Spatial Data Mining

Spatial Clustering in the Presence of
Obstacles

Milan Magdics
Spring, 2007

Introduction

* Clustering in spatial data mining is to group similar
objects based on their distance, connectivity, or their
relative density in space

 Each of the clustering methods assume the existence of
a distance measure between the objects

« A commonly used distance is the direct Euclidean
distance

Direct Euclidean distance

* The distance of two points a=(x,y,)
Is the length of the line 8
connecting them

¢ d(a,b) — YiY,
V((X,-X,)?+(Y,-y,)?)

Problems with the

Euclidean distance

* Sometimes the "real" a=(x,Y,)
distance differs largely
from the direct Euclidean
distance

@,

 Many spatial applications
have obstacles in ©
presence b = (X,Y,)

Problems with the

Euclidean distance - Example

A bank planner wishes to »
locate 4 ATMs in an area to \\-‘/
serve customers (represented . so e X e
by points in the figure). The ___/\ .
task is to minimize the (sl Lo
distance that customers have . G
to travel to an ATM e "

A common clustering method) T
uses direct Euclidean distance,
and can lead to distorted and s B
useless results T BN

* In this case, some of the x R
clusters will be split by a large Rk o0
obstacle thus some customers g, L
will have to travel a long way |

il-tnit{:;:::rr: formed when ignonng

The Clustering with Obstructed

Distance (COD) Problem

 Given a set P of n points {p,,p,,...,p }, and a set O of m
non-intersecting obstacles {o0,,0,,...,0_} in a two-
dimensional region, R

 Each obstacle is represented by a simple polygon

e Let d(pj,pg denote the direct Euclidean distance between
two points P, Py by ignoring the obstacles, and d'(pj,pk)
denote the length of the shortest Euclidean path from P,
to p, without cutting through any obstacles

The Clustering with Obstructed

Distance (COD) Problem

 The problem of clustering with obstacle distance (COD) is
to partition P into k clusters, Cl,...,Cl,, such that the

following square-error function, E, is minimized
e E =37 lszCIi(dl(p’Ci))Z

« Where ¢, is the center of cluster C/. that is determined by
the clustering

How to solve this problem?

 The basic idea is to simply change the distance function

and thus the COD problem could be handled by common
clustering algorithms

 The article gives a partitioning-based algorithm, because

It Is @ good choice to minimize overall travel distances to
the cluster centers

e |t uses k-medoids instead of k-means since the mean of
a set of points is not well defined when obstacles are
Involved. This choice also guarantees that the center of
the cluster cannot be inside an obstacle.

The COD-CLARANS algorithm

 The algorithm called COD-CLARANS is based on
CLARANS and is designed for handling obstacles

« It not only changes the distance function, but also uses
several optimizations for make the computations faster

The COD-CLARANS algorithm

« First it preprocesses the data
and store certain information
which will be needed later
when calculating obstructed
distances between objects and

temporary cluster centers (Preprocessed Taformation)

« The main algorithm is similar [_ugmm.-_.c_ﬁ.:m;
to CLARANS))

» Pruning function E' is a lower ‘:"-'-"F"“F"'?:%i— +—{ Pruning Function. £’
bound of the squared error E. e e
It is used to avoid the |_Focusing Information)
computation of E in some Figure 3. Overview of COD-CLARANS.

cases or to speed it up by
providing "focusing
information"

Preprocessing - The BSP-tree

« A Binary-Space-Partition (BSP) -(negative) + (positive)
tree is used to efficiently A
determine whether two points sm&u
p and q are visible to each oy
other within the region R

« By definition a point p is visible
from a point q if the straight
line joining them does not

intersect any obstacles /+ \
« With the usage of the BSP- E

tree, the set of all visible +/\" y \

obstacle vertices from a point /\ /

p (denoted by vis(p)) can be 2z v

efficiently determined

Preprocessing -

The Visibility Graph

« From the BSP-tree we can generate a Visibility Graph VG

* This graph contains a node for each vertex of the
obstacles and two nodes are joined by an edge if and

only if the corresponding vertices they representare
visible to each other

« Lemma: Let p and g be two points in the region and
VG=(V,E) be the visibility graph of R. Let VG'=(V',E') be a
visibility graph created from VG by adding two additional
nodes p' and g' in V' representing p and . E' contains an
edge joining two nodes in V' if the points represented by
the two nodes are mutually visible. The shortest path
between the two nodes p and q will be a sub-path of VG'.

Preprocessing -

The Visibility Graph

* In other words, if two
points p and g are not
visible to each other, the
shortest path between
them is by travelling
through obstacle vertices,
starting with an obstacle
vertex visible from p or g
and ending with an
obstacle vertex visible
fromqgorp

Figure 4. A visibility graph.

Preprocessing - Micro-clustering

« We perform micro-clustering
to compress points that are
close to each other into groups

* |nstead of representing points
individually, represent a micro-
cluster as it's center and
number of points in the group

* Micro-clusters are not split by
obstacles

 Obstacles avoided by
triangulating the region

Figure 5. Forming micro-clusters.

Preprocessing - Micro-clustering

« All points within a triangle are
mutually visible

« Using micro-clusters just
approximates the squared
error function, to control this, a
radius of each is below user
specified threshold,
max_radius

Figure 5. Forming micro-clusters.

Preprocessing - Spatial Join Index

« Each entry is a 3-tuple (p,q,d'(p,q)) where p and g are points and d'
Is the obstructed distance between p and g

« VV Index - Compute an index entry for any pair of obstacles
vertices

- All pairs shortest path in the visibility graph

« MV Index - Compute an index entry of any pair of micro-cluster
and obstacle vertex

- Can be done by using the VV Index and the BSP-tree, the idea
Is the same as in the lemma before

« MM Index - Compute index entry for any pair of micro-clusters

- Can be done by using the MV Index and the BSP-tree

- Since the number of micro-clusters are usually large, it can be
extremely huge

The Main Function

Algorithm 3.1 Algarithm COD-C1 ARANS
Input: A set of n objects, & and clustering parametiers, maziry,

 The algorithm first randomly Jubut: A partitionchthe n obiectsinte k clusters with clustes

CENTETE, €] 4 100s T -

selects k points as the B o -
i (ALe K161] Al -
centers of the clusters 1. { rendeuly seloet k objects 86 be durvent;

A compute sauareerron Tt B
4. let currentE = E;

5. do

6. { found.new = FALSE;

T.

B.

g,

 [teratively tries to find better

ce nte rs F::;:;Ijr ;-.-;:::I?:.—:;rml TR P
remamn = currend — € & =
. Arandomcenterc,_ . _ will 10, comprits obatructed distance of ehjeces o newres
: center in Fremann;
replace a center c. if L. for (trymO; try < mas.dry; byad)
J 1z, { replace ¢, wlzth & randomly selected t!:-]ﬂ:l ::_,“dm :
squared-error E is minimized 17 G oy e fandtien £
15. continues; /* Not a good solution *f
. i, [ERTTT] e LI TR RPN Iu:ll.l.i'u:l. r':_
® Va rlable maX try bOUﬂdS the :?. i{l' %Eﬁﬂn?unlﬁ%é{és;h;r:rlu;iun I}eut:r'." ',."Ir
o 1B8. ountd.new = 'E; /™ Found a betier solution =
new center tries for each 19 cureent = fe1, v random: 1)
dropped center 0 b
232, }
23, if (found. new)
24. break; /* Reorder cluster centers again ™/
5.

|
28,) while {found vew)
28, owipul curreni ;

27}

The Main Function

Algorithm 3.1 Algarithm COD-C1 ARANS
Input: A set of n objects, & and clustering parametiers, maziry,

° CO m p uti N g 0O bstru Cted Output: A partition of the n objects into k clusters with cluster

CENLETS, C 4 2ep Ck -

distance to Nearest Centers ™"
1. Function COD-CLARANS()

in remain (the centers by 2. { randomly select & objects to be current
O -r.m'lputt:.qumrtnm [TRTTS § T

removing the selected let currentE = E;

center) has two phases

das

{ found.new = FALSE;
randomly reorder current into {¢;,...,o0)i
for (=1 ; <k ; j++)
{ let remain = current = ¢ |

- In phase 1 find shortest fs ot e AEE
obstructed distance 10. compute abatructed distance of objects to nearest

center in Fremann;
between all vertices of T s [O
obstacles and nearest e RIS gy e facie S

15. continues; /* Not a good solution *f

Cl u Ster Center N(V) Of 1k, vonprpruil e sypuareey o lorction E;

17. il (E < currentE} /™ Is the new solution better 7 */
Vertex V 18. { found.new = TRUE; / Found a beiier solution = f

19. =T B PR Sy w—_ |

7= replace c; Wilh Crandom ©J

20, curmentE = E;

21, }

232, }

2a. il [foumd naw

24. break; /* Reorder cluster centers again ™/

5. I

8, } while {found srew]
28, owipul curreni ;

27}

2RNADNLD

The Main Function

Algorithm 3.1 Algarithm COD-C1 ARANS
Input: A set of n objects, & and clustering parametiers, maziry,

° Computing Obstructed g::tp:'l.:lfnlli:r::lllnnnl’ the n objects inta k clusters with cluster
distance to Nearest Centers ™™ -
. " i (ALe K161] Al -
in remain (the centers by 2.{ randomly selct & objects o be current
O - impl-ltt !ﬂ."l.l-ﬂ.lbtlll.rl (TR] 1]
removing the selected 4 let currentE = E;
Center) has tWO phases g: { lmmlndﬁr:;r::::&rml inlao '['t1-|a...l.'lu}'r
B. for (=1 ; <k ; j++)
- In phase 2, for each e i

f® remaan contain the remaining center */

micro_cluster p’ ChOOse 10. compute obatructed distance of objects to neareat

cenler in Femann;

visible obstacle vertex v ol il b s ORI

(use the BSP-tree for S camtB) o metien B
generating visible e we e
vertices) such that sum i { foundace s THUE; /= Found s better cohution -/
of distance between p Ly e

and v and obstructed 3

distance between v and R i s s

N(v) is minimized e

28, owipul curreni ;
27}

The Main Function

« Execution of phase 1 depends on whether

- VV is materialized

« Use visibility information (BSP-tree) and the index like
before

- MV is materialized

« A simple minimum search in the index
- No spatial join index is materialized

« Use visibility graph and Dijkstra's algorithm

Dijkstra's algorithm

« |t gives the shortest path and the distance between two given
points in a graph

« The weights of the edges are nonnegative

« The computation time is proportional to the number of edges
In the graph

* Apply this algorithm to the visibility graph:
- First insert the k-1 cluster centers into the graph, connect
them to the visible vertices

- Add a virtual node s and connect it with zero weight to
each of the centers

- Run the algorithm with s as the source point and obstacle
vertices as destination points — the cluster center in the
path will be the closest to the obstacle vertex

Computing lower bound E'

« At this step we can use the previously computed Nearest
Centers and their distances (using obstacled distance)

- Forthe new cluster center ¢ we use the direct Euclidean

distance, which is much faster

« If direct Euclidean distance between a micro-cluster p and
C.....m IS shorter than obstructed distance d'(p,N(p)), then p is

assigned to ¢, and Euclidean distance used to calculated
estimated square error E'

e It can be proved that E' is a lower bound of E

« If E'Is larger than the previously found best solution E, then
we do not have to calculate the new E, because we have a
worse solution

« Otherwise we have to compute the new squared error

Computing squared error E

« We can make use of fact that if micro-cluster p is not assigned
toc_ .., when computing E', it will never be assigned to ¢

when computing E

random

- This is because the obstacled distance is greater or equal
than the direct Euclidean distance

 Thus the only thing we need to do is to calculate the obstacled
distances between the new cluster center ¢ and the

micro-clusters that will be assigned to ¢

random

random

- The obstructed distance of each micro-cluster to it's
nearest center in remain is already computed

Performance Study - Main results

« Decrease in quality of Table 1. Effect of Varying maz_radius.
c 0 rek rmarrodins | Mo, of Miomo-Ulusters | Aver E
clusters not S|gn|f|cant_ s S D
compared to decrease in 0.01 8178 1.49
c 0.02 3133 1.51
number of micro-clusters 0.05 156 155
. . 0.04 965 1.56
* Processing time of COD- L 22 12
CLARAN-VWV and COD-
CLARANS-MV mlnorl_y = - T EaEEe
affected by max-radius -t
i-
Figure 7. Pre-processing Time of DS1.

Performance Study - Main results

« Algorithms that do not use
pruning have longer
execution time

e Spatial join indexes are ['
useful in reducing the
execution time

=

e COD-CLARANS scales well . emea

for large number of points = =
Figure B. Algorithms Running Time of DS1.

¥y s b0 R EE D NI

Performance Study - Main results

« Comparing clusters generated by COD-CLARANS to ones
generated by CLARANS:

— COD-CLARANS clusters better with obstacles
- Performance gap decreases with larger values of k

« Large k means that more other points are visible from
the center, so the obstacled distance will be the same
as the direct distance

Conclusion

 Obstacles are a fact of real spatial data sets
 Propose COD-CLARANS

« Various types of pre-processed information enhance efficiency
of COD-CLARANS

* Pushing handling of obstacles into COD-CLARANS algorithm
and using pruning function E' instead of handling them in
distance function level makes it more efficient

« Experiments show usefulness and scalability

Thank you!

