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Spatial dependence

Everything is related to everything else, but nearby

things are more related than distant things

This is usually true even for spatially discrete
phenomena

Typically depend on underlying factors that are

� numerous

� not easy to measure

� spatially continuous

In other words, spatial correlation is an
approximation
Still, a useful one

Different scales

Sometimes useful to divide spatial dependence in

two

First order effects

Differences in intensity
Other large-scale variation

Second order effects

Correlation between neighbouring places
Other small-scale variation

First order variation

Distribution of the name Mustalampi 'Black Pond'

Kernel estimate of the intensity

Second order variation

Again, the lake name

Mustalampi

K function

A measure for attraction
between neighbouring
instances
Red: theoretical value for no
attraction
Blue: estimated value,
constant intensity
Green: estimated value,
variable intensity

First or second order effects?

Same phenomenon can be modelled as either

Small-scale variation in intensity
Large-scale spatial autocorrelation

In other words,

First order methods can be used for detailed study
Second order methods can be used at low
resolutions

Distinction between �rst and second order effects
is largely a decision during modelling

Choice has to be based on the goals of the study



Dealing with space

No (a priori) direction

Correlations in a two-dimensional space
Not reasonable to assume that correlation is
directional

Hence: no obvious de�nition for

neighbourhood in point patterns
proximity in area data

Boundary effects

Observations do not typically cover all the
phenomenon
In reality, correlation reaches to the unseen areas
This is not available for analysis

Background concepts

Statistics commonly has certain methodological
assumptions

Null hypothesis: the phenomenon is completely
random
Goal: prove that the null hypothesis is invalid
Usually: phenomena follow the normal distribution

What does this mean for spatial data?

Complete spatial randomness
Suitable probability distribution

Modelling spatial randomness

Spatial stochastic process

Statistical model for a spatial phenomenon

Represented by the joint probability distribution of
a set of random variables

{X(s),s ∈R} for point data
{Y(A ),A ⊆R} for area data

Normally only one realisation is observed

The actual values of the variable in each location

Modelling point patterns

Randomness: the Poisson process

Independent events happening with a constant

intensity λ

In its basic form one-dimensional

E.g. time
The probability of an event happening during an
equal-sized time slot is uniform

The expected number of events in a time slot

E(X(t)) =λt

Poisson process: example

Two time sequences generated from a Poisson
process with λ=2

A (•): 24 events
B (◦): 17 events

Poisson process: example

Probability distribution of the expected value of
events

λ=2, t=10
X(t) ∼ Poisson(20)



Poisson process: from one to two

dimensions

Easy to extend the Poisson process to a

two-dimensional case

Again, constant intensity λ

The expected number of events in region A

depends on the intensity and the area of A:

E(X(A)) =λ|A|

The spatial Poisson process is a model of what
would happen if the events were independent
from each other

No �rst order variation
No second order effects

First order variation: intensity

Instead of constant intensity λ an intensity

function

λ(s) = lim
|ds|→0

E(X(ds))

|ds|

ds a neighbourhood of point s
E(X(ds)) the expected number of points in this
neighbourhood
|ds| the size of the neighbourhood

The intensity at point s can be viewed as the

�density� of events in an in�nitely small

neighbourhood of s

Using the intensity function

A Poisson process can use the intensity function

instead of a constant intensity

Such a heterogeneous Poisson process models the

�rst order variation of a point pattern

The expected number of events in a region A

E(X(A )) =

∫

A

λ(s)ds

Estimating intensity

Kernel estimation

Represent each point by a symmetrical

two-dimensional density function, e.g. normal

distribution

Estimate the intensity function as the sum of these

density functions

λ̂τ(s) =
1

δτ(s)

n
∑

i=1

1

τ2
k

(s−si

τ

)

s1, . . . ,sn event points
k kernel function
τ>0 bandwidth
δτ(s) edge correction

Kernel estimation

Bandwidth de�nes how far from each point the

effect reaches

In effect, it speci�es how detailed the variation in

intensity is

Simulating a Poisson process

Homogeneous Poisson process: two phases
1. Number of events in area A : n∼ Poisson(λ|A |

2. The locations for the events can be obtained from
a uniform distribution over A

Similarly for a heterogeneous Poisson process
1. λ not constant
2. Locations from a non-uniform distribution



Measuring second order effects

Nearest neighbour measures

G(h): probability that the distance from a random
event to the nearest other event ≤h
F(h): probability that the distance from a random
location to the nearest event ≤h

If events are clustered, G(h) < F(h)

Only shows very small-scale attraction / repulsion

Something else is required for scales larger than

the nearest neighbour distance

K function

Measure for second order effects

Basic case: constant λ, one point pattern

λK(h) = expected number of other events within
radius h of a random event
For a homogeneous Poisson process K(h) =πh2

Also possible to measure Kinhom(h) for a

heterogeneous point pattern

For two point patterns

λjKij(h) = expected number of events of type j
within radius h of a random event of type i

K function: example

Two pairs of lake names
Mustalampi 'Black Pond' � Valkealampi 'White
Pond'
Kuikkalampi 'Diver Pond' � Ruunalampi 'Gelding
Pond'

Spatial distributions and K functions
Blue line: homogeneous Kij
Green line: heterogeneous Kinhom

ij

Modelling second order variation

Poisson cluster process

Start with a Poisson process

Normally, a homogeneous process
In principle, heterogeneous also possible, but
dif�cult to estimate

This process generates �parents�

Each parent generates a random number of
�daughters�

Distributed independently around the parent
These are the actual events

Spatially continuous phenomena

Observations from distinct points in space

This time, measurements of a spatially continuous

variable {Y(s),s ∈R}

Goal: model the behaviour of Y across R

Again, useful to divide variation into �rst and

second order effects

First order properties of continuous

data

Mean value surface {µ(s),s ∈R},µ(s) = E(Y(s))

Normal statistical regression problem

Linear regression of Y(s) with spatial coordinates
sx,sy
Trend surface analysis
More sophisticated methods available

Goal: interpolate the value of Y between the
observation points

Y(s) =µ(s)



Second order effects in continuous

data

Usually better to assume Y(s) =µ(s)+U(s)

µ(s) global trend
U(s) spatially correlated residual, with
∀s ∈R : E(U(s)) =0

U(s) can be used to model second order effects

Common assumption: U(s) is stationary

E(U(s)) and Var(U(s)) constant
Cov(U(s),U(s′)) depends only on h= s′−s
In other words, the same in different parts of R

Often also isotropic

Cov(U(s),U(s′)) depends only on |h|
In other words, the same in all directions

Predicting with second order effects

If the residual process {U(s),s ∈R} is spatially

correlated, it is possible to give better estimates

than Y(s) = µ̂(s)

Kriging: Ŷ(s) = µ̂(s)+ Û(s)

Various methods for this

Beyond the scope of this course
No general criterion for choosing, beyond �see
what works�

Bottom line: modelling both �rst and second order

effects gives reasonably good predictions

Proximity in area data

Proximity matrix W

wij =

{

1 if Ai and Aj share a border

0 otherwise

A B C D E F

A 0 1 0 1 1 0

B 1 0 1 0 1 1

C 0 1 0 0 0 1

D 1 0 0 0 1 1

E 1 1 0 1 0 1

F 0 1 1 1 1 0

More elaborate measures for proximity possible

First order variation

Simple option: moving averages
Replace the value for each area by the averages of
its neighbours

µ̂i =

∑n
j=1

wijyj
∑n
j=1

wij

Convert to point data
E.g. represent each area by its centre
Perform kernel estimation

Median polish
For regular grids
Represent each grid cell as

yij =µ+ ri+cj+εij

ri, cj row and column trends, εij random error

Second order effects

Moran's I statistic: spatial correlation

I=
n

∑n
i=1

∑n
j=1

wij(yi− ȳ)(yj− ȳ)
(

∑n
i=1

(yi− ȳ)2
)(

∑∑

i 6=jwij

)

Varies between −1 and +1, no autocorrelation
when I=0

Geary's C statistic: variance of the difference of

neighbouring values

C =

(n−1)
∑n
i=1

∑n
j=1

wij(yi−yj)
2

2
(

∑n
i=1

(yi− ȳ)2
)(

∑∑

i 6=jwij

)

Varies between 0 and 2, no autocorrelation when
C =1

Summary

Lots of statistical methods for spatial modelling

Different methods for point patterns, area data
and continuous data

Some related to each other

If still interested, take a course in spatial statistics


