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Introduction

The spatial auto-regression (SAR) model is a popular spatial
data analysis technique

Computationally quite expensive

In this paper 2 solutions for estimating SAR model parameters
for large spatial data analysis 1s presented

Using Taylor series expansion and Chebyshev polynomials
Compared with an exact solution for the same model

Tested on satellite image data

I will not cover equations and lemmas/proofs..



Problem statement

There exists a solution for one dimensional geospatial datasets
(Dense matrix approach)

We need a multidimensional solution for spatial data

An extension of linear regression model

The equation consists of lin.reg. model+spatial autocorrelation
term (pWy)

Spatial autoregression parameter p is 0...1



Problem statement cont.
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Problem statement cont.
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Exact SAR model solution

® Parameters p and P in the aforementioned equation can be found
using bayesian statistics or maximum likelyhood, the later 1s
used 1n this study

® Three stages: computing eigenvalues most time-consuming
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Table 3. Measured serial response times of stages of the exact SAR model solution for problem

Exact SAR model solution cont.

sizes 0f 2500, 6400 and 10K. Problem size denotes the number of observation points

Serial Execution Time (sec) Spent on

Problem size (n)| Machine Stage Stage & Stage ¢
é;;ﬁ:ﬂ]nss ML Function Least Squares
sG1 Origin 78.10 0.41 0.06
2500 IBM SP 69.20 1.30 0.07
IBM Regatta 46.90 0.58 0.08
sG1 Origin 1735.41 5.06 0.51
6400 IBM SP 1194 B0 17.65 0.44
IBM Regatta 798.70 6.19 0.42
SGI Origin 6450.90 11.20 1.22
10000 IBM SP 6546.00 66.88 1.63
IEM Regatta 3439.30 2415 0.93




Two approximate SAR solutions
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Fig. 6. The system diagram for the Tavlor's Senes expansion approximation for the SAR

model solution. The inner structure of Tavlor series expansion 1s similar to that of Chebyshev
Polynomial except that there 1s one more vector sum operation, which 15 very cheap to compute



Two approximate SAR solutions
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Fig. 7. System diagram of the approximate SAR model solution, where In(l — pW) 15 ex-

pressed as a Chebyshev polynomial. The term “q” is the degree of the Chebyshev Polynomial



Experimental design

Performed on Landsat satellite images from forest area in
Minnesota, USA

ScalLAPACK software/libraries was used

Scalability (computational time), accuracy and memory usage
of the 3 models was measured

Both approximate solutions much faster&less memory
intensive, and yet accurate predictors

Some differences in the two:

One performs better on low autocorrelation parameters, the
other on high values



Experimental design cont.

Results from image prediction using one exact and two
approximate methods

® Some differences, why?

® when predicting thematic class labels the models performed
quite similar

48.32, 48.4 and 50.4 % accuracy (exact, Chebyshev, Taylor
series)



Experimental design cont.
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Experimental design cont.

Table 7. The execution time 1n seconds and the memory usage 1n mega-bytes (MB)

Problem Time (Seconds) Memary (MB)
Mze ()

Exacr Taylor | Chebyshev Exict Taylor Chebyshey
a1 (2500) 14 0014 0013 0 | () | ()
L0 100 {10K) 3 0117 0,116 2 43 43
L2080 (2IM) | Intractable 7432 17431 -32%] 413 413




Conlusion

® This study focused on scalability of the SAR
model on large geospatial data sets

®* Compared exact and approximate solutions

® Future challenges: comparing SAR model vs.
other models, eg. Markov random fields



