
582670 Algorithms for Bioinformatics

Lecture 3: Greedy Algorithms and Genomic Rearrangements

13.9.2012

Adapted from slides by Veli Mäkinen / Algorithms for Bioinformatics 2011
which use material from slides by Esa Pitkänen / Introduction to Bioinformatics 2008

Background

I We now have genomes of several species available

I It is possible to compare genomes of two or more different species
=⇒ Comparative genomics

I Basic observation:
I Closely related species (such as human and mouse) can be almost

identical in terms of genome contents...
I ... but the order of genomic segments can be very different between

species

Synteny blocks and segments

I Synteny – describes how genomic segments are located on the same
chromosome or close to each other

I Genes, markers (any sequence)

I Shared synteny between two species: genes are located close to each
other in both of the species

I Synteny block (or syntenic block)
I A set of genes or markers that co-occur together in two species

I Synteny segment (or syntenic segment)
I Syntenic block where the order of genes or markers is preserved

Synteny blocks and segments

Chromosome j, species C

Chromosome i, species B

Synteny segment

Synteny block

Homologs of the same gene

Chromosomes

I Linear chromosomes
I Eukaryotes (mostly)

I Circular chromosomes
I Prokaryotes (mostly)
I Mitochondria

I Chromosomes are double stranded:
genes can be found on both strands
(orientations)

gene 1

gene 2

gene 3

Example: Human vs mouse genome

I Human and mouse genomes share thousands of homologous genes
but they are

I Arranged in different order
I Located in different chromosomes

I Examples:
I Human chromosome 6 contains elements from six different mouse

chromosomes
I Analysis of X chromosome indicates that rearrangements have

happened primrily within chromosome

Jones & Pevzner, 2004

Representing genomic rearrangements

I When comparing genomes, we can find homologous sequences in both
using sequence comparison algorithms (next lecture).

I This gives us a map between sequences in both genomes.

Representing genomic rearrangements

I We assign numbers 1, . . . , n to the
found homologous sequences

I By convention, we number the
sequences in the first genome by
their order of appearance in the
chromosomes

I If the homolog of i is in reverse
orientation, it receives number −i
(signed data)

I For example consider human vs
mouse gene numbering on the right

I List order corresponds to physical
order on chromosomes!

Human Mouse
1 (gnat2) 12 (inpp1)
2 (nras) 13 (cd28)
3 (ngfb) 14 (fn1)
4 (gba) 15 (pax3)
5 (pklr) -9 (il10)
6 (at3) -8 (pdc)
7 (lamc1) -7 (lamc1)
8 (pdc) -6 (at3)
9 (il10) . . .

. . .

Permutations

I The basic data structure in the study of genome rearrangements is
permutation

I A permutation of a sequence of n numbers is a reordering of the
sequence

I For example, 4 1 3 2 5 is a permutation of 1 2 3 4 5

Genome rearrangement problem

I Given two genomes (set of markers), how many
I duplications,
I inversions and
I translocations

do we need to transform the first genome to the second?

Minimum number of operations?
What operations? Which order?

Genome rearrangement problem

5 1 2 3 4 1 2 3 4 5

duplications?
inversions?
translocations?

Genome rearrangement problem

π1π2π3π4π5

5 1 2 3 4 1 2 3 4 5

Permutation of 1,...,6

Keep in mind that the two genomes have been evolved from a common
ancestor genome!

Genome rearrangements using reversals (inversions) only

I Let’s consider a “simpler” problem where we just study reversals
with unsigned data

I A reversal p(i , j) reverses the order of the segment πiπi+1 . . . πj−1πj
(indexing starts from 1)

I For example, given permutation 5 1 2 3 4 and reversal p(2, 4) we get
permutation 5 3 2 1 4

Note that we do not care about the exact positions on the genome.

Reversal distance problem

I Find the shortest series of reversals that, given a permutation π,
transforms it to the identity permutation (1, 2, . . . , n).

I This reversal distance is denoted by d(π)

I Reversal distance for a pair of chromosomes:
I Find synteny blocks in both
I Number synteny blocks in the first chromosome to identity
I Set π to corresponding matching of second chromosome’s blocks

against the first
I Find reversal distance

Solving the problem by sorting

I Our first approach to solve the reversal distance problem:
I Examine each position i of the permutation from left to right
I At each position, if π 6= i , do a reversal such that πi = i

I This is a greedy approach: we try to choose the option that looks
best at the current step

Simple reversal sort: example

5 1 2 3 4 =⇒ 1 5 2 3 4 =⇒ 1 2 5 3 4 =⇒ 1 2 3 5 4 =⇒ 1 2 3 4 5

I Reversal series: p(1, 2), p(2, 3), p(3, 4), p(4, 5)

I Is d(5 1 2 3 4) then 4?

5 1 2 3 4 =⇒ 4 3 2 1 5 =⇒ 1 2 3 4 5

I d(5 1 2 3 4) = 2

Simple reversal sort: example

5 1 2 3 4 =⇒ 1 5 2 3 4 =⇒ 1 2 5 3 4 =⇒ 1 2 3 5 4 =⇒ 1 2 3 4 5

I Reversal series: p(1, 2), p(2, 3), p(3, 4), p(4, 5)

I Is d(5 1 2 3 4) then 4?

5 1 2 3 4 =⇒ 4 3 2 1 5 =⇒ 1 2 3 4 5

I d(5 1 2 3 4) = 2

How good is simple reversal sort?

I Not so good actually

I It has to do at most n − 1 reversals with permutation of length n
I In our previous example, the algorithm returned a distance that is as

large as (n − 1)/2 times the correct result d(π)
I For example, if we extend the example for n = 1001, the result can be

as bad as 500× d(π)

Approximation algorithms and approximation ratios

I Simple reversal sort is an approximation algorithm. It only produces
an approximate solution.

I A(π): approximate solution returned by algorithm A
I OPT (π): optimal solution

I The approximation ratio of (minimization) algorithm A is the
maximum approximation ratio over all inputs of size n:

max
|π|=n

A(π)

OPT (π)

I The approximation ratio for simple reversal sort is thus at least
(n − 1)/2

I The approximation ratio tells how much off the solution given by the
algorithm can in worst case be from the optimal solution

Approximation ratios for maximization problems

I Previous slide gave the approximation ration for a minimization
problem like reversal distance.

I For a maximization problem (e.g. motif finding, maximizing score)
the approximation ratio of an algorithm is defined as the minimum
approximation ratio over all inputs of size n:

min
|π|=n

A(π)

OPT (π)

Computing reversals with breakpoints

I Let’s investigate a better way to compute reversal distance
I First some concepts related to permutation π1π2 . . . πn−1πn

I Breakpoint: two elements πi and πi+1 are a breakpoint if they are not
consecutive numbers

I Adjacency: if πi and πi+1 are consecutive they are an adjacency

Breakpoints and adjacencies

This permutation contains

I four breakpoints: begin-2, 13, 58, 6-end

I five adjacencies: 21, 34, 45, 87, 76

21 345 876

Breakpoints

Breakpoints

I Each breakpoint in permutation needs to be removed to get to the
identity permutation (= our target)

I Identity permutation does not contain any breakpoints

I First and last positions special cases

I Note that each reversal can remove at most two breakpoints

I Denote the number of breakpoints by b(π)

21 345 876 b(π) = 4

Breakpoint reversal sort

I Idea: Try to remove as many breakpoints as possible (max 2) in every
step

1: while b(π) > 0 do
2: Choose reversal p that removes most breakpoints
3: Perform reversal p to π
4: Output π
5: return

Breakpoint removal: example

8 2 7 6 5 1 4 3 b(π) = 6

2 8 7 6 5 1 4 3 b(π) = 5

2 3 4 1 5 6 7 8 b(π) = 3

4 3 2 1 5 6 7 8 b(π) = 2

1 2 3 4 5 6 7 8 b(π) = 0

Break point removal

I The previous algorithm needs refinement to be correct

I Consider the following permutation

1 5 6 7 2 3 4 8

I There is no reversal that decreases the number of breakpoints!

Breakpoint removal

I Reversal can always decrease breakpoint count if permutation
contains decreasing strips

I Strip: maximal segment without breakpoints

1 5 6 7 2 3 4 8

1 5 6 7 4 3 2 8

1 2 3 4 7 6 5 8

Increasing strip

Decreasing strip
(including segments of
length 1, except 1 and
n if they are located at
their correct locations)

Improved breakpoint reversal sort

1: while b(π) > 0 do
2: if π has a decreasing strip then
3: Apply reversal p such that it removes most BPs
4: else
5: Reverse an increasing strip
6: Output π

Is improved BP removal enough?

I The algorithm works pretty well:
I A reversal removes at most two breakpoints

=⇒ Optimal solution cannot be better than b(π)/2
I Improved BP removal performs at most 2 · b(π) reversals

=⇒ The result is at most four times worse than the optimal
=⇒ The approximation ratio of improved BP removal is at most 4.

I Is this good?

I We considered only reversals

I What about translocations and duplications?

Translocations via reversals

1 2 3 4 5 6 7 8

Translocation of 2,3,4

1 5 6 7 8 2 3 4
p(2, 8)

1 4 3 2 8 7 6 5
p(2, 4)

1 2 3 4 8 7 6 5
p(5, 8)

1 2 3 4 5 6 7 8

Genome rearrangements with reversals

I With unsigned data, the problem of finding minimum reversal
distances is NP-complete

I An algorithm has been developed that achieves 1.375-approximation
(Berman et al. ESA 2002)

I However, reversal distance in signed data can be computed quickly!
I It takes linear time w.r.t. the length of permutation (Bader, Moret, Yan

2001)
I We will not cover that algorithm here but give some insight into

central concepts leading to it

Estimating reversal distance by cycle decomposition

I We can estimate d(π) by cycle decomposition

I Let’s represent permutation π = 1 2 4 5 3 with the following graph

0 1 2 4 5 3 6
where edges correspond to adjacencies (identity, permutation π)

Estimating reversal distance by cycle decomposition

I Cycle decomposition: a set of cycles that
I have edges with alternating colors
I do not share edges with other cycles (=cycles are edge disjoint)

0 1 2 4 5 3 6

1 2 4 5

Cycle decompositions

I Let c(π) be the maximum number of alternating, edge-disjoint cycles
in the graph representation of π

I The following formula allows estimation of d(π)
I d(π) ≥ n + 1− c(π), where n is the permutation length

0 1 2 4 5 3 6

1 2 4 5
d(π) ≥ 5 + 1− 4 = 2

Cycle decompositions

I Cycle decomposition is NP-complete
I However, with signed data cycle decomposition becomes a trivial task

I Lead also to efficient (but rather involved) reversal distance algorithms
on signed data.

Cycle decomposition with signed data

I Consider the following permutation that includes orientation of the
markers

I +1 -5 -3 -2 +4

I We modify this representation to include both endpoints of each
marker:

I 0 1a 1b 5b 5a 3b 3a 2b 2a 4a 4b 6

Graph representation of π and identity permutation

0 1a 1b 5b 5a 3b 3a 2b 2a 4a 4b 6

d(π) ≥ n + 1− c(π) = 5 + 1− 3 = 3

Reversal step 1 (ad hoc greedy algorithm)

0 1a 1b 5b 5a 3b 3a 2b 2a 4a 4b 6
+1 -5 -3 -2 +4

Step 1

0 1a 1b 2a 2b 3a 3b 5a 5b 4a 4b 6
+1 +2 +3 +5 +4

Reversal steps 2,3,4

0 1a 1b 2a 2b 3a 3b 5a 5b 4a 4b 6
+1 +2 +3 +5 +4

Step 2

0 1a 1b 2a 2b 3a 3b 4b 4a 5b 5a 6
+1 +2 +3 -4 -5

Step 3,4

0 1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6
+1 +2 +3 +4 +5

3 ≤ d(π) ≤ 4

Multiple chromosomes

I In unichromosomal genomes, inversion (reversal) is the most common
operation

I In multichromosomal genomes, inversions, translocations, fissions and
fusions are most common

Multiple chromosomes

I Let’s represent a multichromosonal genome as a set of permutations,
with $ denoting the boundary of a chromosome:

5 9 $ Chr 1
1 3 2 8 $ Chr 2
7 6 4 $ Chr 3

This notation is frequently used in software used to analyse genome
rearrangements

Fusions and fissions

I Fusion: merging of two chromosomes

I Fission: chromosome is split into two chromosomes

I Both events can be represented with a translocation

Fusion

Fusion

Fission

Fission

Algorithms for general genomic distance problem

I Hannenhalli, Pevzner: Transforming Men into Mice (polynomial
algorithm for genomic distance problem), 36th Annual IEEE
Symposium on Foundations of Computer Science, 1995.

Human and mouse revisited

I Human and mouse are separated by about 75-83 million years of
evolutionary history

I Only a few hundred rearrangements have happened after speciation
from the common ancestor

I Pevzner and Tesler identified in 2003 for 281 synteny blocks a
rearrangement from mouse to human with

I 149 inversions
I 93 translocations
I 9 fissions

Discussion

I Genome rearrangement events are very rare compared to e.g. point
mutations

I We can study rearrangements events further back in the evolutionary
history

I Rearrangements are easier to detect in comparison to many other
genomic events

I We cannot detect homologs 100% correctly so the input permutation
can contain errors

Two different genome rearrangement scenarios giving the same result.

GRIMM demonstration

Glenn Tesler: GRIMM: genome rearrangements web server.
Bioinformatics, 2002.

GRIMM file format

useful comment about the first genome

another useful comment

>name of first genome

1 -4 2 $ # chromosome 1

-3 5 6 $ # chromosome 2

>name of second genome

5 -3 $

6 $

2 -4 1 $

I GRIMM supports analysis of one, two or more genomes

I http://grimm.ucsd.edu/GRIMM/grimm_instr.html

http://grimm.ucsd.edu/GRIMM/grimm_instr.html

Outline

Biological background

Permutations and genomic rearrangements

Sorting by reversals

Simple reversal sort

Breakpoints

Cycle decomposition

Multiple chromosomes

GRIMM

Study group assignments

Study Group 1: (random allocation at lecture)

I Read pages 230-232 from Sung: Algorithms in Bioinformatics: A
Practical Introduction, CRC Press 2010

I 2-approximation for sorting an unsigned permutation
I Copies distributed at the lecture.

I In the study group
I Go through the reasoning in the proof of Lemma 9.2.
I Simulate the 2-approximation algorithm on the permutation

1 6 5 7 8 4 2 3 9

How many reversals does the 2-approximation algorithm need? Is this
optimal?

Study Group 2: (if you did not get material at the lecture)

I Read pages 136 and 137 from Jones & Pevzner
I Greedy approach to motif finding

I At study group, solve Problem 5.18
I Desing an input for the GreedyMotifSearch algorithm that causes the

algorithm to output an incorrect result

Study Group 3: (random allocation at lecture)

I Read pages 15, 16, 19-22 (sect. 2.3) from Vazirani: Approximation
algorithms, Springer 2001

I Shortest superstring and its greedy approximation through set cover
I Copies distributed at the lecture.

I At study group, present the reduction to set cover with some example

	Biological background
	Permutations and genomic rearrangements
	Sorting by reversals
	Simple reversal sort
	Breakpoints
	Cycle decomposition
	Multiple chromosomes
	GRIMM
	Study group assignments

