
University of Helsinki/ CS
Introduction to Databases, Spring 2003
Database programming

17.2.2003

© Harri Laine 1

Programming Database Applications

Databases are rarely used thru direct query
interfaces
Typically they are used thru application
programs
Techniques to use databases in application
programs include:
– Embedded SQL
– Database Application Programming interface

Library (database API)
– Other interface that hide the database
– A special database programming language

Embedded SQL

SQL-statements are written among programming
language statements. SQL-statements carry special
(Exec SQL) marks that identify then as being SQL
The marks are used by a pre-compiler that
substitutes the SQL statements with calls of library
functions
The result of the pre-compiler is then compiled with a
standard programming language compiler
2-phase compilation
Pre-compilers are available from dbms suppliers for
some programming languages (Ada, C, C++, Cobol,
Pascal,…, Java)

Embedded SQL

Marked SQLMarked SQL--
statement among statement among
programming languageprogramming language
statements (C+SQL)statements (C+SQL)

Pre-
compiler

PrePre--
compilercompiler

Standard programmingStandard programming
Language +Language +
SQL statements asSQL statements as
Parameters of function Parameters of function
callscalls

Function libraryFunction library
(database functions)(database functions)

‘normal’
compiler
‘‘normal’normal’
compilercompilerCompiled

program
CompiledCompiled
programprogram

Example of Embedded SQL in Pascal

function avgSalary(dept:integer):real;
var
n: integer;
salSum: integer;
#include SQLCA.INC
EXEC SQL BEGIN DECLARE SECTION

var salary: integer;
dpt: integer;

EXEC SQL END DECLARE SECTION

Example of Embedded SQL in Pascal

begin
EXEC SQL DECLARE salaryCursor CURSOR FOR

SELECT salary from employee
where department= :dpt;

n:=0; salSum:=0; dpt:= dept;
EXEC SQL open salaryCursor;
EXEC SQL fetch salaryCursor into :salary;
while sqlcode = 0 do begin

salSum := salSum + salary;
n := n + 1;
EXEC SQL fetch salaryCursor into :salary;

end;
EXEC SQL close salaryCursor;
if n > 0 then avgSalary := salSum/n
else avgSalary := 0;

end;.

Concepts in embedded SQL

Cursor
– Structure for processing the result of a query

• Must be attached to a query (declare)
• Is opened (open) = the attached query is executed using

the variable values of the execution time
• Is moved (fetch) = proceed to next record and transfer

data from the current record to program variables
• Is closed (close) = releases resources

University of Helsinki/ CS
Introduction to Databases, Spring 2003
Database programming

17.2.2003

© Harri Laine 2

Concepts in embedded SQL

A database operation may fail. The success
of the operation must be tested after each
operation.
Success may be tested by checking the value
of the variable sqlstate (or sqlcode according
to the older standard). Both return 0 if the
operation succeeded and an error code it
failed.
Success may be also tested by defining error
handlers (WHENEVER something do
Handler)

Programming using a database API

Application programming interface (API) is
library that provides the services of the
DBMS.
Supplier specific libraries: Native API
– For example OracleCLI = Oracle Call Level

Interface
Supplier independent libraries
– For example ODBC (Microsoft Open Database

Connection), JDBC Java database connection
– Make it possible to change dbms and even to use

many dbms in the same program

Programming using a database API

Supplier independent libraries require a dbms
specific driver to work with a particular dbms
ODBC is the most common API
– All suppliers provide ODBC drivers.
– Parameters passed in C-language style

JDBC provides the same ideas as ODBC but
in Java
– Some details of ODBC are hidden within class

definitions.

JDBC

Java database connection (JDBC) provides only a
few classes:
DriverManager
– This class provides services for attaching the dbms specific

driver and for establishing connections to the database,
– DBms drivers are able to register themselves. Thus it is

enough to load the driver, for example, using classByName
service.

– Here is the code for explicit registration of the driver
– DriverManager.registerdriver(

new oracle.jdbc.OracleDriver());

JDBC

Connection
– This class establishes a database connection

(session):
• a connection between the application and the database –

log in with some user account and password
– All database services need a connection –

Connection class connects service requests to the
connection

– Connection should be closed when it is no longer
needed

– DriverManager provides the method for creating a
connection

JDBC

Connection con =
DriverManager.getConnection(

“jdbc:oracle:thin:@bodbacka.cs.helsinki.fi:1521:test”,
“scott”,”tiger”);

Establishes a connection using Oracle thin driver via
port 1521 to computer bodbacka.cs.helsinki.fi and its
test- database using user account scott and
password tiger

University of Helsinki/ CS
Introduction to Databases, Spring 2003
Database programming

17.2.2003

© Harri Laine 3

JDBC

Statement
– Environment for executing database operations
– Provides, for example, methods
– executeQuery - to execute queries
– executeUpdate - to execute other operations

Connection provides a methos for creationg
statements

JDBC

ResultSet
– The answers obtained by executing a query
– Corresponds to the cursor of embedded SQL
– Method Statement.executeQuery() creates a

ResultSet object
• executeQuery accepts the actual query as its parameter

Statement stmt= con.createStatement();
ResultSet rs= stmt.executeQuery(

“select name from employee”);

JDBC

Answer processing using the methods of
ResultSet:
– Method next() activates the next row of the

answer. It returns true if such a row exists and
otherwise false. First call activates the first row of
the answer.

JDBC

– Data may be only in program variables. ResultSet
provides data type specific methods getType to
transfer data from active row to program getString
for Strings, getBoolean for booleans, getInt,
getDate,….

– These functions use the column name or the
column sequence number as their parameter

– esim:
– String a= rs.getString(“address”); // column address
– Int p= rs.getInt(3); // third column

JDBC

Get-functions are able to perform some data type
conversions, for example to change integers to
strings or vice versa. If conversion fails an
SQLException is thrown. All error conditions cause
SQLException to be thrown.
Null values need special treatment. getString returns
java.NULL in case of SQL null value, but, for
example, getInt returns 0 (zero). To test whether the
value was null there is method wasNull. It is
parametrized like the get-methods.

JDBC

Statement stmt= con.createStatement();
ResultSet rs= stmt.executeQuery(

“select name, address, salary from employee ” +
“ order by name”);

while (rs.next()) {
System.out.println(rs.getString(1) +”, “+

rs.getString(2)+”, “+rs.getString(3));
}
Output :
Lahtinen Kalle, Katu 6, 12000
Mäki Manu, Kuja5, 20000

University of Helsinki/ CS
Introduction to Databases, Spring 2003
Database programming

17.2.2003

© Harri Laine 4

JDBC

Statement that do not produce a result (insert,
delete, update, create, alter, …) are executed
using Statement.executeUpdate-method.
example
Int empUpdated=

stmt.executeUpdate(“update employee “+
“set salary= salary + 10000 ” +
“ where name= ‘Laine Harri’ ”);

JDBC

Parametrized operation:
– Database operations may always be executed by

giving them as parameters for the methods
executeUpdate and executeQuery. Sometimes
almost the same operations is used repeatedly
with only minor changes. In these cases it might
be useful to compile the query only once and
reuse the compiled query.

– Class PreparedStatement supports this way of
programming.

JDBC

PreparedStatement pst =
con.prepareStatement(

“select name,address,salary “+
“from employee “+
“where name like ?”);

Question mark indicates a parameter, It can be used to
substitute a constant value.
PreparedStatement provides data type specific set-methods for
assigning values for these parameters (setString for strings)
Set methods have two parameters:
– The sequence number of the question mark in the SQL-operation

and
– The value to substitute the parameter
– Example; pst.setString(1,”Smi%”);

Prepared statement has executeQuery and execute update
methods, but these don’t need any parameter.

JDBC

DriverManager external driver

Connection

getConnection

Statement PreparedStatement

createStatement prepareStatement

ResultSet

executeQuery

setXXXX

getYYYYnext

registerDriver

