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In t roduct ion

 Clustering in spatial data mining is to group similar 
objects based on their distance, connectivity, or their 
relative density in space

 Each of the clustering methods assume the existence of 
a distance measure between the objects

 A commonly used distance is the direct Euclidean 
distance



Di rect  Euc l idean d i s tance

 The distance of two points 
is the length of the line 
connecting them

 d(a,b) =                     
√((x1-x2)

2+(y1-y2)
2)



Prob lems wi th  the  
Euc l idean d i s tance

 Sometimes the "real" 
distance differs largely 
from the direct Euclidean 
distance

 Many spatial applications 
have obstacles in 
presence



Prob lems wi th  the  
Euc l idean d i s tance  -  Example

 A bank planner wishes to 
locate 4 ATMs in an area to 
serve customers (represented 
by points in the figure). The 
task is to minimize the 
distance that customers have 
to travel to an ATM

 A common clustering method 
uses direct Euclidean distance, 
and can lead to distorted and 
useless results

 In this case, some of the 
clusters will be split by a large 
obstacle thus some customers 
will have to travel a long way



The C lus ter ing wi th  Obst ructed 
Dis tance  (COD)  Prob lem

 Given a set P of n points {p1,p2,...,pn}, and a set O of m 
non-intersecting obstacles {o1,o2,...,om} in a two-
dimensional region, R

 Each obstacle is represented by a simple polygon

 Let d(pj,pk) denote the direct Euclidean distance between 
two points pj, pk by ignoring the obstacles, and d'(pj,pk) 
denote the length of the shortest Euclidean path from pj 

to pk without cutting through any obstacles



The C lus ter ing wi th  Obst ructed 
Dis tance  (COD)  Prob lem

● The problem of clustering with obstacle distance (COD) is 
to partition P into k clusters, Cl1,...,Clk, such that the 
following square-error function, E, is minimized

● E = ∑i
k
= 1∑p∈Cli(d'(p,ci))

2

● where ci is the center of cluster Cli that is determined by 
the clustering



How to  so lve  th i s  prob lem?

● The basic idea is to simply change the distance function 
and thus the COD problem could be handled by common 
clustering algorithms

● The article gives a partitioning-based algorithm, because 
it is a good choice to minimize overall travel distances to 
the cluster centers

● It uses k-medoids instead of k-means since the mean of 
a set of points is not well defined when obstacles are 
involved. This choice also guarantees that the center of 
the cluster cannot be inside an obstacle. 



The COD-CLARANS a lgor i thm

● The algorithm called COD-CLARANS is based on 
CLARANS and is designed for handling obstacles

● It not only changes the distance function, but also uses 
several optimizations for make the computations faster



The COD-CLARANS a lgor i thm

● First it preprocesses the data 
and store certain information 
which will be needed later 
when calculating obstructed 
distances between objects and 
temporary cluster centers

● The main algorithm is similar 
to CLARANS

● Pruning function E' is a lower 
bound of the squared error E. 
It is used to avoid the 
computation of E in some 
cases or to speed it up by 
providing "focusing 
information"



Preprocess ing –  The BSP- t ree

● A Binary-Space-Partition (BSP) 
tree is used to efficiently 
determine whether two points 
p and q are visible to each 
other within the region R

● By definition a point p is visible 
from a point q if the straight 
line joining them does not 
intersect any obstacles

● With the usage of the BSP-
tree, the set of all visible 
obstacle vertices from a point 
p (denoted by vis(p)) can be 
efficiently determined



Preprocess ing –  
The V i s ib i l i ty  Graph

● From the BSP-tree we can generate a Visibility Graph VG

● This graph contains a node for each vertex of the 
obstacles and two nodes are joined by an edge if and 
only if the corresponding vertices they represent are 
visible to each other

● Lemma: Let p and q be two points in the region and 
VG=(V,E) be the visibility graph of R. Let VG'=(V',E') be a 
visibility graph created from VG by adding two additional 
nodes p' and q' in V' representing p and q. E' contains an 
edge joining two nodes in V' if the points represented by 
the two nodes are mutually visible. The shortest path 
between the two nodes p and q will be a sub-path of VG'.



Preprocess ing –  
The V i s ib i l i ty  Graph

● In other words, if two 
points p and q are not 
visible to each other, the 
shortest path between 
them is by travelling 
through obstacle vertices, 
starting with an obstacle 
vertex visible from p or q 
and ending with an 
obstacle vertex visible 
from q or p



Preprocess ing -  Mic ro -c lus ter ing

● We perform micro-clustering 
to compress points that are 
close to each other into groups

● Instead of representing points 
individually, represent a micro-
cluster as it's center and 
number of points in the group

● Micro-clusters are not split by 
obstacles

● Obstacles avoided by 
triangulating the region 



Preprocess ing -  Mic ro -c lus ter ing

● All points within a triangle are 
mutually visible

● Using micro-clusters just 
approximates the squared 
error function, to control this, a 
radius of each is below user 
specified threshold, 
max_radius 



Preprocess ing –  Spat ia l  Jo in  Index

● Each entry is a 3-tuple (p,q,d'(p,q)) where p and q are points and d' 
is the obstructed distance between p and q

● VV Index – Compute an index entry for any pair of obstacles 
vertices

– All pairs shortest path in the visibility graph

● MV Index –  Compute an index entry of any pair of micro-cluster 
and obstacle vertex

– Can be done by using the VV Index and the BSP-tree, the idea 
is the same as in the lemma before

● MM Index – Compute index entry for any pair of micro-clusters

– Can be done by using the MV Index and the BSP-tree

– Since the number of micro-clusters are usually large, it can be 
extremely huge



The Main  Funct ion

● The algorithm first randomly 
selects k points as the 
centers of the clusters

● Iteratively tries to find better 
centers

● A random center crandom will 
replace a center cj if 
squared-error E is minimized

● Variable max_try bounds the 
new center tries for each 
dropped center



The Main  Funct ion

● Computing obstructed 
distance to Nearest Centers 
in remain (the centers by 
removing the selected 
center) has two phases

– In phase 1 find shortest 
obstructed distance 
between all vertices of 
obstacles and nearest 
cluster center N(v) of 
vertex v



The Main  Funct ion

● Computing obstructed 
distance to Nearest Centers 
in remain (the centers by 
removing the selected 
center) has two phases

– In phase 2, for each 
micro-cluster p, choose 
visible obstacle vertex v 
(use the BSP-tree for 
generating visible 
vertices) such that sum 
of distance between p 
and v and obstructed 
distance between v and 
N(v) is minimized



The Main  Funct ion

● Execution of phase 1 depends on whether

– VV is materialized

● Use visibility information (BSP-tree) and the index like 
before

– MV is materialized

● A simple minimum search in the index
– No spatial join index is materialized  

● Use visibility graph and Dijkstra's algorithm



Di jks t ra ' s  a lgor i thm

● It gives the shortest path and the distance between two given 
points in a graph

● The weights of the edges are nonnegative

● The computation time is proportional to the number of edges 
in the graph

● Apply this algorithm to the visibility graph:

– First insert the k-1 cluster centers into the graph, connect 
them to the visible vertices

– Add a virtual node s and connect it with zero weight to 
each of the centers

– Run the algorithm with s as the source point and obstacle 
vertices as destination points – the cluster center in the 
path will be the closest to the obstacle vertex



Comput ing lower  bound E '

● At this step we can use the previously computed Nearest 
Centers and their distances (using obstacled distance)

● For the new cluster center crandom we use the direct Euclidean 
distance, which is much faster

● If direct Euclidean distance between a micro-cluster p and 
crandom is shorter than obstructed distance d'(p,N(p)), then p is 
assigned to crandom and Euclidean distance used to calculated 
estimated square error E'

● It can be proved that E' is a lower bound of E

● If E' is larger than the previously found best solution E, then 
we do not have to calculate the new E, because we have a 
worse solution

● Otherwise we have to compute the new squared error



Comput ing squared er ror  E

● We can make use of fact that if micro-cluster p is not assigned 
to crandom when computing E', it will never be assigned to crandom 
when computing E

– This is because the obstacled distance is greater or equal 
than the direct Euclidean distance

● Thus the only thing we need to do is to calculate the obstacled 
distances between the new cluster center crandom and the 
micro-clusters that will be assigned to crandom

– The obstructed distance of each micro-cluster to it's 
nearest center in remain is already computed



Per formance Study -  Ma in  resu l t s

● Decrease in quality of 
clusters not significant 
compared to decrease in 
number of micro-clusters

● Processing time of COD-
CLARAN-VV and COD-
CLARANS-MV minorly 
affected by max-radius



Per formance Study -  Ma in  resu l t s

● Algorithms that do not use 
pruning have longer 
execution time

● Spatial join indexes are 
useful in reducing the 
execution time

● COD-CLARANS scales well 
for large number of points



Per formance Study -  Ma in  resu l t s

● Comparing clusters generated by COD-CLARANS to ones 
generated by CLARANS:

– COD-CLARANS clusters better with obstacles

– Performance gap decreases with larger values of k 

● Large k means that more other points are visible from 
the center, so the obstacled distance will be the same 
as the direct distance



Conc lus ion

● Obstacles are a fact of real spatial data sets

● Propose COD-CLARANS

● Various types of pre-processed information enhance efficiency 
of COD-CLARANS

● Pushing handling of obstacles into COD-CLARANS algorithm 
and using pruning function E' instead of handling them in 
distance function level makes it more efficient

● Experiments show usefulness and scalability



Thank you!


