

Spatial Data Mining Clustering

Antti Leino (antti.leino@cs.helsinki.fi)

Divide the data into clusters, so that

- Points in the same cluster as similar as possible
 - Points in different clusters as different as possible
- Ancient and venerable topic in statistics
 - Plenty of clustering algorithms
 - Typically used to cluster observations
- In spatial data:
 - Find regions with high point intensity
 - Separated by areas with low intensity

Department of Computer Science

Different approaches to clustering

- Four main approaches
- Partitioning
 - Task: divide the data into a given number of clusters
- Hierarchical
 - Create a tree based on the similarity / distance of items
- Density-based
 - Find contiguous areas with high density
- Grid-based
 - Divide the data space into grid cells

Clustering by partitioning

- Goal: divide the data into a pre-determined number of clusters
 - Several algorithms for this
- k-means
 - Presented in 1967
 - Start with k random points in the observation
 - space
 - Repeat
 - Attach each observation to the closest of these points
 - Replace each of the k points with the centroid of the observations attached to it
 - until the clustering stabilises

k-means: example

•••	•	
•••	•••	

After four iterations the clustering stabilises

Partitioning methods

- k-medoids
 - Use the centermost cluster member instead of the mean
- EM (expectation maximisation)
 - Define the cluster by a probability distribution instead of a centroid
- Guaranteed to find a local optimum
- Not globally optimal clustering
 Choice of the random seeds affects final result
- Tend to find circular clusters

Hierarchical clustering: example

- Form a tree of the data points
 - Each sub-tree contains points that are close to each other
 - These sub-trees can be considered as clusters
 - Resolution of clustering can be chosen afterwards
- Common alternatives
 - Agglomerative clustering: start from the bottom, join branches that are similar
 - Divisive clustering: start from the top, split branches that are dissimilar

 Distance between clusters calculated as the average of distances between points

Density-based clustering

- Clustering no longer based on the distance between points
- Instead, density of points
- Good for finding non-spherical clusters
- Clusters do not necessarily cover all points

Density-based clustering

- A point in a high-density area belongs to a cluster
- In other words, a point belongs to a cluster if it is close enough to other points

 More fine-grained density calculations may be useful

Grid-based clustering

- Goal: find areas with high point density
- Divide the space to grid cells
- Compute the density of points in each cell
- Use the high-density cells to define clusters
- More effective than density-based clustering

Grid-based clustering

- Calculate density in each grid cell
- Discard cells with too low density

- Several approaches to clustering
- Some are not really intended for spatial clustering

 - Original goal often finding patterns in multi-variable observation data
 Nevertheless, possible to use for spatial data
- Challenges in spatial clustering
 - Arbitrarily shaped clusters
 Euclidean distance not necessarily useful
 - Roads, water, other terrain effects
- Next week: a couple of methods for spatial data