582670 Algorithms for Bioinformatics

Lecture 3: Greedy Algorithms and Genomic Rearrangements

> 13.9.2012

Adapted from slides by Veli Mäkinen / Algorithms for Bioinformatics 2011 which use material from slides by Esa Pitkä́nen / Introduction to Bioinformatics 2008

Background

- We now have genomes of several species available
- It is possible to compare genomes of two or more different species
\Longrightarrow Comparative genomics
- Basic observation:
- Closely related species (such as human and mouse) can be almost identical in terms of genome contents...
- ... but the order of genomic segments can be very different between species

Synteny blocks and segments

- Synteny - describes how genomic segments are located on the same chromosome or close to each other
- Genes, markers (any sequence)
- Shared synteny between two species: genes are located close to each other in both of the species
- Synteny block (or syntenic block)
- A set of genes or markers that co-occur together in two species
- Synteny segment (or syntenic segment)
- Syntenic block where the order of genes or markers is preserved

Synteny blocks and segments

Chromosomes

- Linear chromosomes
- Eukaryotes (mostly)
- Circular chromosomes
- Prokaryotes (mostly)
- Mitochondria

- Chromosomes are double stranded: genes can be found on both strands (orientations)

gene 3

Example: Human vs mouse genome

- Human and mouse genomes share thousands of homologous genes but they are
- Arranged in different order
- Located in different chromosomes
- Examples:
- Human chromosome 6 contains elements from six different mouse chromosomes
- Analysis of X chromosome indicates that rearrangements have happened primrily within chromosome

Fig. 5.1. Syntenic blocks conserved between human chromosome Hsa6 and mouse chromosomes. Broken lines indicate regions that appear in inverted orders in the two organisms. Reprinted, with permission, from Gregory SG et al. (2002) Nature 418:743-750. Copyright 2002 Nature Publishing Group.

Fig. 5.3. Synteny blocks shared by human and mouse X chromosomes. The arrowhead for each block indicates the direction of increasing coordinate values for the human X chromosome. Reprinted, with permission, from Pevzner P and Tesler G (2003) Genome Research 13:37-45. Copyright 2003 Cold Spring Harbor Laboratory Press.

Representing genomic rearrangements

- When comparing genomes, we can find homologous sequences in both using sequence comparison algorithms (next lecture).
- This gives us a map between sequences in both genomes.

Fig. 5.1. Syntenic blocks conserved between human chromosome Hsa6 and mouse chromosomes. Broken lines indicate regions that appear in inverted orders in the two organisms. Reprinted, with permission, from Gregory SG et al. (2002) Nature 418:743-750. Copyright 2002 Nature Publishing Group.

Representing genomic rearrangements

- We assign numbers $1, \ldots, n$ to the found homologous sequences
- By convention, we number the sequences in the first genome by their order of appearance in the chromosomes
- If the homolog of i is in reverse orientation, it receives number $-i$ (signed data)
- For example consider human vs mouse gene numbering on the right
- List order corresponds to physical order on chromosomes!

Permutations

- The basic data structure in the study of genome rearrangements is permutation
- A permutation of a sequence of n numbers is a reordering of the sequence
- For example, 41325 is a permutation of 12345

Genome rearrangement problem

- Given two genomes (set of markers), how many
- duplications,
- inversions and
- translocations
do we need to transform the first genome to the second?
Minimum number of operations?
What operations? Which order?

Genome rearrangement problem

\# duplications?
\# inversions?
\# translocations?
$51234 \longrightarrow 12345$

Genome rearrangement problem

Keep in mind that the two genomes have been evolved from a common ancestor genome!

Genome rearrangements using reversals (inversions) only

- Let's consider a "simpler" problem where we just study reversals with unsigned data
- A reversal $p(i, j)$ reverses the order of the segment $\pi_{i} \pi_{i+1} \ldots \pi_{j-1} \pi_{j}$ (indexing starts from 1)
- For example, given permutation 51234 and reversal $p(2,4)$ we get permutation 53214

Note that we do not care about the exact positions on the genome.

Reversal distance problem

- Find the shortest series of reversals that, given a permutation π, transforms it to the identity permutation $(1,2, \ldots, n)$.
- This reversal distance is denoted by $d(\pi)$
- Reversal distance for a pair of chromosomes:
- Find synteny blocks in both
- Number synteny blocks in the first chromosome to identity
- Set π to corresponding matching of second chromosome's blocks against the first
- Find reversal distance

Solving the problem by sorting

- Our first approach to solve the reversal distance problem:
- Examine each position i of the permutation from left to right
- At each position, if $\pi \neq i$, do a reversal such that $\pi_{i}=i$
- This is a greedy approach: we try to choose the option that looks best at the current step

Simple reversal sort: example

$\underline{5} 1234 \Longrightarrow 1 \underline{5} 234 \Longrightarrow 12 \underline{5} 34 \Longrightarrow 123 \underline{5} 4 \Longrightarrow 1234 \underline{5}$

- Reversal series: $p(1,2), p(2,3), p(3,4), p(4,5)$
- Is $d\left(\begin{array}{l}5 \\ 1\end{array} 234\right)$ then 4 ?

Simple reversal sort: example

$$
\underline{5} 1234 \Longrightarrow 1 \underline{5} 234 \Longrightarrow 12 \underline{5} 34 \Longrightarrow 123 \underline{5} 4 \Longrightarrow 1234 \underline{5}
$$

- Reversal series: $p(1,2), p(2,3), p(3,4), p(4,5)$
- Is $d\left(\begin{array}{l}5 \\ 1\end{array} 234\right)$ then 4 ?
$51234 \Longrightarrow 43215 \Longrightarrow 12345$
- $d(51234)=2$

How good is simple reversal sort?

- Not so good actually
- It has to do at most $n-1$ reversals with permutation of length n
- In our previous example, the algorithm returned a distance that is as large as $(n-1) / 2$ times the correct result $d(\pi)$
- For example, if we extend the example for $n=1001$, the result can be as bad as $500 \times d(\pi)$

Approximation algorithms and approximation ratios

- Simple reversal sort is an approximation algorithm. It only produces an approximate solution.
- $\mathcal{A}(\pi)$: approximate solution returned by algorithm \mathcal{A}
- OPT (π) : optimal solution
- The approximation ratio of (minimization) algorithm \mathcal{A} is the maximum approximation ratio over all inputs of size n :

$$
\max _{|\pi|=n} \frac{\mathcal{A}(\pi)}{O P T(\pi)}
$$

- The approximation ratio for simple reversal sort is thus at least $(n-1) / 2$
- The approximation ratio tells how much off the solution given by the algorithm can in worst case be from the optimal solution

Approximation ratios for maximization problems

- Previous slide gave the approximation ration for a minimization problem like reversal distance.
- For a maximization problem (e.g. motif finding, maximizing score) the approximation ratio of an algorithm is defined as the minimum approximation ratio over all inputs of size n :

$$
\min _{|\pi|=n} \frac{\mathcal{A}(\pi)}{O P T(\pi)}
$$

Computing reversals with breakpoints

- Let's investigate a better way to compute reversal distance
- First some concepts related to permutation $\pi_{1} \pi_{2} \ldots \pi_{n-1} \pi_{n}$
- Breakpoint: two elements π_{i} and π_{i+1} are a breakpoint if they are not consecutive numbers
- Adjacency: if π_{i} and π_{i+1} are consecutive they are an adjacency

Breakpoints and adjacencies

This permutation contains

- four breakpoints: begin-2, 13, 58, 6-end
- five adjacencies: $21,34,45,87,76$

Breakpoints

Breakpoints

- Each breakpoint in permutation needs to be removed to get to the identity permutation (= our target)
- Identity permutation does not contain any breakpoints
- First and last positions special cases
- Note that each reversal can remove at most two breakpoints
- Denote the number of breakpoints by $b(\pi)$

$$
\begin{array}{|l|l|l|}
\hline 21 & 345 & 876 \\
\hline
\end{array}
$$

Breakpoint reversal sort

- Idea: Try to remove as many breakpoints as possible (max 2) in every step

1: while $b(\pi)>0$ do
2: Choose reversal p that removes most breakpoints
3: \quad Perform reversal p to π
4: \quad Output π
5: return

Breakpoint removal: example

Break point removal

- The previous algorithm needs refinement to be correct
- Consider the following permutation

$$
15672348
$$

- There is no reversal that decreases the number of breakpoints!

Breakpoint removal

- Reversal can always decrease breakpoint count if permutation contains decreasing strips
- Strip: maximal segment without breakpoints

$$
\begin{aligned}
& \xrightarrow{1} \begin{array}{lllll}
5 & 6 & 7 & 3 & 4 \\
8
\end{array} \longrightarrow \text { Increasing strip } \\
& \xrightarrow{1} \underset{\longrightarrow}{567} \underset{\longrightarrow}{432} \xrightarrow{8} \\
& \xrightarrow{1234} \underset{\longleftrightarrow}{765} \xrightarrow{8} \\
& \longleftarrow \text { Decreasing strip } \\
& \text { (including segments of } \\
& \text { length } 1 \text {, except } 1 \text { and } \\
& n \text { if they are located at } \\
& \text { their correct locations) }
\end{aligned}
$$

Improved breakpoint reversal sort

1: while $b(\pi)>0$ do
2: if π has a decreasing strip then
3: \quad Apply reversal p such that it removes most BPs
4: else
5: \quad Reverse an increasing strip
6: \quad Output π

Is improved BP removal enough?

- The algorithm works pretty well:
- A reversal removes at most two breakpoints
\Longrightarrow Optimal solution cannot be better than $b(\pi) / 2$
- Improved BP removal performs at most $2 \cdot b(\pi)$ reversals
\Longrightarrow The result is at most four times worse than the optimal
\Longrightarrow The approximation ratio of improved BP removal is at most 4.
- Is this good?
- We considered only reversals
- What about translocations and duplications?

Translocations via reversals

Genome rearrangements with reversals

- With unsigned data, the problem of finding minimum reversal distances is NP-complete
- An algorithm has been developed that achieves 1.375-approximation (Berman et al. ESA 2002)
- However, reversal distance in signed data can be computed quickly!
- It takes linear time w.r.t. the length of permutation (Bader, Moret, Yan 2001)
- We will not cover that algorithm here but give some insight into central concepts leading to it

Estimating reversal distance by cycle decomposition

- We can estimate $d(\pi)$ by cycle decomposition
- Let's represent permutation $\pi=12453$ with the following graph

where edges correspond to adjacencies (identity, permutation π)

Estimating reversal distance by cycle decomposition

- Cycle decomposition: a set of cycles that
- have edges with alternating colors
- do not share edges with other cycles (=cycles are edge disjoint)

Cycle decompositions

- Let $c(\pi)$ be the maximum number of alternating, edge-disjoint cycles in the graph representation of π
- The following formula allows estimation of $d(\pi)$
- $d(\pi) \geq n+1-c(\pi)$, where n is the permutation length

Cycle decompositions

- Cycle decomposition is NP-complete
- However, with signed data cycle decomposition becomes a trivial task
- Lead also to efficient (but rather involved) reversal distance algorithms on signed data.

Cycle decomposition with signed data

- Consider the following permutation that includes orientation of the markers
- +1-5-3-2 +4
- We modify this representation to include both endpoints of each marker:
- 0 1a 1b 5b 5a 3b 3a 2b 2a 4a 4b 6

Graph representation of π and identity permutation

Reversal step 1 (ad hoc greedy algorithm)

Reversal steps 2,3,4

Multiple chromosomes

- In unichromosomal genomes, inversion (reversal) is the most common operation
- In multichromosomal genomes, inversions, translocations, fissions and fusions are most common

Multiple chromosomes

- Let's represent a multichromosonal genome as a set of permutations, with $\$$ denoting the boundary of a chromosome:

$59 \$$	Chr 1
$1328 \$$	Chr 2
$764 \$$	Chr 3

This notation is frequently used in software used to analyse genome rearrangements

Fusions and fissions

- Fusion: merging of two chromosomes
- Fission: chromosome is split into two chromosomes
- Both events can be represented with a translocation

Fusion

Fission

Fission

Algorithms for general genomic distance problem

- Hannenhalli, Pevzner: Transforming Men into Mice (polynomial algorithm for genomic distance problem), 36th Annual IEEE Symposium on Foundations of Computer Science, 1995.

Human and mouse revisited

- Human and mouse are separated by about 75-83 million years of evolutionary history
- Only a few hundred rearrangements have happened after speciation from the common ancestor
- Pevzner and Tesler identified in 2003 for 281 synteny blocks a rearrangement from mouse to human with
- 149 inversions
- 93 translocations
- 9 fissions

Discussion

- Genome rearrangement events are very rare compared to e.g. point mutations
- We can study rearrangements events further back in the evolutionary history
- Rearrangements are easier to detect in comparison to many other genomic events
- We cannot detect homologs 100% correctly so the input permutation can contain errors

Two different genome rearrangement scenarios giving the same result.

GRIMM demonstration

GRIMM - Genome rearrangement algorithms

| | Multiple genome form |
| :--- | :--- | :--- |
| Source genome: | Men |
| Destination genome: | |
| | |
| Chromosomes: | Ocircular Olinear (directed) ©multichromosomal or undirected |
| Signs: | ©signed Ounsigned |

Formatting options

Report Style:

One line per genome (chromosomes concatenated)	One column (chromosomes separated)	Two column befo (chromosomes s
O Horizontal	O Yes	Onow all chrom
O Vertical		Only affected ch
Show all possible initial steps of optimal scenarios O		
Should operations (reversal, translocation, fission, fusion) be highlighted, and when?		
Obefore Oafter © between/both O no highlighting		
Onumeric (10) © subscripts (Ci0) Oomit		
Genes should be colored according to their chromosome in which genome:		
Osource © destination		
run undo clear form		

GRIMM1 1.04 by Glenn Tesler, University of California, San Diego.
Copyright © 2001-2005, The University of California.
Contains code from GRAPPA, (C) 2000-2001, The University of New Mexico and The University of Texas at Austin.
Glenn Tesler: GRIMM: genome rearrangements web server. Bioinformatics, 2002.

GRIMM file format

```
# useful comment about the first genome
# another useful comment
>name of first genome
1 -4 2 $ # chromosome 1
-3 5 6 $ # chromosome 2
>name of second genome
5 -3 $
$
2 -4 1 $
```

- GRIMM supports analysis of one, two or more genomes
- http://grimm.ucsd.edu/GRIMM/grimm_instr.html

Outline

Biological background
Permutations and genomic rearrangements
Sorting by reversals
Simple reversal sort
Breakpoints
Cycle decomposition
Multiple chromosomes
GRIMM
Study group assignments

Study Group 1: (random allocation at lecture)

- Read pages 230-232 from Sung: Algorithms in Bioinformatics: A Practical Introduction, CRC Press 2010
- 2-approximation for sorting an unsigned permutation
- Copies distributed at the lecture.
- In the study group
- Go through the reasoning in the proof of Lemma 9.2.
- Simulate the 2-approximation algorithm on the permutation

$$
165784239
$$

How many reversals does the 2-approximation algorithm need? Is this optimal?

Study Group 2: (if you did not get material at the lecture)

- Read pages 136 and 137 from Jones \& Pevzner
- Greedy approach to motif finding
- At study group, solve Problem 5.18
- Desing an input for the GreedyMotifSearch algorithm that causes the algorithm to output an incorrect result

Study Group 3: (random allocation at lecture)

- Read pages 15, 16, 19-22 (sect. 2.3) from Vazirani: Approximation algorithms, Springer 2001
- Shortest superstring and its greedy approximation through set cover
- Copies distributed at the lecture.
- At study group, present the reduction to set cover with some example

