice (OK)

TH I

Database design - Logical Design

= Example
= Shopping(productld, productName, listPrice,

buyerName, reduction%, paidPrice, whenMade)

= ProductlD , WhenMade and buyerName together
determine all attributes and form the key, there are
no other keys
— (note: attributes that are not determined by any other
attributes must be included in all keys)
= Shopping is not in BCNF (many dependencies violate
the rule)

TH I

Database design - Logical Design

= How to form relations of BCNF

= 1. Define the functional dependencies,
eliminate derivable dependencies

= 2. Define the keys of the relation

= 3. Group the dependencies by the common
determinant (left hand side, in X->Y attribute
X is the determinant)

= 4. Form a relation for each group, include in

- the schema all the attributes in the

EErr wn|

Harri Laine

_I dependencies of the group

University of Helsinki /CS
Introduction to Databases, Spring 2004

TH I

Database design - Logical Design

= 5. If no key of the original relation is included
in any of the relations make a new relation for
one of the keys.

= 6. If some information is expressed
redundantly eliminate this.

= 7. Define names for the schemas. If it's easy

to find descriptive names for relations your
solution is good.

4.2.04

TH I

Database design - Logical Design

Example
= Shopping(productld, productName, listPrice,
buyerName, reduction%, paidPrice, whenMade)

= Key was not included
m ==> (productld, buyerName, whenMade)

)
:

Database design - Logical Design

= Example
= Shopping(productld, productName, listPrice,
buyerName, reduction%, paidPrice, whenMade)

productld -> listPrice
==> (productld, productName, listPrice)
E)uyerName -> reduction%
==> (buyerName, reduction%)
DistPrice, reduction% -> paidPrice
==>(listPrice, reduction%, paidPrice)

E}roductld -> productName

TH I

Database design - Logical Design

= In analysing an order form we found the following
attributes:

form_number,
who_ordered_id,
who_ordered_name,
who_ordered_address,
who_ordered_phone,
delivery_address,
row_no,
product_code,
product_name,
amount_ordered, and
date_ordered.

TH I

Database design - Logical Design

Product(productld, productName, listPrice)
Customer(buyerName, reduction%)

= MayBeComputed(listPrice, reduction%, paidPrice)
— may be computed, need not be stored in database

Shopping(productld, buyerName, whenMade)

Harri Laine

TH I

Database design - Logical Design

. form_number - who_ordered_id

- who_ordered_id-> who_ordered_name

« who_ordered_id - who_ordered_address
« who_ordered_id - who_ordered_address
. form_number > delivery_address

University of Helsinki /CS
Introduction to Databases, Spring 2004

Database design - Logical Design

. Product_code - product_name

- form_number, row_no - product_code

. form_number, row_no - amount_ordered
. form_number - date_ordered

4.2.04

Database design - Logical Design

= Renamed

— Customer(who_ordered_id,who_ordered_name,
who_ordered_address, who_ordered_phone)
— Product (product_code, product_name)

— Order(form_number,date_ordered,who_ordered_id,

delivery_address)

— Orderltem(form_number,row_no,product_code,
amount_ordered)

Harri Laine

TH I

Database design - Logical Design

relations

= X(who_ordered_id,who_ordered_name,
who_ordered_address, who_ordered_phone)

= Y(product_code, product_name)

= Z(form_number,date_ordered,who_ordered_id,
delivery_address)

= T(form_number,row_no,product_code,
amount_ordered)

