
University of Helsinki/CS
Introduction to databases, spring 2004
SQL advanced

18.2.2004

© Harri Laine 1

SQL query

Query elements:
select result_specification

from tables
[where select_conditions]
[group by grouping_criteria]
[having group_restrictions]
[order by ordering_criteria]

may be missing

SQL-query

A query produces an anonymous result table.

The values for the elements in the
result_specification are computed for each row
combination that satisfies the selection criteria listed
after the keyword where.

Building a query

course
courseID
name
creditUnits
lecturer

teacher
teacherID
name
phone
office

practiceGroup
courseID
groupNo
dayOfWeek
startingTime
class
instructor

registration
courseID
groupNo
studentID
whenRegistered

student
studentID
name
major
city
yearStarted

Sub-queries

Sub-queries are queries included inside other
queries. They may be used in the where-part
of a query and also in the from-part of a query
A sub-query produces a result table as
normal queries
There are predicates to compare values with
the result table (in, not in, Θ some, Θ all,
exists, not exists)

Sub-queries

Find out teachers that give lectures
select name from teacher
where teacherID in

(select lecturer from course)
order by name;

Find out teachers that do not give lectures
select name from teacher
where teacherID not in

(select lecturer from course)
order by name;

– this is one way of expressing difference in SQL

Sub-queries

Find out teachers that give lectures
select name from teacher
where teacherID in

(select lecturer from course)
order by name;

Find out teachers that do not give lectures
select name from teacher
where teacherID not in

(select lecturer from course)
order by name;

– this is one way of expressing difference in SQL

University of Helsinki/CS
Introduction to databases, spring 2004
SQL advanced

18.2.2004

© Harri Laine 2

Sub-queries (connected)

Teachers that give lectures
select name from teacher
where
exists (select ‘yes’ from course

where lecturer= teacher.teacherID)
order by name;

there is a condition that connects the
sub-query to the external query

the sub-query must be (logically)
executed once for each row of the
table in the external query

Sub-queries

Sub-queries may also be used in the from-
part of the query. Their results may be
temporarily renamed as well as their columns

from …, (sub-query) [[as] alias] [(column list)], …

sub-queries in the from-part are useful when
combining aggregate data collected using different
criteria

Aggregate queries

SQL provides a collection of aggregate
functions
– AVG average
– MIN minimum
– MAX maximum
– SUM sum
– COUNT count

– When aggregate functions are used in the query
there will be only one result row, unless grouping
is used.

Aggregate queries

Find the number of students:
– select count(*) from student;
– Counts the number of rows

A constant may be used as the argument of
count to get the same result as above
– select count(1) from student;
– For each student row we get a “1’” and the

number of them is counted
If a column is given as the argument we get
the number of non-null values in the column
– select count(studentID) from student;

Aggregate queries

If keyword distinct precedes the argument, then only
distinct non-null values are counted
Find the number of cities the students live in

select count(distinct city) from student

What is the longest time anybody living in Helsinki
has studied
select 2004-min(startingYear) from student
where city=‘Helsinki’;

When computing average, sum, minimum, and
maximum, null values are omitted
The average credit units for courses
– select avg(creditUnit) from course;

Aggregate queries

It’s not possible to include in the answer both
detail data and aggregate data from the same
set of rows
Which course gives the biggest amount of
credit units and how many?
This cannot be solved as:
select name, max(creditUnits)
from course;

detail aggregate
value

University of Helsinki/CS
Introduction to databases, spring 2004
SQL advanced

18.2.2004

© Harri Laine 3

Aggregate queries

Which course gives the biggest amount of credit units and how
many? Queries that work OK:

select name, creditUnits from course
where creditUnits >=
ALL (select creditUnits from course);

Select name, creditUnits from course
where creditUnits=
(select max(creditUnits) from course);

select name, maxUnits
from course,

(select max(creditUnits) maxUnits from course) as m
where course.creditUnits =m.maxUnits;

logically
’different’

sets

Aggregate queries with groups

If grouping is used the result will contain one
row for each group.
grouping is specified by listing the columns
(or expression) the values of which determine
the groups
each distinct value combination determines a
group
groups are formed after the conditions of the
where part have been first evaluated

Aggregate queries with groups

Table X

A B C D

1 4 6 7

1 1 4 2

1 5 5 2

2 4 8 7

2 3 5 1

3 1 5 2

3 2 4 6

Select A, sum(B) from X
group by A;

A B
1 10
2 7
3 3

Aggregate queries with groups

When grouping is used the result may contain only
the columns listed in the group by specification,
constants and aggregate function results
All columns listed in the group by specification need
not be included in the result (but usually they are)

select course.courseID, name, groupNo, count(*)
from course, registration
where registration.courseID=course.courseID
group by course.courseID, name, groupNo;

Name is needed in the above group by specification
because we want to include it in the result. It does not
affect on how the groups are determined
The above query does not list all the groups!

Aggregate queries with groups

1132
1133
1135

course

1132 1 A
1132 1 B
1132 2 C
1135 1 D
1135 1 E
1135 1 F

registration

Groups are determined
after applying where
conditions

No pair for this,
There may however
be groups even in this
unpopular course

Aggregate queries with groups

select name, groupNo, count(*)
from course, registration
where registration.courseID=course.courseID
group by name, groupNo

union

select name, groupNo, 0
from course, practiceGroup P,
where course.courseID=P.courseID and

(course.courseID, P.GroupNo) not in

(select courseID, groupNo from registration)

non-empty

empty

University of Helsinki/CS
Introduction to databases, spring 2004
SQL advanced

18.2.2004

© Harri Laine 4

Aggregate queries with groups

Another way to express the previous query
select name, P.groupNo, count(R.groupNo)
from course,

practiceGroup P left outer join registration R
on P.courseID=R.courseID and

P.groupNo=R,groupNo
where course.courseID=P.courseID

NOTE: This syntax cannot be used in Oracle
and in Trainer

Aggregate queries with groups

A way to express the previous outer join
query in Oracle

select name, P.groupNo, count(R.groupNo)
from course,

practiceGroup P , registration R
where P.courseID= R.courseID (+) and

P.groupNo= R.groupNo (+) and
course.courseID=P.courseID

NOTE: This syntax can only be used in

null substitution here

Aggregate queries with groups

Inclusion of groups in the result may be regulated
with having –clause
Having clause specifies the conditions that the
groups to be included in the result must meet. These
conditions typically rely on some aggregate functions
Find out practice groups with more than 20 students

select name, groupNo, count(*)
from course, registration
where registration.courseID=course.courseID
group by name, groupNo
having count(*) >20;

(but ’<20’ would not work for ’less than 20’ – because
empty groups are not retrieved)

Aggregate queries with groups

It’s possible to construct expressions that contain
aggregate functions, but it’s not possible to use an
aggregate function as an argument of another
aggregate function, if both are based on the same
row population
Which course has the biggest average group
size? Cannot be solved as follows
select name, groupNo, max(avg(count(*)))
from course, registration R
where course.courseID=R.courseID
group by name, groupNo
(this results to a syntax error)

Aggregate queries with groups

Instead:

select course.courseID, name, students/groups
from course,
(select courseID, count(*) students

from registration
group by courseID) as regs,

(select courseID, count(*) groups
from practiceGroup
group by courseID) as grp

where course.courseID= regs.courseID and
course.courseID= grp.courseID and
students/groups =

continues
on the next

slide

Aggregate queries with groups

(select max(students/groups)
from

(select courseID, count(*) students
from registration
group by courseID) as regs,

(select courseID, count(*) groups
from practiceGroup
group by courseID) as grp

where regs.courseID= grp.courseID)

