
582670 Algorithms for Bioinformatics

Lecture 5: Graph Algorithms and DNA Sequencing

27.9.2012

Adapted from slides by Veli Mäkinen / Algorithms for Bioinformatics 2011 which are
partly from http://bix.ucsd.edu/bioalgorithms/slides.php

http://bix.ucsd.edu/bioalgorithms/slides.php

DNA Sequencing: History

Sanger method (1977):

I Labeled ddNTPs terminate
DNA copying at random
points.

Gilbert method (1977):

I Chemical method to cleave
DNA at specific points (G,
G+A, T+C, C).

I Both methods generate labeled
fragments of varying lengths
that are further measured by
electrophoresis.

Sanger Method: Generating a Read

1. Divide sample into four.

2. Each sample will have available all normal nucleotides and modified
nucleotides of one type (A, C, G or T) that will terminate DNA
strand elongation.

3. Start at primer (restriction site).

4. Grow DNA chain.

5. In each sample the reaction will stop at all points ending with the
modified nucleotide.

6. Separate products by length using gel electrophoresis.

Sanger Method: Generating a Read

DNA Sequencing

I Shear DNA into
millions of small
fragments.

I Read 500-700
nucleotides at a time
from the small
fragments (Sanger
method)

Fragment Assembly

I Computational Challenge: assemble individual short fragments
(reads) into a single genomic sequence (“superstring”)

I Until late 1990s the shotgun fragment assembly of human genome
was viewed as intractable problem

I Now there exists “complete” sequences of human genomes of several
individuals

I For small and “easy” genomes, such as bacterial genomes, fragment
assembly is tractable with many software tools

I Remains to be difficult problem for more complex genomes

Shortest Superstring Problem

I Problem: Given a set of strings, find a shortes string that contains all
of them

I Input: Strings S = {s1, s2, . . . , sn}
I Output: A string s that contains all string s1, s2, . . . sn as substrings,

such that the lenght of s is minimized

I Complexity: NP-hard
I Recall:

I Greedy approximation algorithm at the study group
I Extension to approximate case in the exercises

Overlaps and prefixes

I Define overlap(si , sj) as the longest prefix of sj
that matches a suffix of si

aaaggcatcaatctaaaggcatcaaa
aaaggcatcaaatctaaaggcatcaaa

overlap(si , sj)

prefix(si , sj)

I Define prefix(si , sj) as the part of si after its longest overlap with sj is
removed.

SSP as a Graph Problem

I Construct a prefix graph with
I n vertices representing the n strings s1, s2, . . . , sn and
I edges of length |prefix(si , sj)| between vertices si and sj

I Add a dummy vertex d to prefix graph with edges of length |si |
between each si and d .

I Find the shortest path which visits every vertex exactly once.

I This is the Asymmetric Travelling Salesman Problem (ATSP), which
is also NP-complete

SSP to TSP: An example

S = {ATC,CCA,CAG,TCC,AGT}

SSP

A G T
C C A

A T C
ATCCAGT

T C C
C A G

ATC

AGT

CAG TCC

CCA

dummy

2 1

2

32

3

1

3

2

1

3

2

2

1

3

ATCCAGT
(note: only subset of edges shown)

TSP

Shortest superstring: 4-approximation

I There are logarithm-factor approximation algorithms for ATSP, but
the prefix graph instances admit constant factor approximations
algorithms:

I Resulting superstring is at most c times longer than the optimal OPT,
for some constant c .

I 4-approximation algorithm:
I Construct the prefix graph corresponding to strings in S
I Find a minimum weight cycle cover on the prefix graph
I Read the superstring defined by the cycle cover
I Proof of approximation ratio in a study group.

Cycle cover

I A cycle cover is a set of disjoint cycles covering all vertices.

I ATSP tour is a special case: cycle cover with exactly one cycle.

ATC

AGT

CAG TCC

CCA

2 1

2

2

3

1

2

1

2

2

1

ATC

AGT

CAG TCC

CCA

2 1

2

2

3

1

2

1

2

2

1

Minimum weight cycle cover

I Minimum weight cycle cover is polynomial time solvable!
I Reduction to minimum weight perfect mathing on a bipartite graph:

I Bipartite graph: vertices can be divided into two sets so that all edges
have one endpoint in one set and the other endpoint in the other set

I Perfect matching: a set of disjoint edges that covers all vertices

I Create two vertices ui and vi
for each string si to a graph H

I Add edge (ui , vj) with weight
|prefix(si , sj)| for i 6= j

I Each cycle cover in prefix
graph corresponds to a
minimum weight perfect
matching on H and vice versa.

ATC

CCA

CAG

TCC

AGT

ATC

CCA

CAG

TCC

AGT

...

...

2

1

Minimum weight perfect matching

I Classical non-trivial graph problem with polynomial time solutions.

ATC

AGT

CAG TCC

CCA

2 1

2

2

3

1

2

1

2

2

1

ATC

CCA

CAG

TCC

AGT

ATC

CCA

CAG

TCC

AGT

2

2

1

2

2

Reading superstring from cycle cover

I For each cycle
I concatenate prefixes corresponding to weight starting from any vertex
I append the overlap of last and first vertex

I Concatenate the string read from each cycle

ATC

AGT

CAG TCC

CCA

2 1

2

2

3

1

2

1

2

2

1

ATCCA

AGTCCAG

AGTCCAGATCCA

Sequencing by Hybridization (SBH): History

I 1988: SBH suggested as an
alternative sequencing method.
Nobody believed it will ever
work.

I 1991: Light directed polymer
synthesis developed by Steve
Fodor and colleagues.

I 1994: Affymetrix develops first
64-kb DNA microarray.

First commercial
DNA microarray pro-
totype with 16,000
features (1994)

First microarray pro-
totype (1989)

500,000 features per
chip (2002)

How SBH works

I Attach all possible DNA probes of length ` to a flat surface, each
probe at a distinct and known location. This set of probes is called
the DNA microarray.

I Apply a solution containing fluorescently labeled DNA fragment to
the array.

I The DNA fragment hybridizes with those probes that are
complementary to substrings of length ` of the fragment.

I Using a spectroscopic detector, determine which probes hybridize to
the DNA fragment to obtain the `-mer composition of the DNA
fragment.

I Reconstruct the sequence of the DNA fragment from the `-mer
composition.

Hybridization on DNA Array

`-mer composition

I Spectrum(s, `) is a multiset of all possible (n − ` + 1) `-mers in a
string s of length n.

I E.g. for s = TATGGTGC, Spectrum(s, 3):

S = {TAT,ATG,TGG,GGT,GTG,TGC}

I Different sequences may have the same spectrum:

Spectrum(GTATCT, 2) =

Spectrum(GTCTAT, 2) =

{AT,CT,GT,TA,TC}

The SBH Problem

I Goal: Reconstruct a string from its `-mer composition

I Input: A set S , representing all `-mers from an (unknown) string s

I Output: A string s such that Spectrum(s, `) = S

SBH: Hamiltonian Path Approach

I Construct a graph
I One vertex for each `-mer in the input spectrum
I Draw an edge between two vertices if the `-mers overlap by `− 1

nucleotides

I Find a path that visits each vertex once.

I Example: S = {ATG,TGC,GTG,TGG,GGC,GCA,GCG,CGT}

ATG TGC GTG TGG GGC GCA GCG CGT

ATGCGTGGCA

SBH: Hamiltonian Path Approach

I Another path for:
S = {ATG,TGC,GTG,TGG,GGC,GCA,GCG,CGT}

ATG TGC GTG TGG GGC GCA GCG CGT

ATGGCGTGCA

Hamiltonian Cycle Problem

I Find a cycle that visit every
vertex exactly once.

I NP-complete

Game invented by Sir William
Hamilton in 1857

SBH: Eulerian Path Approach

I Construct a graph
I A vertex for each (`− 1)-mer
I An edge between two vertices corresponds to an `-mer from S
I Find a path that visits each edge once.
I Example: S = {ATG,TGC,GTG,TGG,GGC,GCA,GCG,CGT}

AT TG GC CA

GT CG

GG

SBH: Eulerian Path Approach

I S = {ATG,TGC,GTG,TGG,GGC,GCA,GCG,CGT}
corresponds to two different paths:

AT TG GC CA

GT CG

GG

ATGCGTGGCA

AT TG GC CA

GT CG

GG

ATGGCGTGCA

The Bridge Obsession Problem

Find a tour crossing every bridge just once
Leonhard Euler, 1735

Bridges of Königsberg

Eulerian Cycle Problem

I Find a cycle that visits every
edge exactly once

I Linear time

More complicated Königsberg

Euler Theorems

I A graph is balanced if for every vertex the number of incoming edges
equals the number of ougoing edges:

in(v) = out(v)

I Theorem: A connected graph has an Eulerian cycle if and only if
each of its vertices is balanced.

I A vertex is semi-balanced if in(v) = out(v) + 1 or in(v) = out(v)− 1

I A graph is balanced is for every vertex the number of incoming edges
equals the number of ougoing edges:

I Theorem: A connected graph has an Eulerian path if and only if it
contains a vertex v with in(v) = out(v)− 1, a vertex w with
in(w) = out(w) + 1 and all other vertices are balanced.

Some Difficulties with SBH

I In practise, `-mer composition can never be measured with 100%
accuracy

I With inaccurate data, the computational problem is again NP-hard.
I Find minimum completion (insertion/deletion of edges and vertices) of

the graph so that it becomes Eulerian
I Jacek B lazewicz and Marta Kasprzak: Complexity of DNA sequencing

by hyridization. Theoretical Computer Science, 290(3):1459–1473,
2003.

I Microarray technology has found other uses:
I Widely used in expression analysis and SNP analysis

I Virtual `-mer compositions are used in many fragment assembly tools,
leading to heuristics exploiting the Eulerian path approach.

Outline

Shortest Common Superstring

Sequencing by Hybridization

Study Group Assignments

Study Group 1: Lastnames A-C

I Read pages 284–290 from Jones and Pevzner.
I The peptide sequencing problem

I At study group draw an example spectrum graph.

Study Group 2: Lastnames D-L

I Read pages 61–64 from Vazirani: Approximation Algorithms,
Springer, 2001.

I Analysis of the 4-approximation algorithm for Shortest Superstring
Problem.

I Copies distributed at lecture. Ask lecturer for a pdf if you were not
present.

I At study group explain visually the proofs of Lemmas 7.2. and 7.3.
Explain how Lemma 7.3 leads to the proof of Theorem 7.4.

Study Group 3: Lastnames M-Z

I Read pages 272–275 from Jones and Pevzner.
I Eulerian cycles and paths.

I At study group explain the algorithm for finding a Eulerian cycle using
an example. How can the algorithm be modified for finding a Eulerian
path?

	Shortest Common Superstring
	Sequencing by Hybridization
	Study Group Assignments

