
University of Helsinki, CS
Introduction to Databases, Spring 2002
Databases and WWW

30.5.2002

Harri Laine 1

Types of Databases

Relational databases contain stuctured data
– tables, columns, fixed datatype for each column

Text databases are available for storing
non-structured data
– typically text databases store collections of non-connected

documents
– search of data is speeded up with search indexes

• like indexes on books - cover the whole text
• index item = (keyword, document,.., {weight, position})
• there may be many index items pointing to the same

document
– documents are usually fairly static -> index items related to

a document do not usually change.

Types of Databases

Relational databases may also have indexes
– an index is made over a single column or a

collection of columns
• index item = (value, internal_rowID)
• column values are typically dynamic -> index items

deleted and added (often).
• Within one index there is only one index item pointing to

a certain row.

A typical query in a relational databases
– find rows that have specific values in certain

colums
– find books where author=‘Smith’

A typical query in text databases
– find documents that contain specific keywords
– find documents that contain keyword Smith and author

– The relational database query is semantically exact the
name Smith has to be in column author - you get what you
ask for

Types of Databases

– Text database queries are vague
• you might miss the documents and get documents you do not

want
• ‘Story of Smith, Author: Jones’ (retrieved - not wanted)
• ‘Story of Jones, written by Smith’ (missed)

Databases and Web

Information available in Web may currently be
considered mostly as a large distributed text
database
– limited indexes (search engines)
– links connect documents

Databases and Web

Web material may be viewed with a browser.
Most of the ‘text’ in HTML-format, but also
other formats are available (e.g. pdf)
– HTML -language defines the technical structure

for the document (titles, paragraps, tables, lists,
etc.)

• abstract layout - browser determines the actual layout

Documents stored using standard file
management systems.
Local Web servers are configured to find the
documents based on universal resource
identifiers (URI)

University of Helsinki, CS
Introduction to Databases, Spring 2002
Databases and WWW

30.5.2002

Harri Laine 2

Databases and Web

HTML is an application of SGML-standard (general
markup language)
SGML- defines how to mark elements
– Elements are represented between begin and end marks

• <element_type> element </element_type>

in HTML:
<h1>Level 1 header</h1>
<table>
<tr><td>table_element</td> …</tr>
</table>

Databases and Web

HTML-document may currently contain text,
images, audio, video, executables
HTML-document is
– readable anywhere - only browser is needed
– storable anywhere

• Internet/intranet server needed to provide access

Databases and Web

The problem with HTML-pages is to locate
the information needed
We are not able to use SQL-style queries
select information from document_base
where topic =‘needed_topic’
– HTML does not mark topics but technical

structures

Databases and Web

The queries on HTML-pages correspond to
SQL-query

select URI from document_base
where document_content like ‘%keyword%’;

We usually retrieve huge number of
documents most out of our interest
Various search engines sort the result
differently

• no order,
• newest ones first,
• most referred ones first

Databases and Web

XML is a meta-level standard for topic based
markup. It is a ‘simplification’ of SGML
– elements marked like in SGML

We may define XML-based presentation
languages for document types.
Construction plan XML (CPML) might have
elements like <general_plan>,
<electricity_plan>,<building>,<room>,
<ceiling>, <wall>, <window>, etc.

Databases and Web

XML does not define how to present the
document (not even abstractly as HTML)
The presentation may be defined with a
separate definition (style sheet). There may
be many presentations for the same
document type.
XML-capable browser should be able to show
the document according to the style sheet.

University of Helsinki, CS
Introduction to Databases, Spring 2002
Databases and WWW

30.5.2002

Harri Laine 3

Databases and Web

XML makes it possible to use topics in
searches

select URL from CPML_document_base
where ‘tile’ in constructionplan.roof.materal

Searches like the above assume new types of
search engines and indexes

Databases and Web

WWW-pages
– hypertext in HTML-language
– text, images, hypelinks

Static pages
– written once, changes must be made manually
– keeping pages up to date is a problem
– maintaining pages is hard if the same information is provided

in many pages
– Its hard to find the information if the user does not share

‘stuctural model’ of the author. Structuring the information in
many ways causes maintenance problems

WWW ja tietokannat

Use generated pages for easy maintenance:
– Pages are generated with programs using data

stored in the (relational) database
• according to a schedule

– always when data is changed
– once a week, ...

• When requested (=when somebody asks for
the data)

– When pages are generated for each request, users
actually activate a program in the server

– CGI (common gateway interface), Java Servlet, ASP
activation techniques

Generation of a web-page

Client Server

link (+ parameters)
program

Generated page

page

Sever side programs

The program to be activated may receive
parameters
– as written in URI

• book.search?isbn=0-123456-67-1&lang=FIN
– as entered in HTML-form

The program to be activated may do anything
(register an order, generate the answer for a
request, charge 1M euros from users bank
account,...)

Sever side programs

Server side programs may be written by any
programming language
– Perl is common is CGI technique is used
– Java is very popular too (as servlets)
– There are techniques that combine the HTML-text

and program code in the same file
• JSP (Java Server Pages)
• ASP (Active server pages, Microsoft)
• PHP

University of Helsinki, CS
Introduction to Databases, Spring 2002
Databases and WWW

30.5.2002

Harri Laine 4

Writing programs to process a database

Databases may be used in programs written
in various programming languages.
Two approaches
– embedded SQL - pre-compiler based
– Use of a connection library - API, application

programming Interface
• native dbms supplier libraries
• independent interfaces ODBC (C style), JDBC (Java)

Embedded SQL

Marked SQLMarked SQL--
statements embeddedstatements embedded
among among programming
language (language (esimesim C+SQL)C+SQL)

PrePre--
compiler

Programming languageProgramming language
statements and calls forand calls for
database library functionsdatabase library functions
(SQL given as parameters)(SQL given as parameters)

Software Software library

Programming
languagelanguage
compilercompiler

Compiled
programprogram

Connection library approach

Programming languagelanguage
statements and calls forstatements and calls for
database library functionsdatabase library functions
(SQL given as parameters)(SQL given as parameters)

API API library

ProgrammingProgramming
languagelanguage
compiler

Compiled
program

Connection library approach

A general API must be used with a database
magement system specific driver

General interface
(applies for any dbms)

Driver
(to operate with a

specific dbms)

Program defines which driver to use

Query processing in a program

Register a driver

Start a session

Build the query

Execute the query

Process the result

Activate next row

Process the activate row

Done

Quit the session

No

more

// Example program - uses solid db
// path for driver must be included in CLASSPATH:

import java.sql.*;
import java.io.*;
public class Esim1 {

public static void main(String args[]) throws Exception {
String url = ”jdbc:oracle:thin@db.cs.helsinki.fi:1521:test”;
// This url identifies a database in db.cs.helsinki.fi
Connection con;
String query =

"select code, course.name AS KNI, credits, "+
”teacher.name AS OPNI " +

"from course, teacher " +
"where course.lecturer= teacher.teacherid " +
"order by OPNI, KNI";

Statement stmt;

University of Helsinki, CS
Introduction to Databases, Spring 2002
Databases and WWW

30.5.2002

Harri Laine 5

try {try {
Class.Class.forNameforName(:”oracle.(:”oracle.jdbcjdbc..OracleDriverOracleDriver")");;

} catch(} catch(javajava..langlang..ClassNotFoundExceptionClassNotFoundException e) {e) {
// Driver not found.// Driver not found.

System.err.print("System.err.print("ClassNotFoundExceptionClassNotFoundException: ");: ");
System.err.System.err.printlnprintln(e.(e.getMessagegetMessage());());

}}

try {try {
// start a session// start a session

con =con = DriverManagerDriverManager..getConnectiongetConnection((urlurl, "info", "expert", "info", "expert"););
// make execution environment// make execution environment

stmt = con.stmt = con.createStatementcreateStatement();();
// Variable // Variable ope ope is used for keeping book on previousis used for keeping book on previous
// teacher// teacher

StringString opeope =" ";=" ";
// print header// print header

System.out.System.out.printlnprintln(”Teaching tasks:");(”Teaching tasks:");
System.out.System.out.printlnprintln();();

// execute the query// execute the query
ResultSet rsResultSet rs = stmt.= stmt.executeQueryexecuteQuery(query);(query);

// process the result// process the result
while (while (rsrs.next()) {.next()) {

// next row, // next row, getString getString gets information from active rowgets information from active row
StringString opnopn == rsrs..getStringgetString("("OPNIOPNI");");

// print empty row if teacher changes// print empty row if teacher changes

if (if (opeope.equals(.equals(opnopn)) {)) {
System.out.System.out.printlnprintln(" " +(" " +

rsrs..getStringgetString("KNI")+ " (" +("KNI")+ " (" + rsrs..getIntgetInt("KOODI")+")");("KOODI")+")");
}}
else {else {

System.out.System.out.printlnprintln();();
opeope== opnopn;;
System.out.System.out.printlnprintln((opeope););
System.out.System.out.printlnprintln(" " +(" " +

rsrs..getStringgetString("KNI")+" ("+("KNI")+" ("+rsrs..getIntgetInt("KOODI")+")"); ("KOODI")+")");
} }

}}

