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Bas ic  def in i t i ons

● Clustering

– Divide the data points into clusters (groups) so that
● points in the same cluster as similar as possible
● points in different clusters as different as possible

– Other words:
● minimizing the within cluster distance
● maximizing the between cluster distance

– In spatial data:
● find regions with high point intensity
● separated by areas with low intensity
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In t roduct ion

● In this presentation, we are interested in clustering in 
spatial datasets with the following four features:

– the clusters may be of widely varying shapes
● e.g. addresses for historical and current students at a university, 

apartment buildings (roughly rectangular), along major bus lines 
(long thin lines). 

– clusters may be of varying densities
● e.g. supermarket customers across the whole country, for 

metropolitan areas, clusters may be very dense, on the countryside 
the clusters are more sparsely distributed.
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In t roduct ion  cont .  

– the spatial dataset may have significant non-spatial 
attributes

● e.g. in image processing the procedure for region-based 
segmentation compares a pixel with its neighbours, region growing 
is heavily based not only the location of the pixel but also the non-
spatial attributes.

– we are interested in very large datasets, including 
those of at least 100 000 points.
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α - a p p r o x i m a t e  d e n s i t y  b a s e d  c l u s t e r i n g

● The goal is to find clusters until the probability that any 
cluster of at least MinPts points has not been found is at 

most α.
● In practice, not every application requires complete and 

accurate results. E.g. if a construction company wants to 
distribute its advertisement to clusters of similar 
residences according to the residence type (non-spatial 

attribute) and location (spatial), then an α- 
approximate clustering may be satisfactory.
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DBRS

● Density-Based clustering 
with Random Sampling 
(DBRS) can discover 
density-based clusters 
with noise (first picture).

● It can follows clusters of 
many shapes (second 
picture).
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DBRS

● DBRS scales well on 
clusters with very dense 
neighborhoods (first 
picture).

● It also handles non-spatial 
attributes along with 
spatial attributes by 
paying attention to the 
purity of a neighborhood. 
It can avoid creating 
clusters of points with 
different values for non-
spatial attributes even 
though they are close to 
each other.
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DBRS

● DBRS repeatedly picks an unclassified point at random 
and examines it neighborhood. If the neigh. is sparsely 
populated or the purity of the points in the neigh. is too 
low, the point is classified as noise.

● Otherwise, if any point is a part of a known cluster this is 
joined to that cluster.

● If neither of these, a new cluster is begun with this 
neighborhood.

● DBRS discovers multiple clusters concurrently.

● We can use one heuristic to save large amount of time 
(large databases), and with it DBRS can perform α-
approximate clustering on very large datasets.  
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CLARANS

● CLARANS is an other spatial clustering algorithm.

● To find clustering, it finds a medoid (center of the 
cluster) for each of k clusters.

● The process can be described as searching a graph 
where every node is a potential solution and each node 
is represented by a set of k medoids. Two nodes are 
neighbors if their sets differ by only one object.

● Steps of the process:
– select an arbitrary possible clustering node current

– randomly pick a neighbor of current and comparing the quality of 
clusterings at current and the neighbor node
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CLARANS cont .

– swap, if there is an improvement in the clustering quality (the number of 
tired neighbors is restricted by maxneighbor)

– if swap happens, CLARANS moves to the neighbor's  node and the 
process is started again, otherwise the current clustering produces a 
local optimum

– if the local optimum found, it starts with new randomly selected node in 
search for a new local optimum

– the number of local optima to be searched is bounded by numlocal

● Problems:
– it assumes that the object to be clustered are all stored in main memory

– the run time: without considering numlocal the computational 
complexity is Ω(kn²) where n is the size of the dataset (large databases)
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DBSCAN

● DBSCAN was the first density-based spatial clustering 
method

● key idea is that to define a new cluster or extend an 
existing one, a neighborhood around a point of a given 
radius (Eps) must contain at least a minimum number os 
points (MinPts)

● the  density in the neighborhood is determined by the 
choice of a distance function for p and q denoted by 
dist(p,q)

● it uses an efficient spatial access data structure, called 
R*-tree

● the average case time complexity is O(n log n) 
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Def in i t ions  for  DBSCAN

● Given a dataset D, a distance function dist, and 
parameters Eps and MinPts the following definitions are 
used to define DBSCAN:

– the Eps-neighborhood of a point p, denoted by NEps(p), is defined by 
NEps(p) = { q ∈ D | dist(p,q) ≤  Eps}

– a point p is directly density-reachable from a point q with respect to 
Eps and MinPts if p ∈ NEps(q) and |NEps(q)| ≥ MinPts

– a point p is density-reachable from a point q with respect to Eps and 
MinPts if there is a chain of points p1,...,pn, p1 = q, pn = p such that pi+1 is 
directly density-reachable from pi

– a point p is density-connected to a point q with respect to Eps and 
MinPts if there is a point o such that both p and q are density-reachable 
from o with respect to Eps and MinPts
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Def in i t ions  for  DBSCAN cont .

– let D be a set of data points, a density-based cluster C with respect to 
Eps and MinPts is a non-empty subset of D satisfying the following 
conditions:

● ∀p,q: if p ∈ C and q is density-reachable from p w.r.t Eps and 
MinPts, then q ∈ C

● ∀p,q ∈ C: p is density-connected to q with respect to Eps and 
MinPts
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DBSCAN a lgor i thm

● If Eps and MinPts are defined, it starts to group points 
from an arbitrary point q.

● First find its neighborhood (all points that are directly 
density reachable from q), performing a region query, a 
look up in the R*-tree.

● If the neighborhood is sparse, it contains fewer than 
MinPts points, then point q is labeled as noise.

● Otherwise, a cluster is created and all point in q's 
neighborhood are placed in this cluster. Then the 
neighborhoods of all q's neighbors are examined to see 
if they can be added to the cluster.
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DBSCAN a lgor i thm cont .

● If a cluster cannot be extended, DBSCAN chooses 
another arbitrary ungrouped point and repeats the 
process.

● This iterated until all points have been placed in cluster 
or labeled as noise. For a dataset with n points, n region 
queries are required.

● Advantage:
– it can follow the shape of the clusters and it only requires the distance 

function and the two input parameters

– gives extremely good results and it is efficient in many datasest



16

DBSCAN a lgor i thm cont .

● Problems:
– if a dataset has clusters of widely varying densities, DBSCAN is not able 

to handle it efficiently

– if non-spatial attributes play a role in determining the desired result, 
DBSCAN is not appropriate, because it does not take into account any 
non-spatial attributes

– DBSCAN is not suitable for finding approximate clusters in very large 
datasets



17

Def in i t ions  for  DBRS

● Given a dataset D, a symmetric distance function dist, 
parameters Eps and MinPts, and a property prop defined 
w.r.t. one or more non-spatial attributes, the following 
definitions used to define DBRS:

– The matching neighborhood of a point p, denoted by N'Eps(p), is 
defined as N'Eps(p) = { q ∈ D | dist(p,q) ≤ Eps and p.prop = q.prop }

– DBRS uses a parameter called MinPur, to control the purity of the 
neighborhood (non-spatial attributes).

– core point: a point whose matching neighborhood is dense enough 
(has at least MinPts and over MinPur percentage of matching neighbors)

– border point: a neighbor of a core point, that is not a core point itself

– noise: other than core points and border points
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Def in i t ions  for  DBRS

– Two points p and q are directly purity-density-reachable w.r.t. Eps, 
MinPts and MinPur from each other if 

● p ∈ N'Eps(q) and q ∈ N'Eps(p);

● |N'Eps(q)| ≥ MinPts or |N'Eps(p)| ≥ MinPts; 

● |N'Eps(q)| / |NEps(q)| ≥ MinPur or  |N'Eps(p)| / |NEps(p)| ≥ MinPur.

● This is a symmetric relations for two core points as well as one core 
and one border point, but it is not symmetric for two border points.

– A point p and a point q are purity-density-reachable(PD-reachable) 
w.r.t. Eps, MinPts, and MinPur from each other, denoted by PD(p,q), if 
there is a chain of points p1,...,pn, p1 = q, pn = p such that pi+1 is directly 
purity-density-reachable from pi.

– Let D be a dataset of points. A purity-density-based cluster C is a 
non-empty subset of D satisfying the following condition: 

● ∀p,q ∈ D: if p ∈ C and PD(p,q) holds, then q ∈ C
● It is obvious that for ∀p,q ∈ C, PD(p,q) holds.
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DBRS

● Look at a cluster as a minimum number of core points 
(skeletal points) and their neighborhoods. To find a 
cluster, it is sufficient to perform region queries on the 
skeletal points.

● We cannot identify skeletal points before examining the 
dataset. Instead, we can randomly select sample points, 
find their neighborhoods, and merge them if they 
intersect.

● In many cases DBRS will find the same clusters as 
DBSCAN. When two groups have a common border point, 
DBRS will identify the two groups as one cluster. DBSCAN 
will separate two groups into two clusters, and the 
common point will be assigned to the firstly discovered 
cluster.
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DBRS a lgor i thm

● We need the following: D is the dataset, Eps and MinPts 
are global density parameters, MinPur is the minimum 
fraction of points in neighborhood with property prop 
required to define a cluster.

● It starts with an arbitrary point q and finds its matching 
neighborhood. In the algorithm, the region query 
D.matchingNeighbors(q,Eps,prop) finds this matching 
neighborhood, which is called qseeds (line 4).

● If the matching neighbors of q satisfies the MinPts and 
MinPur parameters, the q is a core point, otherwise q is 
noise or border, but it is tentatively classified as noise 
(line 6).
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DBRS a lgor i thm

● Algorithm DBRS(D, Eps, MinPts, MinPur, prop)
(1) ClusterList = Empty;
(2) while (!D.isClassified())
(3) { Select one unclassified point q from D;
(4)   qseeds = D.matchingNeighbors(q, Eps, prop);
(5)   if ((|qseeds| < MinPts) or (qseed.pur < MinPur))
(6)        q.clusterID = -1; /*q is noise or a border point */
(7)   else
(8)      { isFirstMerge = True;
(9)        Ci = ClusterList.firstCluster;
(10)       while (Ci != Empty) /* compare qseeds to all 

existing clusters */
(11)       { if ( hasIntersection(qseeds, Ci))
(12)            if (isFirstMerge)
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DBRS a lgor i thm cont .

(13)           { newCi = Ci.merge(qseeds);
(14)             isFirstMerge = false; }
(15)           else
(16)           { newCi = newCi.merge(Ci);
(17)             ClusterList.deleteCluster(Ci); }
(18)        Ci = ClusterList.nextCluster;
(19)      } // while != Empty
(20)    if (isFirstMerge) /* no intersection with any existing cluster */
(21)    { Create a new cluster Cj from qseeds;
(22)      ClusterList = ClusterList.addCluster(Cj); }
(23)  }}
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DBRS a lgor i thm cont .

● The clusters are organised in a list called ClusterList. If 
qseeds intersects with a single existing cluster, DBRS 
merges qseeds into this cluster. If qseeds intersects with 
two or more existing clusters, the algorithm merges 
qseeds and those clusters together (line 11-18).

● Otherwise, a new cluster is formed from qseeds (line 20-
22).

● After examining the neighborhood of one point, the 
algorithm selects another arbitrary, unclassified point 
and repeats the procedure. The procedure iterated until 
every data point is clustered or is labeled as noise.
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DBRS a lgor i thm cont .  

● Crucial difference from DBSCAN:
– once DBRS has labeled a q's neighbors as a part of a cluster, it does not 

examine the neighborhood for each of these neighbors. It can lead a  
significant time saving for dense clusters

– the region query, the most time-consuming part of the algorithm can be 
answered in O(log n) time using R*-tree, so in the worst case, where 
every point in the dataset is noise, DBRS performs n region queries and 
the time complexity is O(n log n), and if any clusters are found, it will 
perform fewer region queries, so the computational time in the worst 
case equals the DBSCAN computational time in the average case

– with a heuristic stopping condition, DBRS can be used for α-
approximate density clustering to handle very large datasets more 
efficiently
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Theoret i ca l  Compar i son

● In the following slides, we compare DBRS and DBSCAN 
from theoretical view w.r.t. the neighborhood graphs 
they generate during the clustering.
– The neighborhood graph for a spatial relation neighbor is a graph 

G=(V,E) with the set of vertices V and the set of directed edges E such 
that each vertex corresponds to an object of the database and two 
vertices v1 and v2 are connected iff neighbor(v1,v2) holds. Given 
different neighbor relations, a neighborhood graph can be directed or 
undirected.

– A neighborhood graph (or subgraph) is connected iff for any pair of 
vertices in the graph (or subgraph) there is an undirected path joining 
the vertices.

– A directed neighborhood graph (or s.g.) is strongly connected iff for 
any two nodes p and q with neighbor(p,q) holding, there is a directed 
path from p to q. 
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Theoret i ca l  Compar i son  cont .

● There are some lemmas helping the comparison, all of 
them have a proof, but they are quite long and not so 
difficult, so I will only mention the basic idea of the 
proofs.

● Lemma 1.:
– If the density-reachable relation is the neighbor relation, a connected 

neighborhood (sub-)graph represents a cluster generated by DBSCAN.

● Proof:
– We must prove that:

● a cluster defined by DBSCAN (slide 13) is represented in a 
connected neighborhood (sub-)graph

● only the points belonging to the same cluster represented in the 
same connected neighborhood graph
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Theoret i ca l  Compar i son  cont .

● From Lemma 1, given n points, the clustering process 
can be viewed abstractly as constructing neighborhood 
graphs.

● Each time a core point is found, the algorithm finds the 
directly density-reachable relation between the core 
point and its neighbors.

● The directly density-reachable relation holding for the 
two objects corresponds to the directed edge between 
the two corresponding vertices in the neighborhood 
graph.

● Each cluster is constructed as a subgraph. If there are k 
clusters, the graph has k connected subgraph.
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Theoret i ca l  Compar i son  cont .

● Lemma 2.:
– If the density-reachable relation is the neighbor relation, DBSCAN's 

clustering process corresponds to constructing the strongly connected 
neighborhood graph.

● Proof:
– From Lemma 1, we know each cluster generated by DBSCAN is 

represented as a connected neighborhood subgraph. To prove the 
connected neighborhood graph is strongly connected, we need to prove 
that there is a directed path connecting two vertices p and q iff 
neighbor(p,q) holds. The proof requires two parts:

● if neighbor(p,q) holds, there is a directed part connected vp and vq

● only if neighbor(p,q) holds, there is a directed path from vp to vq
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Theoret i ca l  Compar i son  cont .

● In the following lemma, we prove that a neighborhood 
graph is also connected by applying PD-reachable (Slide 
18) as the neighbor relation.

● Lemma 3.:
– If the PD-reachable relation is the neighbor relation, the neighborhood 

graph generated by DBRS is connected.

● Proof:
– We must prove two parts:

● a cluster defined by DBRS is represented in a connected 
neighborhood graph

● only the points belonging to the same cluster are represented in the 
same connected neighborhood graph
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Theoret i ca l  Compar i son  cont .

● Unless all points are noise, constructing a strongly 
recommended neighborhood graph is more expensive than 
constructing an undirected connected graph, fewer points are 
checked for their neighborhood.

● In DBRS, for any two PD-reachable points, there is at least one 
undirected path connecting them. In DBSCAN, for any two 
directly-density reachable core points, there are always two 
directed path (edges) connecting them.

● Regardless of whether the connectivity is directed or 
undirected, all connected points should belong to the same 
cluster.

● In the worst case (all points are noise), the costs of 
constructing the two neighborhood graphs are the sam 
because no directed or undirected edges are generated.
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Conc lus ion

● DBRS aims to reduce the number of region queries for 
datasets with varying densities.

● It scales very well on the high-density clusters.

● DBRS deals with both spatial and non-spatial attributes.

● It can take into account of a property related to non-
spatial attribute(s), by means of a purity threshold, when 
finding the matching neighborhood.

●  To increase the efficiency of clustering on large datasets 
we can use a heuristic that can reduce run time 
significantly at the cost of missing a probabilistically 
controlled number of clusters.
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Conc lus ion

● The DBRS approach still needs improvement.

● First, our implementation must be improved by 
incorporating R*-trees or other specialized data 
structures for performing region queries.

● Secondly, the algorithm may miss joining certain 
clusters(Point 1 and Point 8 should be in one cluster). 
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