

Department of Computer Science

Different scales

- Sometimes useful to divide spatial dependence in two
- First order effects
 - Differences in intensity
 - Other large-scale variation
- Second order effects
 - Correlation between neighbouring places
 - Other small-scale variation

First order variation

- Distribution of the name *Mustalampi* 'Black Pond'
 Kernel estimate of the intensity
- Kernel estimate of the intensity

320000 330000 340000 350000 390000 370000

Second order variation

- Again, the lake name Mustalampi
- K function
 - A measure for attraction between neighbouring instances
 - Red: theoretical value for no attraction
 - Blue: estimated value, constant intensity
 - Green: estimated value, variable intensity

First or second order effects?

- Same phenomenon can be modelled as either
 - Small-scale variation in intensity
 - Large-scale spatial autocorrelation
- In other words,
 - First order methods can be used for detailed study
 Second order methods can be used at low
 - resolutions
- Distinction between first and second order effects is largely a decision during modelling
 - Choice has to be based on the goals of the study

- No (a priori) direction
 - Correlations in a two-dimensional space
 - Not reasonable to assume that correlation is directional
- Hence: no obvious definition for
 - neighbourhood in point patterns
 - proximity in area data
- Boundary effects
 - Observations do not typically cover all the phenomenon
 - In reality, correlation reaches to the unseen areas
 - This is not available for analysis

Background concepts

- Statistics commonly has certain methodological assumptions
 - Null hypothesis: the phenomenon is completely random
 - Goal: prove that the null hypothesis is invalid
 - Usually: phenomena follow the normal distribution
- What does this mean for spatial data?
- Complete spatial randomness
 - Suitable probability distribution

Modelling spatial randomness

- Spatial stochastic process
- Statistical model for a spatial phenomenon
- Represented by the joint probability distribution of a set of random variables
 - $\{X(\mathbf{s}), \mathbf{s} \in \mathcal{R}\}$ for point data
 - $\{Y(\mathcal{A}), \mathcal{A} \subseteq \mathcal{R}\} \text{ for area data}$
- Normally only one realisation is observed
 - The actual values of the variable in each location

Modelling point patterns

- Randomness: the Poisson process
- Independent events happening with a constant intensity λ
- In its basic form one-dimensional
 - E.g. time
 - The probability of an event happening during an equal-sized time slot is uniform
- The expected number of events in a time slot $E(X(t)) = \lambda t$

Poisson process: example

process with $\lambda = 2$

А-В-0 0

30

A (•): 24 events

B (o): 17 events

00 00 0 0

32

Sequence S(A)

Two time sequences generated from a Poisson

34

٠

time

36

38

0

Sequence S(B)

40

Poisson process: example

- Probability distribution of the expected value of events
 - $\lambda = 2, t = 10$ • $X(t) \sim Poisson(20)$

Poisson process: from one to two dimensions

- Easy to extend the Poisson process to a two-dimensional case
- Again, constant intensity λ
- The expected number of events in region A depends on the intensity and the area of A:
 E(X(A)) = λ|A|
- The spatial Poisson process is a model of what would happen if the events were independent from each other
 - No first order variation
 - No second order effects

First order variation: intensity

Instead of constant intensity λ an intensity function

$\lambda(s) = \lim_{|ds| \to 0} \frac{\mathsf{E}(X(ds))}{|ds|}$

- ds a neighbourhood of point s
- E(X(ds)) the expected number of points in this neighbourhood
- Ids the size of the neighbourhood
- The intensity at point s can be viewed as the »density» of events in an infinitely small neighbourhood of s

Using the intensity function

- A Poisson process can use the intensity function instead of a constant intensity
- Such a heterogeneous Poisson process models the first order variation of a point pattern
- The expected number of events in a region A

 $\mathsf{E}(X(\mathscr{A})) = \int_{\mathscr{A}} \lambda(s) \mathrm{d}s$

Estimating intensity

- Kernel estimation
- Represent each point by a symmetrical two-dimensional density function, e.g. normal distribution
- Estimate the intensity function as the sum of these density functions

$$\hat{\lambda}_{\tau}(s) = \frac{1}{\delta_{\tau}(s)} \sum_{i=1}^{n} \frac{1}{\tau^2} k\left(\frac{s-s_i}{\tau}\right)$$

- s₁,...,s_n event points
- k kernel function
- $\tau > 0$ bandwidth
- $\delta_{\tau}(s)$ edge correction

Kernel estimation

- . . .
- Simulating a Poisson process
- Homogeneous Poisson process: two phases
 1. Number of events in area *A*: n ~ Poisson(λ|A
 - Number of events in area as the roisson(t) at
 The locations for the events can be obtained from a uniform distribution over A

- Similarly for a heterogeneous Poisson process
 1. λ not constant
 - 2. Locations from a non-uniform distribution

- Bandwidth defines how far from each point the effect reaches
- In effect, it specifies how detailed the variation in intensity is

Measuring second order effects

- Nearest neighbour measures
 - G(h): probability that the distance from a random event to the nearest other event $\leq h$
 - F(h): probability that the distance from a random location to the nearest event $\leq h$
- If events are clustered, G(*h*) < F(*h*)
- Only shows very small-scale attraction / repulsion
- Something else is required for scales larger than the nearest neighbour distance

- Measure for second order effects
- Basic case: constant λ, one point pattern
 - $\lambda K(h)$ = expected number of other events within radius *h* of a random event
 - For a homogeneous Poisson process $K(h) = \pi h^2$
- Also possible to measure K^{inhom}(h) for a heterogeneous point pattern
- For two point patterns

 λ_jK_{ij}(h) = expected number of events of type j within radius h of a random event of type i

K function: example

- Two pairs of lake names
 - Mustalampi 'Black Pond' Valkealampi 'White Pond'
 - Kuikkalampi 'Diver Pond' Ruunalampi 'Gelding Pond'
- Spatial distributions and K functions
 - Blue line: homogeneous K_{ij}
 - Green line: heterogeneous K^{inhom}

Modelling second order variation

- Poisson cluster process
- Start with a Poisson process
 - Normally, a homogeneous process
 - In principle, heterogeneous also possible, but difficult to estimate
- This process generates »parents»
- Each parent generates a random number of »daughters»
 - Distributed independently around the parent
 - These are the actual events

Spatially continuous phenomena

- Observations from distinct points in space
- This time, measurements of a spatially continuous variable {*Y*(**s**), **s** ∈ *R*}
- Goal: model the behaviour of Y across R
- Again, useful to divide variation into first and second order effects

First order properties of continuous data

- Mean value surface $\{\mu(\mathbf{s}), \mathbf{s} \in \mathcal{R}\}, \mu(\mathbf{s}) = E(Y(\mathbf{s}))$
- Normal statistical regression problem
 - Linear regression of Y(s) with spatial coordinates s_x, s_y
 - Trend surface analysis
 - More sophisticated methods available
- Goal: interpolate the value of Y between the observation points
 - $Y(\mathbf{s}) = \mu(\mathbf{s})$

Second order effects in continuous data

- Usually better to assume $Y(\mathbf{s}) = \mu(\mathbf{s}) + U(\mathbf{s})$
 - μ(s) global trend U(s) spatially correlated residual, with $\forall \mathbf{s} \in \mathcal{R} : \mathsf{E}(U(\mathbf{s})) = \mathbf{0}$
- U(s) can be used to model second order effects
- Common assumption: U(s) is stationary
 - E(U(s)) and Var(U(s)) constant
 - **Cov**($U(\mathbf{s}), U(\mathbf{s}')$) depends only on $\mathbf{h} = \mathbf{s}' \mathbf{s}$
 - In other words, the same in different parts of *ℛ*

Often also isotropic

- Cov(U(s), U(s')) depends only on |h|
- In other words, the same in all directions

Predicting with second order effects

- If the residual process $\{U(\mathbf{s}), \mathbf{s} \in \mathscr{R}\}$ is spatially correlated, it is possible to give better estimates than $Y(\mathbf{s}) = \hat{\mu}(\mathbf{s})$
- Kriging: $\hat{\mathbf{Y}}(\mathbf{s}) = \hat{\mu}(\mathbf{s}) + \hat{U}(\mathbf{s})$
- Various methods for this
 - Beyond the scope of this course
 - No general criterion for choosing, beyond »see what works»
- Bottom line: modelling both first and second order effects gives reasonably good predictions

Proximity in area data

Proximity matrix W

 $w_{ij} = \begin{cases} 1 \text{ if } \mathscr{A}_i \text{ and } \mathscr{A}_j \text{ share a border} \\ 0 \text{ otherwise} \end{cases}$

	Α	В	С	D	E	F
Α	0	1	0	1	1	0
В	1	0	1	0	1	1
С	0	1	0	0	0	1
D	1	0	0	0	1	1
	1	1	0	1	0	1
F	0	1	1	1	1	0

More elaborate measures for proximity possible

First order variation

Simple option: moving averages Replace the value for each area by the averages of its neighbours

$$\hat{\mu}_i = \frac{\sum_{j=1}^n w_{ij}y_{ji}}{\sum_{i=1}^n w_{ii}}$$

- Convert to point data E.g. represent each area by its centre
 - Perform kernel estimation
- Median polish
 - For regular grids Represent each grid cell as

 $y_{ij} = \mu + r_i + c_j + \varepsilon_{ij}$

Γ*i*, *cj* row and column trends, *εij* random error

Second order effects

Moran's / statistic: spatial correlation

$$I = \frac{n \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (y_i - \bar{y}) (y_j - \bar{y})}{\left(\sum_{i=1}^{n} (y_i - \bar{y})^2\right) \left(\sum \sum_{i \neq j} w_{ij}\right)}$$

- Varies between -1 and +1, no autocorrelation when I = 0
- Geary's C statistic: variance of the difference of neighbouring values

$$C = \frac{(n-1)\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij}(y_i - y_j)^2}{2\left(\sum_{i=1}^{n}(y_i - \bar{y})^2\right)\left(\sum\sum_{i \neq j}w_{ij}\right)}$$

Varies between 0 and 2, no autocorrelation when C = 1

Summary

- Lots of statistical methods for spatial modelling
- Different methods for point patterns, area data and continuous data
 - Some related to each other
- If still interested, take a course in spatial statistics