
582670 Algorithms for Bioinformatics

Lecture 4: Dynamic Programming and Sequence Alignment

20.9.2012

Adapted from slides by Veli Mäkinen / Algorithms for Bioinformatics 2011

Sequence similarity

I Genome rearrangement problem assumed we know for each gene in
species A its counterpart in species B (if exists).

I Orthologous genes: same ancestor in evolution
I Paralogous genes: gene duplication
I Homolog = Ortholog or paralog

I Often sequence similarity is the only way to predict whether two
genes are homologs

I Very unlikely that same (long) sequences have evolved independently
from different ancestors

I ... except horizontal gene transfer

Sequence similarity vs. distance

I Let A and B be two strings (sequences) from alphabet Σ

I Many different ways to define similarity or distance of A and B
I Recall Hamming distance dH(A,B)

I Only defined when |A| = |B|.
I What is the simplest measure to extend Hamming distance to

different length strings?
I For many purposes it is useful if the distance is a metric

Edit distance

I The most studied distance function extending Hamming distance is
unit cost edit distance or Levenshtein distance.

I dL(A,B) is the minimum amount of single symbol
insertions, deletions and substitutions
required to convert A to B.

I For example, when A = ”tukholma” and B = ”stockholm” we have
dL(A,B) = 4:

I insert s, substitute u → o, insert c, delete a
I ... or insert s, insert o, substitute u → c, delete a
I ... or is there a better sequence of edits?

- t u - k h o l m a
s t o c k h o l m -

Dynamic Programming

I Some problems can be broken into smaller subproblems so that the
solution to the problem can be constructed from the solutions of the
subproblems.

I This often leads to several instances of the same subproblem

I Dynamic programming is a technique to organize the computation
and save the solutions of the subproblems so that they only need to
be solved once.

I We will use dynamic programming to compute edit distance.

Example: Computing Fibonacci numbers

I Remember Fibonacci numbers:

F (n) =

{
1 if n = 1 or n = 2
F (n − 2) + F (n − 1) otherwise

I The recursion to compute
F (n) contains many identical
subproblems:

8

3

1 2

1 1

5

2

1 1

3

1 2

1 1

I We can avoid solving the same
subproblem several times by
saving the results in an array:

1 1 2 3 5 8

Example: Computing Fibonacci numbers

I Remember Fibonacci numbers:

F (n) =

{
1 if n = 1 or n = 2
F (n − 2) + F (n − 1) otherwise

I The recursion to compute
F (n) contains many identical
subproblems:

F (n):

1: if n = 1 or n = 2 then
2: return 1
3: else
4: return F (n − 2) + F (n − 1)

I We can avoid solving the same
subproblem several times by
saving the results in an array:

F (n):

1: f1 ← 1
2: f2 ← 1
3: for i ← 3 to n do
4: fi ← fi−2 + fi−1

5: return fn

Example: Lightest path in a DAG

1

2

3

4

5

6

7

1

2

5

2

2

0

1

4

2

DAG=directed acyclic graph Lightest path from s to v?

s

v

cost = min(1) = 1

cost = min(2) = 2

cost = min(1 + 2, 2 + 2) = 3

cost = min(2) = 2

cost = min(5, 3 + 1) = 4

cost = min(4 + 2, 3 + 4) = 6

1 2 3 4 5 6 7Topological sort

Edit distance

I Consider an optimal listing of edits to convert
the prefix a1a2 . . . ai of A into prefix b1b2 . . . bj of B

I Let the corresponding edit distance be dL(a1a2 . . . ai , b1b2 . . . bj)

I If ai = bj , we know that
dL(a1a2 . . . ai , b1b2 . . . bj) = dL(a1a2 . . . ai−1, b1b2 . . . bj−1)

I Otherwise either ai is substituted by bj , or ai is deleted, or bj is
inserted in the optimal list of edits

I Hence we have

dL(a1a2 . . . ai , b1b2 . . . bj) =

min


dL(a1a2 . . . ai−1, b1b2 . . . bj−1) + (if ai = bj then 0 else 1)
dL(a1a2 . . . ai−1, b1b2 . . . bj) + 1
dL(a1a2 . . . ai , b1b2 . . . bj−1) + 1

Edit distance matrix D[i , j]

I Let D[i , j] denote dL(a1a2 . . . ai , bqb2 . . . bj).

I Obviously D[0, j] = j and D[i , 0] = i because the other prefix is of
lentgh 0

I Induction from previous slide gives:

D[i , j] = min


D[i − 1, j − 1] + (if ai = bj then 0 else 1)
D[i − 1, j] + 1
D[i , j − 1] + 1

I Matrix D can be computed in many evaluation orders:
I D[i − 1, j − 1], D[i − 1, j], and D[i , j − 1] must be available when

computing D[i , j]
I E.g. compute D row-by-row, column-by-column...

I Running time to compute D[m, n] is O(mn)

Edit distance: example

s t o c k h o l m

0 1 2 3 4 5 6 7 8 9

t 1 1 1 2 3 4 5 6 7 8

u 2 2 2 2 3 4 5 6 7 8

k 3 3 3 3 3 3 4 5 6 7

h 4 4 4 4 4 4 3 4 5 6

o 5 5 5 4 5 5 4 3 4 5

l 6 6 6 5 5 6 5 4 3 4

m 7 7 7 6 6 6 6 5 4 3

a 8 8 8 7 7 7 7 6 5 4

i

j

Edit distance matrix as a DAG

s t o c k h o l m

0 1 2 3 4 5 6 7 8 9

t 1 1 1 2 3 4 5 6 7 8

u 2 2 2 2 3 4 5 6 7 8

k 3 3 3 3 3 3 4 5 6 7

h 4 4 4 4 4 4 3 4 5 6

o 5 5 5 4 5 5 4 3 4 5

l 6 6 6 5 5 6 5 4 3 4

m 7 7 7 6 6 6 6 5 4 3

a 8 8 8 7 7 7 7 6 5 4

i

j

cost=4

cost=?

cost=3

cost=4

cost = min(3 + 0, 4 + 1, 4 + 1) = 3

1

0
1 1

1

Finding optimal alignments

One alignment:

I Store pointer to each cell telling from which cell the minimum was
obtained.

I Follow the pointers from (m, n) to (0, 0).

I Reverse the list.

All alignments:

I Backtrack from (m, n) to (0, 0) by checking at each cell (i , j) on the
path whether the value D[i , j] could have been obtained from cell
(i , j − 1), (i − 1, j − 1), or (i − 1, j).

I Explore all directions.
I All three directions possible.
I Exponentail number of optimal paths in the worst case.

Edit distance: example

s t o c k h o l m

0 1 2 3 4 5 6 7 8 9

t 1 1 1 2 3 4 5 6 7 8

u 2 2 2 2 3 4 5 6 7 8

k 3 3 3 3 3 3 4 5 6 7

h 4 4 4 4 4 4 3 4 5 6

o 5 5 5 4 5 5 4 3 4 5

l 6 6 6 5 5 6 5 4 3 4

m 7 7 7 6 6 6 6 5 4 3

a 8 8 8 7 7 7 7 6 5 4

i

j

- t - u k h o l m a
s t o c k h o l m -

- t u - k h o l m a
s t o c k h o l m -

Searching homologs with edit distance?

I Take DNA sequences A and B of two genes suspected to be
homologs.

I Edit distance of A and B can be huge even if A and B are true
homologs:

I One reason is silent mutations that alter DNA sequence so that the
codons sill encode the same amino acids

I In principle, A and B can differ in almost every third nucleotide.

I Better to compare protein sequences.
I Some substitutions are more likely than the others...
I Lot of tuning needed to use proper weight for operations

Better models =⇒ 582483 Biological Sequence Analysis (4cr), period III

Edit distance and NGS

I High-throughput next-generation sequencing (NGS) has raised again
the issue of using edit distance.

I Short DNA reads (50-1000 bp) a.k.a. patterns are measured from e.g.
cells of a patient.

I The reads are aligned against the reference genome
I Typically only SNPs and measurement errors need to be taken into

account.
I The occurrence of the reads in the reference genome can be

determined by finding the substring of the genome whose edit distance
(or Hamming distance) to the reads is minimum.

I Approximate string matching problem.

NGS-atlas: RNA-seq, ChIP-seq, (targeted) resequencing,
de novo sequencing, metagenomics...

Approximate string matching with Hamming distance dH

I k-mismatches problem: Search all occurrences O of pattern P[1,m]
in text T [1, n] such that P differs in at most k positions from the
occurrence substring.

I More formally: j ∈ O is a k-mismatch occurrence position of P in T if
dh(P,T [j , j + m − 1]) ≤ k

I Naive algorithm:
I Compare P against each T [j , j + m − 1] but skip as soon as k + 1

mismatches are encountered.
I Expected linear time!

Approximate string matching with edit distance dL

I k-errors problem is the approximate string matching problem with
edit distance:

I More formally: j ∈ O is a k-errors occurrence (end)position of P in T
if and only if dL(P,T [j ′, j]) ≤ k for some j ′.

I Can be solved with the “zero the first row trick”:
I D[0, j] = 0 for all j .
I Otherwise the computation is identical to edit distance computation

using matrix D.
I D[i , j] then equals the minimum number of edits to convert P[1, i] into

some suffix of T [1, j].
I If D[m, j] ≤ k then P can be converted to some substring T [j ′, j] with

at most k edit operations.

Faster algorithms =⇒ 58093 String Processing Algorithms (4 cr), period II

Approximate string matching: example

A A C T T A C T T G

0 0 0 0 0 0 0 0 0 0 0

C 1 1 1 0 1 1 1 0 1 1 1

A 2 1 1 1 1 2 1 1 1 2 2

T 3 2 2 2 1 1 2 2 1 1 2

T 4 3 3 3 2 1 2 3 2 1 2

A 5 4 3 4 3 2 1 2 3 2 2

G 6 5 4 4 4 3 2 2 3 3 2

i

j

A A C - T T A - C T T G
C A T T A G

A A C - T T A C T T G
C A T T A G

A A C T T A C - T T - G
C A T T A G

NGS atlas and approximate string matching 1/3

I Aligning reads from ChIP-seq and targeted sequences works using
basic approximate string matching.

I Tens of millions of reads, spead is an issue.

I Reference genome can be preprocessed to speed up search.
I Suffix tree like techniques work but...

I Suffix tree of human genome takes 50-200 GB!
I More space-efficient index structures have been developed (e.g. based

on Burrows-Wheeler transform that drop the space to ∼ 3 GB.

NGS atlas and approximate string matching 2/3

I Reads from RNA-seq need more advanced alignment:
I Read can span two exons

exon
ACGATCGATGCGT...

exon
...AGTTATCTATCTACA

︷ ︸︸ ︷
ACGACCGATGC

︷ ︸︸ ︷
TTTATCTAACTCA

A C G A T C G A T G C T T T A T C T A T C T A C A
A C G A C C G A T G C T T T A T C T A A C T - C A

NGS atlas and approximate string matching 3/3

I de novo sequenceing and metagenomics are much harder since there
is no reference genome.

I Shortest approximate superstring (exercise 2.5)
I How to modify edit distance computations for overlaps?

I Next week’s exercise

Variations: Heaviest path in a DAG

1

2

3

4

5

6

7

1

2

5

2

2

0

1

4

2

Heaviest path from s to v?

s

v

cost = max(1) = 1

cost = max(2) = 2

cost = max(1 + 2, 2 + 2) = 4

cost = max(2) = 2

cost = max(5, 4 + 1) = 5

cost = max(5 + 2, 4 + 4) = 8

1 2 3 4 5 6 7Topological sort

Heaviest paths in sequence alignment

I Consider the DAG of edit distance matrix.

I Turn minimization into maximization.

I Give score δ(ai , bj) for diagonal edges.

I Give score δ(ai ,−) for vertical edges.

I Give score δ(−, bj) for horizontal edges.

I Heaviest path in the DAG corresponds to the global alignment with
highest score

I Typically δ(ai , bj) = 1 if ai = bj and otherwise δ(ai , bj) = −µ
I Typically δ(ai ,−) = δ(−, bj) = −σ

Global alignment DAG and recurrence

score=4

score=?

score=3

score=4

score = max(3 + 1, 4− 1, 4− 1) = 4

-1

+1
-1 -1

-1

S [i , j] = max


S [i − 1, j − 1] + δ(ai , bj)
S [i − 1, j] + δ(ai ,−)
S [i , j − 1] + δ(−, bj)

Global alignment: Example

A A C T T A C T T G

δ(ai , bj) = 1, if ai = bj

δ(ai , bj) = −1, otherwise δ(ai ,−) = δ(−, bj) = −1

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

C -1 -1 -2 -1 -2 -3 -4 -5 -6 -7 -8

A -2 0 0 -1 -2 -3 -2 -3 -4 -5 -6

T -3 -1 -1 -1 0 -1 -2 -3 -2 -3 -4

T -4 -2 -2 -2 0 +1 0 -1 -2 -1 -2

A -5 -3 -1 -2 -1 0 +2 +1 0 -1 -2

G -6 -4 -2 -2 -2 -1 +1 +1 0 -1 0

i

j

Heaviest local paths in sequence alignment

I How to find heaviest subpaths (local path)?

I Define that the empty path has score 0.

I It is enough to search for subpaths (local paths) with weight greater
than 0.

I No heaviest path can have a prefix with negative score

I Add an edge with score 0 from the first node to all other nodes.

Local alignment DAG and recurrence

score=4

score=?

score=3

score=4

score=0

score = max(0, 3 + 1, 4− 1, 4− 1) = 4

0

0

0

0

-1

+1
-1 -1

-1

S [i , j] = max


0
S [i − 1, j − 1] + δ(ai , bj)
S [i − 1, j] + δ(ai ,−)
S [i , j − 1] + δ(−, bj)

Local alignment: Example

A A C T T A C T T G

δ(ai , bj) = 1, if ai = bj

δ(ai , bj) = −1, otherwise δ(ai ,−) = δ(−, bj) = −1

0 0 0 0 0 0 0 0 0 0 0

C 0 0 0 1 0 0 0 1 0 0 0

A 0 1 1 0 0 0 1 0 0 0 0

T 0 0 0 0 1 1 0 0 1 1 0

T 0 0 0 0 1 2 1 0 1 2 1

A 0 1 1 0 0 1 3 2 1 1 1

G 0 0 0 0 0 0 2 2 1 0 2

i

j

Longest common subsequence

I Global alignment with
I δ(ai , bj) = 1 when ai = bj and otherwise δ(ai , bj) = −∞
I δ(ai ,−) = δ(−, bj) = 0

gives the length of the longest common subsequence C of A and B:
I Longest sequence C that can be obtained by deleting 0 or more

symbols from A and also by deleting 0 or more symbols from B.

AACGCATACGG ACGACTGATCG

ACGCTACG

I Connection: dID(A,B) = m + n − 2 · |LCS(A,B)|,
where dID(A,B) is the edit distance with substitution cost ∞

Outline

Sequence similarity

Dynamic programming

Edit distance with dynamic programming

Sequence similarity problems

Sequence alignments

Study group assignments

Study Group 1: Firstnames A-I

I Read the following article before coming to the study group:

Sear R. Eddy: How do RNA folding algorithms work? Nature
Biotechnology 22, 1457 - 1458 (2004).
http://www.nature.com/nbt/journal/v22/n11/abs/nbt1104-1457.html

I RNA secondary structure prediction.
I Basic dynamic programming formulation.

I At study group, give an example of RNA secondary structure, how the
recurrence is derived for its computation, and how the recurrence is
evaluated.

http://www.nature.com/nbt/journal/v22/n11/abs/nbt1104-1457.html

Study Group 2: Firstnames J-Ma

I Read pages 42–45 from Sung: Algorithms in Bioinformatics: A
Practical Introduction, CRC Press 2010

I General gap penalty model
I Affine gap penalty model
I Copies distributed at the lecture (ask lecturer for a pdf if you were not

present)

I In the study group
I Explain the idea of each of the tables in the recurrence for the affine

gap model: V , G , F , and E .
I What is the best global alignment of CGAGAT and CAT using the

affine gap model? Use cost +4 for a match, -2 for mismatch, -3 for
gap opening, -1 for gap extension. What is the score of the alignment?

Study Group 3: Firstnames Me-Z

I Read pages 203–207 from Jones and Pevzner.
I Gene prediction by spliced alignment:
I Application/extension of heaviest path on a DAG

I At study group, explain the idea visually and explain how the
reoccurrences are derived. What is the running time of the algorithm?

	Sequence similarity
	Dynamic programming
	Edit distance with dynamic programming
	Sequence similarity problems
	Sequence alignments
	Study group assignments

