
Spat ia l Data Min ing

Spatial Clustering in the Presence of
Obstacles

Milan Magdics
Spring, 2007

In t roduct ion

 Clustering in spatial data mining is to group similar
objects based on their distance, connectivity, or their
relative density in space

 Each of the clustering methods assume the existence of
a distance measure between the objects

 A commonly used distance is the direct Euclidean
distance

Di rect Euc l idean d i s tance

 The distance of two points
is the length of the line
connecting them

 d(a,b) =
√((x1-x2)

2+(y1-y2)
2)

Prob lems wi th the
Euc l idean d i s tance

 Sometimes the "real"
distance differs largely
from the direct Euclidean
distance

 Many spatial applications
have obstacles in
presence

Prob lems wi th the
Euc l idean d i s tance - Example

 A bank planner wishes to
locate 4 ATMs in an area to
serve customers (represented
by points in the figure). The
task is to minimize the
distance that customers have
to travel to an ATM

 A common clustering method
uses direct Euclidean distance,
and can lead to distorted and
useless results

 In this case, some of the
clusters will be split by a large
obstacle thus some customers
will have to travel a long way

The C lus ter ing wi th Obst ructed
Dis tance (COD) Prob lem

 Given a set P of n points {p1,p2,...,pn}, and a set O of m
non-intersecting obstacles {o1,o2,...,om} in a two-
dimensional region, R

 Each obstacle is represented by a simple polygon

 Let d(pj,pk) denote the direct Euclidean distance between
two points pj, pk by ignoring the obstacles, and d'(pj,pk)
denote the length of the shortest Euclidean path from pj

to pk without cutting through any obstacles

The C lus ter ing wi th Obst ructed
Dis tance (COD) Prob lem

● The problem of clustering with obstacle distance (COD) is
to partition P into k clusters, Cl1,...,Clk, such that the
following square-error function, E, is minimized

● E = ∑i
k
= 1∑p∈Cli(d'(p,ci))

2

● where ci is the center of cluster Cli that is determined by
the clustering

How to so lve th i s prob lem?

● The basic idea is to simply change the distance function
and thus the COD problem could be handled by common
clustering algorithms

● The article gives a partitioning-based algorithm, because
it is a good choice to minimize overall travel distances to
the cluster centers

● It uses k-medoids instead of k-means since the mean of
a set of points is not well defined when obstacles are
involved. This choice also guarantees that the center of
the cluster cannot be inside an obstacle.

The COD-CLARANS a lgor i thm

● The algorithm called COD-CLARANS is based on
CLARANS and is designed for handling obstacles

● It not only changes the distance function, but also uses
several optimizations for make the computations faster

The COD-CLARANS a lgor i thm

● First it preprocesses the data
and store certain information
which will be needed later
when calculating obstructed
distances between objects and
temporary cluster centers

● The main algorithm is similar
to CLARANS

● Pruning function E' is a lower
bound of the squared error E.
It is used to avoid the
computation of E in some
cases or to speed it up by
providing "focusing
information"

Preprocess ing – The BSP- t ree

● A Binary-Space-Partition (BSP)
tree is used to efficiently
determine whether two points
p and q are visible to each
other within the region R

● By definition a point p is visible
from a point q if the straight
line joining them does not
intersect any obstacles

● With the usage of the BSP-
tree, the set of all visible
obstacle vertices from a point
p (denoted by vis(p)) can be
efficiently determined

Preprocess ing –
The V i s ib i l i ty Graph

● From the BSP-tree we can generate a Visibility Graph VG

● This graph contains a node for each vertex of the
obstacles and two nodes are joined by an edge if and
only if the corresponding vertices they represent are
visible to each other

● Lemma: Let p and q be two points in the region and
VG=(V,E) be the visibility graph of R. Let VG'=(V',E') be a
visibility graph created from VG by adding two additional
nodes p' and q' in V' representing p and q. E' contains an
edge joining two nodes in V' if the points represented by
the two nodes are mutually visible. The shortest path
between the two nodes p and q will be a sub-path of VG'.

Preprocess ing –
The V i s ib i l i ty Graph

● In other words, if two
points p and q are not
visible to each other, the
shortest path between
them is by travelling
through obstacle vertices,
starting with an obstacle
vertex visible from p or q
and ending with an
obstacle vertex visible
from q or p

Preprocess ing - Mic ro -c lus ter ing

● We perform micro-clustering
to compress points that are
close to each other into groups

● Instead of representing points
individually, represent a micro-
cluster as it's center and
number of points in the group

● Micro-clusters are not split by
obstacles

● Obstacles avoided by
triangulating the region

Preprocess ing - Mic ro -c lus ter ing

● All points within a triangle are
mutually visible

● Using micro-clusters just
approximates the squared
error function, to control this, a
radius of each is below user
specified threshold,
max_radius

Preprocess ing – Spat ia l Jo in Index

● Each entry is a 3-tuple (p,q,d'(p,q)) where p and q are points and d'
is the obstructed distance between p and q

● VV Index – Compute an index entry for any pair of obstacles
vertices

– All pairs shortest path in the visibility graph

● MV Index – Compute an index entry of any pair of micro-cluster
and obstacle vertex

– Can be done by using the VV Index and the BSP-tree, the idea
is the same as in the lemma before

● MM Index – Compute index entry for any pair of micro-clusters

– Can be done by using the MV Index and the BSP-tree

– Since the number of micro-clusters are usually large, it can be
extremely huge

The Main Funct ion

● The algorithm first randomly
selects k points as the
centers of the clusters

● Iteratively tries to find better
centers

● A random center crandom will
replace a center cj if
squared-error E is minimized

● Variable max_try bounds the
new center tries for each
dropped center

The Main Funct ion

● Computing obstructed
distance to Nearest Centers
in remain (the centers by
removing the selected
center) has two phases

– In phase 1 find shortest
obstructed distance
between all vertices of
obstacles and nearest
cluster center N(v) of
vertex v

The Main Funct ion

● Computing obstructed
distance to Nearest Centers
in remain (the centers by
removing the selected
center) has two phases

– In phase 2, for each
micro-cluster p, choose
visible obstacle vertex v
(use the BSP-tree for
generating visible
vertices) such that sum
of distance between p
and v and obstructed
distance between v and
N(v) is minimized

The Main Funct ion

● Execution of phase 1 depends on whether

– VV is materialized

● Use visibility information (BSP-tree) and the index like
before

– MV is materialized

● A simple minimum search in the index
– No spatial join index is materialized

● Use visibility graph and Dijkstra's algorithm

Di jks t ra ' s a lgor i thm

● It gives the shortest path and the distance between two given
points in a graph

● The weights of the edges are nonnegative

● The computation time is proportional to the number of edges
in the graph

● Apply this algorithm to the visibility graph:

– First insert the k-1 cluster centers into the graph, connect
them to the visible vertices

– Add a virtual node s and connect it with zero weight to
each of the centers

– Run the algorithm with s as the source point and obstacle
vertices as destination points – the cluster center in the
path will be the closest to the obstacle vertex

Comput ing lower bound E '

● At this step we can use the previously computed Nearest
Centers and their distances (using obstacled distance)

● For the new cluster center crandom we use the direct Euclidean
distance, which is much faster

● If direct Euclidean distance between a micro-cluster p and
crandom is shorter than obstructed distance d'(p,N(p)), then p is
assigned to crandom and Euclidean distance used to calculated
estimated square error E'

● It can be proved that E' is a lower bound of E

● If E' is larger than the previously found best solution E, then
we do not have to calculate the new E, because we have a
worse solution

● Otherwise we have to compute the new squared error

Comput ing squared er ror E

● We can make use of fact that if micro-cluster p is not assigned
to crandom when computing E', it will never be assigned to crandom
when computing E

– This is because the obstacled distance is greater or equal
than the direct Euclidean distance

● Thus the only thing we need to do is to calculate the obstacled
distances between the new cluster center crandom and the
micro-clusters that will be assigned to crandom

– The obstructed distance of each micro-cluster to it's
nearest center in remain is already computed

Per formance Study - Ma in resu l t s

● Decrease in quality of
clusters not significant
compared to decrease in
number of micro-clusters

● Processing time of COD-
CLARAN-VV and COD-
CLARANS-MV minorly
affected by max-radius

Per formance Study - Ma in resu l t s

● Algorithms that do not use
pruning have longer
execution time

● Spatial join indexes are
useful in reducing the
execution time

● COD-CLARANS scales well
for large number of points

Per formance Study - Ma in resu l t s

● Comparing clusters generated by COD-CLARANS to ones
generated by CLARANS:

– COD-CLARANS clusters better with obstacles

– Performance gap decreases with larger values of k

● Large k means that more other points are visible from
the center, so the obstacled distance will be the same
as the direct distance

Conc lus ion

● Obstacles are a fact of real spatial data sets

● Propose COD-CLARANS

● Various types of pre-processed information enhance efficiency
of COD-CLARANS

● Pushing handling of obstacles into COD-CLARANS algorithm
and using pruning function E' instead of handling them in
distance function level makes it more efficient

● Experiments show usefulness and scalability

Thank you!

