582670 Algorithms for Bioinformatics

Lecture 4: Dynamic Programming and Sequence Alignment
20.9.2012

Adapted from slides by Veli Mäkinen / Algorithms for Bioinformatics 2011

Sequence similarity

- Genome rearrangement problem assumed we know for each gene in species A its counterpart in species B (if exists).
- Orthologous genes: same ancestor in evolution
- Paralogous genes: gene duplication
- Homolog $=$ Ortholog or paralog
- Often sequence similarity is the only way to predict whether two genes are homologs
- Very unlikely that same (long) sequences have evolved independently from different ancestors
- ... except horizontal gene transfer

Sequence similarity vs. distance

- Let A and B be two strings (sequences) from alphabet Σ
- Many different ways to define similarity or distance of A and B
- Recall Hamming distance $d_{H}(A, B)$
- Only defined when $|A|=|B|$.
- What is the simplest measure to extend Hamming distance to different length strings?
- For many purposes it is useful if the distance is a metric

Edit distance

- The most studied distance function extending Hamming distance is unit cost edit distance or Levenshtein distance.
- $d_{L}(A, B)$ is the minimum amount of single symbol insertions, deletions and substitutions required to convert A to B.
- For example, when $A=$ "tukholma" and $B=$ "stockholm" we have $d_{L}(A, B)=4$:
- insert s, substitute $u \rightarrow 0$, insert c , delete a
- ... or insert s , insert o , substitute $\mathrm{u} \rightarrow \mathrm{c}$, delete a
- ... or is there a better sequence of edits?

$$
\begin{array}{cccccccccc}
- & \mathrm{t} & \mathrm{u} & - & \mathrm{k} & \mathrm{~h} & \mathrm{o} & \mathrm{l} & \mathrm{~m} & \mathrm{a} \\
\mathrm{~s} & \mathrm{t} & \mathrm{o} & \mathrm{c} & \mathrm{k} & \mathrm{~h} & \mathrm{o} & \mathrm{I} & \mathrm{~m} & -
\end{array}
$$

Dynamic Programming

- Some problems can be broken into smaller subproblems so that the solution to the problem can be constructed from the solutions of the subproblems.
- This often leads to several instances of the same subproblem
- Dynamic programming is a technique to organize the computation and save the solutions of the subproblems so that they only need to be solved once.
- We will use dynamic programming to compute edit distance.

Example: Computing Fibonacci numbers

- Remember Fibonacci numbers:

$$
F(n)= \begin{cases}1 & \text { if } n=1 \text { or } n=2 \\ F(n-2)+F(n-1) & \text { otherwise }\end{cases}
$$

- The recursion to compute $F(n)$ contains many identical subproblems:
- We can avoid solving the same subproblem several times by saving the results in an array:

Example: Computing Fibonacci numbers

- Remember Fibonacci numbers:

$$
F(n)= \begin{cases}1 & \text { if } n=1 \text { or } n=2 \\ F(n-2)+F(n-1) & \text { otherwise }\end{cases}
$$

- The recursion to compute $F(n)$ contains many identical subproblems:
$F(n)$:
1: if $n=1$ or $n=2$ then
2: return 1
3: else
4: return $F(n-2)+F(n-1)$
- We can avoid solving the same subproblem several times by saving the results in an array:
$F(n)$:
1: $f_{1} \leftarrow 1$
2: $f_{2} \leftarrow 1$
3: for $i \leftarrow 3$ to n do
4: $\quad f_{i} \leftarrow f_{i-2}+f_{i-1}$
5: return f_{n}

Example: Lightest path in a DAG

DAG=directed acyclic graph
Lightest path from s to v ?

$$
\operatorname{cost}=\min (1)=1
$$

Edit distance

- Consider an optimal listing of edits to convert the prefix $a_{1} a_{2} \ldots a_{i}$ of A into prefix $b_{1} b_{2} \ldots b_{j}$ of B
- Let the corresponding edit distance be $d_{L}\left(a_{1} a_{2} \ldots a_{i}, b_{1} b_{2} \ldots b_{j}\right)$
- If $a_{i}=b_{j}$, we know that
$d_{L}\left(a_{1} a_{2} \ldots a_{i}, b_{1} b_{2} \ldots b_{j}\right)=d_{L}\left(a_{1} a_{2} \ldots a_{i-1}, b_{1} b_{2} \ldots b_{j-1}\right)$
- Otherwise either a_{i} is substituted by b_{j}, or a_{i} is deleted, or b_{j} is inserted in the optimal list of edits
- Hence we have

$$
\begin{aligned}
& d_{L}\left(a_{1} a_{2} \ldots a_{i}, b_{1} b_{2} \ldots b_{j}\right)= \\
& \quad \min \left\{\begin{array}{l}
d_{L}\left(a_{1} a_{2} \ldots a_{i-1}, b_{1} b_{2} \ldots b_{j-1}\right)+\left(\text { if } a_{i}=b_{j} \text { then } 0 \text { else } 1\right) \\
d_{L}\left(a_{1} a_{2} \ldots a_{i-1}, b_{1} b_{2} \ldots b_{j}\right)+1 \\
d_{L}\left(a_{1} a_{2} \ldots a_{i}, b_{1} b_{2} \ldots b_{j-1}\right)+1
\end{array}\right.
\end{aligned}
$$

Edit distance matrix $D[i, j]$

- Let $D[i, j]$ denote $d_{L}\left(a_{1} a_{2} \ldots a_{i}, b_{q} b_{2} \ldots b_{j}\right)$.
- Obviously $D[0, j]=j$ and $D[i, 0]=i$ because the other prefix is of lentgh 0
- Induction from previous slide gives:

$$
D[i, j]=\min \left\{\begin{array}{l}
D[i-1, j-1]+\left(\text { if } a_{i}=b_{j} \text { then } 0 \text { else } 1\right) \\
D[i-1, j]+1 \\
D[i, j-1]+1
\end{array}\right.
$$

- Matrix D can be computed in many evaluation orders:
- $D[i-1, j-1], D[i-1, j]$, and $D[i, j-1]$ must be available when computing $D[i, j]$
- E.g. compute D row-by-row, column-by-column...
- Running time to compute $D[m, n]$ is $O(m n)$

Edit distance: example

Edit distance matrix as a DAG

j

Finding optimal alignments

One alignment:

- Store pointer to each cell telling from which cell the minimum was obtained.
- Follow the pointers from (m, n) to $(0,0)$.
- Reverse the list.

All alignments:

- Backtrack from (m, n) to $(0,0)$ by checking at each cell (i, j) on the path whether the value $D[i, j]$ could have been obtained from cell $(i, j-1),(i-1, j-1)$, or $(i-1, j)$.
- Explore all directions.
- All three directions possible.
- Exponentail number of optimal paths in the worst case.

Edit distance: example
j

		s	t	\bigcirc	c	k	h	\bigcirc	1	m	$\begin{aligned} & -\mathrm{t}-\mathrm{ukholm} \mathrm{~m} \\ & \mathrm{~s} \mathrm{t} \text { ockholm - } \end{aligned}$
	0	1	2	3	4	5	6	7	8	9	
t	1	1	1	2	3	4	5	6	7	8	
u	2	2	2	2	3	4	5	6	7	8	
k	3	3	3	3	3	3	4	5	6	7	
h	4	4	4	4	4	4	3	4	5	6	
\bigcirc	5	5	5	4	5	5	4	3	4	5	
1	6	6	6	5	5	6	5	4	3	4	
m	7	7	7	6	6	6	6	5	4	3	
a	8	8	8	7	7	7	7	6	5	4	

Searching homologs with edit distance?

- Take DNA sequences A and B of two genes suspected to be homologs.
- Edit distance of A and B can be huge even if A and B are true homologs:
- One reason is silent mutations that alter DNA sequence so that the codons sill encode the same amino acids
- In principle, A and B can differ in almost every third nucleotide.
- Better to compare protein sequences.
- Some substitutions are more likely than the others...
- Lot of tuning needed to use proper weight for operations

Better models $\Longrightarrow 582483$ Biological Sequence Analysis (4cr), period III

Edit distance and NGS

- High-throughput next-generation sequencing (NGS) has raised again the issue of using edit distance.
- Short DNA reads (50-1000 bp) a.k.a. patterns are measured from e.g. cells of a patient.
- The reads are aligned against the reference genome
- Typically only SNPs and measurement errors need to be taken into account.
- The occurrence of the reads in the reference genome can be determined by finding the substring of the genome whose edit distance (or Hamming distance) to the reads is minimum.
- Approximate string matching problem.

NGS-atlas: RNA-seq, ChIP-seq, (targeted) resequencing, de novo sequencing, metagenomics...

Approximate string matching with Hamming distance d_{H}

- k-mismatches problem: Search all occurrences O of pattern $P[1, m]$ in text $T[1, n]$ such that P differs in at most k positions from the occurrence substring.
- More formally: $j \in O$ is a k-mismatch occurrence position of P in T if $d_{h}(P, T[j, j+m-1]) \leq k$
- Naive algorithm:
- Compare P against each $T[j, j+m-1]$ but skip as soon as $k+1$ mismatches are encountered.
- Expected linear time!

Approximate string matching with edit distance d_{L}

- k-errors problem is the approximate string matching problem with edit distance:
- More formally: $j \in O$ is a k-errors occurrence (end)position of P in T if and only if $d_{L}\left(P, T\left[j^{\prime}, j\right]\right) \leq k$ for some j^{\prime}.
- Can be solved with the "zero the first row trick":
- $D[0, j]=0$ for all j.
- Otherwise the computation is identical to edit distance computation using matrix D.
- $D[i, j]$ then equals the minimum number of edits to convert $P[1, i]$ into some suffix of $T[1, j]$.
- If $D[m, j] \leq k$ then P can be converted to some substring $T\left[j^{\prime}, j\right]$ with at most k edit operations.

Faster algorithms $\Longrightarrow 58093$ String Processing Algorithms (4 cr), period II

Approximate string matching: example

NGS atlas and approximate string matching $1 / 3$

- Aligning reads from ChIP-seq and targeted sequences works using basic approximate string matching.
- Tens of millions of reads, spead is an issue.
- Reference genome can be preprocessed to speed up search.
- Suffix tree like techniques work but...
- Suffix tree of human genome takes 50-200 GB!
- More space-efficient index structures have been developed (e.g. based on Burrows-Wheeler transform that drop the space to $\sim 3 \mathrm{~GB}$.

NGS atlas and approximate string matching 2/3

- Reads from RNA-seq need more advanced alignment:
- Read can span two exons

ACGATCGATGCTTTATCTATCTACA ACGACCGATGCTTTATCTAACT - CA

NGS atlas and approximate string matching 3/3

- de novo sequenceing and metagenomics are much harder since there is no reference genome.
- Shortest approximate superstring (exercise 2.5)
- How to modify edit distance computations for overlaps?
- Next week's exercise

Variations: Heaviest path in a DAG

Heaviest path from s to v ?

Topological sort

Heaviest paths in sequence alignment

- Consider the DAG of edit distance matrix.
- Turn minimization into maximization.
- Give score $\delta\left(a_{i}, b_{j}\right)$ for diagonal edges.
- Give score $\delta\left(a_{i},-\right)$ for vertical edges.
- Give score $\delta\left(-, b_{j}\right)$ for horizontal edges.
- Heaviest path in the DAG corresponds to the global alignment with highest score
- Typically $\delta\left(a_{i}, b_{j}\right)=1$ if $a_{i}=b_{j}$ and otherwise $\delta\left(a_{i}, b_{j}\right)=-\mu$
- Typically $\delta\left(a_{i},-\right)=\delta\left(-, b_{j}\right)=-\sigma$

Global alignment DAG and recurrence

$$
S[i, j]=\max \left\{\begin{array}{l}
S[i-1, j-1]+\delta\left(a_{i}, b_{j}\right) \\
S[i-1, j]+\delta\left(a_{i},-\right) \\
S[i, j-1]+\delta\left(-, b_{j}\right)
\end{array}\right.
$$

Global alignment: Example

$$
\begin{aligned}
& \delta\left(a_{i}, b_{j}\right)=1, \text { if } a_{i}=b_{j} \\
& \delta\left(a_{i}, b_{j}\right)=-1, \text { otherwise } \quad j \quad \delta\left(a_{i},-\right)=\delta\left(-, b_{j}\right)=-1
\end{aligned}
$$

		A	A	C	T	T	A	C	T	T	G
	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10
C	-1	-1	-2	-1	-2	-3	-4	-5	-6	-7	-8
A	-2	0	0	-1	-2	-3	-2	-3	-4	-5	-6
T	-3	-1	-1	-1	0	-1	-2	-3	-2	-3	-4
T	-4	-2	-2	-2	0	+1	0	-1	-2	-1	-2
A	-5	-3	-1	-2	-1	0	+2	+1	0	-1	-2
G	-6	-4	-2	-2	-2	-1	+1	+1	0	-1	0

Heaviest local paths in sequence alignment

- How to find heaviest subpaths (local path)?
- Define that the empty path has score 0.
- It is enough to search for subpaths (local paths) with weight greater than 0 .
- No heaviest path can have a prefix with negative score
- Add an edge with score 0 from the first node to all other nodes.

Local alignment DAG and recurrence

$$
S[i, j]=\max \left\{\begin{array}{l}
0 \\
S[i-1, j-1]+\delta\left(a_{i}, b_{j}\right) \\
S[i-1, j]+\delta\left(a_{i},-\right) \\
S[i, j-1]+\delta\left(-, b_{j}\right)
\end{array}\right.
$$

Local alignment: Example

$$
\begin{aligned}
& \delta\left(a_{i}, b_{j}\right)=1, \text { if } a_{i}=b_{j} \\
& \delta\left(a_{i}, b_{j}\right)=-1, \text { otherwise } \quad j \quad \delta\left(a_{i},-\right)=\delta\left(-, b_{j}\right)=-1
\end{aligned}
$$

		A	A	C	T	T	A	C	T	T	G
	0	0	0	0	0	0	0	0	0	0	0
C	0	0	0	1	0	0	0	1	0	0	0
A	0	1	1	0	0	0	1	0	0	0	0
T	0	0	0	0	1	1	0	0	1	1	0
T	0	0	0	0	1	2	1	0	1	2	1
A	0	1	1	0	0	1	3	2	1	1	1
G	0	0	0	0	0	0	2	2	1	0	2

Longest common subsequence

- Global alignment with
- $\delta\left(a_{i}, b_{j}\right)=1$ when $a_{i}=b_{j}$ and otherwise $\delta\left(a_{i}, b_{j}\right)=-\infty$
- $\delta\left(a_{i},-\right)=\delta\left(-, b_{j}\right)=0$
gives the length of the longest common subsequence C of A and B :
- Longest sequence C that can be obtained by deleting 0 or more symbols from A and also by deleting 0 or more symbols from B.

AACGCATACGG ACGACTGATCG

ACGCTACG

- Connection: $d_{\mathrm{ID}}(A, B)=m+n-2 \cdot|\operatorname{LCS}(A, B)|$, where $d_{\mathrm{ID}}(A, B)$ is the edit distance with substitution cost ∞

Outline

```
Sequence similarity
Dynamic programming
Edit distance with dynamic programming
Sequence similarity problems
Sequence alignments
```

Study group assignments

Study Group 1: Firstnames A-I

- Read the following article before coming to the study group:

Sear R. Eddy: How do RNA folding algorithms work? Nature Biotechnology 22, 1457-1458 (2004).
http://www.nature.com/nbt/journal/v22/n11/abs/nbt1104-1457.html

- RNA secondary structure prediction.
- Basic dynamic programming formulation.
- At study group, give an example of RNA secondary structure, how the recurrence is derived for its computation, and how the recurrence is evaluated.

Study Group 2: Firstnames J-Ma

- Read pages 42-45 from Sung: Algorithms in Bioinformatics: A Practical Introduction, CRC Press 2010
- General gap penalty model
- Affine gap penalty model
- Copies distributed at the lecture (ask lecturer for a pdf if you were not present)
- In the study group
- Explain the idea of each of the tables in the recurrence for the affine gap model: V, G, F, and E.
- What is the best global alignment of CGAGAT and CAT using the affine gap model? Use cost +4 for a match, -2 for mismatch, -3 for gap opening, -1 for gap extension. What is the score of the alignment?

Study Group 3: Firstnames Me-Z

- Read pages 203-207 from Jones and Pevzner.
- Gene prediction by spliced alignment:
- Application/extension of heaviest path on a DAG
- At study group, explain the idea visually and explain how the reoccurrences are derived. What is the running time of the algorithm?

