

## Short introduction Input data description - example

- Each layer may contain data such as:
  - Railway stations (points)
  - Crime incidents (points)
  - Parks (area)
  - Urban area (area)
  - Schools (points)
  - Police stations (points)



### Short introduction What do we want to get?

- Find patterns of concentration data on one layer in relation to data on other layers
- Amount of data is large, so we have to consider computational expensiveness
- We don't have any prior information and domain knowledge – we can't give any hypothesis about patterns













#### Digression Some definitions

- Notation:  $X \Rightarrow Y(c\%)$ 
  - That mean: c% of data that satisfy X also satisfy Y
    c is called *confidence*
- Definitions
  - *confidence* is an estimate for:  $Pr[X \cap Y] / Pr[X]$ 
    - Conditional probability of Y given X
  - *support* is an estimate for:  $Pr[X \cap Y]$
  - Ratio of transactions that satisfy both X and Y to the number of all transactions





### Vertical-view approach What if we change grid?

- Our previous rule
- Confidence is now 50%
- But support decreases to 18.8%

|        | Layer(a) | Layer(b) | Layer(c) | Layer(d) |
|--------|----------|----------|----------|----------|
| Loc 11 | 1        | 0        | 0        | 0        |
| Loc 12 | 1        | 1        | 0        | 0        |
| Loc 13 | 0        | 0        | 0        | 0        |
| Loc 14 | 0        | 0        | 0        | 0        |
| Loc 21 | 1        | 1        | 0        | 0        |
| Loc 22 | 1        | 1        | 1        | 0        |
| Loc 23 | 0        | 0        | 0        | 0        |
| Loc 24 | 1        | 1        | 0        | 1        |
| Loc 31 | 0        | 0        | 1        | 0        |
| Loc 32 | 0        | 0        | 1        | 0        |
| Loc 33 | 0        | 0        | 1        | 0        |
| Loc 34 | 1        | 0        | 1        | 1        |
| Loc 41 | 0        | 0        | 0        | 0        |
| Loc 42 | 1        | 1        | 1        | 1        |
| Loc 43 | 1        | 0        | 0        | 1        |
| Loc 44 | 1        | 1        | 0        | 1        |

#### Vertical-view approach Summary

- Advantage
  - Easy to apply transactional association-rule mining techniques
- Disadvantage
  - Highly dependent on the granularity that is difficult to determine



# Horizontal-view approach Cluster detection



- Detect clusters and noise points using boundary-based cluster detection algorithm (Estivill-Castro and Lee)
- Again, noise points are ignored (Lee)

### Horizontal-view approach Cluster boundary extraction

- Apply the cluster boundary extraction process
- Then we polygonize clusters and the area inside them





#### Digression no 2 More definitions

- Let *X* be a set of layers
- cluster\_areas(X)
  - If X is a single point-data layer : set of polygonized clusters of X
  - Else: the total area of regions that result of the intersection of  $cluster\_areas(X_i)$ , for all  $X_i$  in X
- Clusters with Ratio R of P (CwR(P))

   Clusters detected by a clustering algorithm whose normalized sizes (number of points / total number of points) are greater or equal than R

### Digression no 2 More definitions

• Clustered Spatial Association Rule (CSAR): expression in the form of

 $X \Rightarrow Y(CC\%), \quad for X \cap Y=0$ 

• This means: *CC*% of areas of clusters of *X* intersect with areas of clusters of *Y* 

### Digression no 2 Even more definitions

 $X \Rightarrow Y(CC\%), \quad for X \cap Y = 0$ 

- Clustered Support CS: ratio of area that satisfy both X and Y to the area of study region S
   − CS = ( clusters\_area(X) ∩ clusters\_area(Y) ) / area(S)
- Clustered Confidence *CC*: conditional probability of areas of *CwR* of *Y* given areas of *CwR* of *X*

 $-CC = clusters\_areas(X \cup Y) / clusters\_areas(X)$ 



### Horizontal-view approach Calculating rules

#### Around 40% of

- locations belonging to clusters in Dataset I also belongs to clusters in Dataset II
- Around 40% of incidents illustrated in Dataset I happens near incidents from Dataset II

|                              | clusters_area | CS(%) | CC(%) |
|------------------------------|---------------|-------|-------|
| S                            | 6940.14       | 100.0 | N/A   |
| Dataset I                    | 992.04        | 14.29 | N/A   |
| Dataset II                   | 1312.21       | 18.91 | N/A   |
| Dataset I<br>⇒<br>Dataset II | 401.46        | 5.78  | 40.47 |
| Dataset II<br>⇒<br>Dataset I | 401.46        | 5.78  | 30.59 |

• Vice-versa similar

#### Horizontal-view approach Summary

- Advantages
  - Autonomous better suited for mining massive databases than the vertical-view approach
  - Does not necessitate domain knowledge
- Disadvantages
  - ???

#### Real data example Introduction

- Crime activity on the south east Queensland region
- 217 suburbs around Brisbane
- Crime data provided by Queensland Police Services are too complex and extremely huge
  - It is difficult even for domain experts to detect valuable patterns

### Real data example Input data

- Queensland Police Service provides data:
  - 1. Offences against person
    - Homicide, assault, sexual offence, robbery, extortion, kidnapping, others
  - 2. Offences against property
    - Breaking and entering, arson, other property damage, motor vehicle theft, stealing, fraud, others
  - 3. Other offences
    - Drug offences, prostitution, liquor, gaming offences, trespassing and vagrancy, good order offences, traffic and related offences, miscellaneous offences

### Real data example Even more input data

- Parks
- Railway stations
- Schools
- Other features
- To our purposes we will use 3 main crime categories and 3 feature data

# Real data example Input data selection

- a) Offences against person - 9 618 cases
- b) Offences against property – 113 618 cases
- c) Other offences 2 124 cases
- d) Reserves
- e) Parks (including caravan parks)
- f) Schools







| Quantitativ                              | alv doccrib | ad data |  |  |  |
|------------------------------------------|-------------|---------|--|--|--|
| Quantitatively described data            |             |         |  |  |  |
|                                          | CS(%)       | CC(%)   |  |  |  |
| Offences Against the person ⇒ Reserves   | 15.40       | 44.93   |  |  |  |
| Reserves ⇒ Offences Against the person   | 15.40       | 50.99   |  |  |  |
| Offences Against the person ⇒ Parks      | 29.23       | 85.29   |  |  |  |
| Parks ⇒ Offences Against the person      | 29.23       | 57.33   |  |  |  |
| Offences Against the person ⇒ Schools    | 26.56       | 77.50   |  |  |  |
| Schools ⇒ Offences Against the person    | 26.56       | 59.85   |  |  |  |
| Offences Against the property ⇒ Reserves | 20.83       | 47.44   |  |  |  |
| Reserves ⇒ Offences Against the property | 20.83       | 68.99   |  |  |  |
| Offences Against the property ⇒ Parks    | 36.25       | 82.56   |  |  |  |
| Parks ⇒ Offences Against the property    | 36.25       | 71.10   |  |  |  |
| Offences Against the property ⇒ Schools  | 33.42       | 76.11   |  |  |  |
| Schools ⇒ Offences Against the property  | 33.42       | 75.31   |  |  |  |
| Other offences ⇒ Reserves                | 17.81       | 50.47   |  |  |  |
| Reserves ⇒ Other offences                | 17.81       | 58.97   |  |  |  |
| Other offences ⇒ Parks                   | 29.90       | 84.74   |  |  |  |
| Parks ⇒ Other offences                   | 29.90       | 58.64   |  |  |  |
| Other offences ⇒ Schools                 | 28.35       | 80.36   |  |  |  |
| Schools ⇒Other offences                  | 28.35       | 63.89   |  |  |  |

### Real data example What can we read from that?

- The amount of CSARs is really big
- Let's filter data and choose only these, where CS minimum is 30%, and CC minimum is 75%
  - Offences against property ⇒ Parks (36.25% CS, 82.56% CC)
  - Offences against property ⇒Schools (33.42% CS, 76.11% CC)
  - Schools ⇒ Offences against property (33.42% CS, 76.31% CC)

### Real data example **Final conclusions**

- Most offences against property are taking place around parks and schools
- · Locations of school will probably cause offences against property
- If you live near some school in Queensland beware!

### To finish with... Summary

### Vertical-view approach

- 1. Find spatial clusters for point-data layers
- 2. Segment all layers with the finite number of regular cells
- 3. Construct m×n relational table with the binary values
- 4. Apply association-rule mining to the table

#### Horizontal-view approach

- 1. Find *CwR(P)* for point-data layers P in X and Y
- 2. Extract clusters boundaries of Extract clusters boundaries of each *CwR* for point-data layers in X and Y
   Compute the value of the areas of *CwR* for point-data
- layers and the areas of area-data layers
- 4. Overlay X and Y
- Apply association-rule mining to detect CSARs

The end

• Thank you for your attention