
Algorithms for Bioinformatics (Autumn 2012)

Exercise 2 (Thu 20.9, 10-12, B119, Niko Välimäki)

1. Simulating improved breakpoint reversal sort.

Perform the improved breakpoint reversal sort algorithm (page 30 at lecture slides)
with π = 3 4 6 5 8 1 7 2 and show all intermediate permutations. Is this the
optimal solution to this instance of reversal sorting problem?

2. Correctness of improved breakpoint reversal sort.

Prove that the improved breakpoint reversal sort algorithm (page 30 at lecture
slides) works correctly. That is, define concepts increasing strip and decreasing
strip formally and then prove that if permutation π contains one or more decreas-
ing strips, then there is always a reversal that decreases the number of breakpoints
b(π) at least by one.

3. Translocations via reversals.

Page 32 at lecture slides gives an example of a translocation simulated by three
reversals. Define formally what translocation operation does for a permutation
π1π2 · · ·πn and prove that any translocation can be replaced by three reversal
operations.

4. Implementing improved breakpoint reversal sort.

Write a Python program that implements improved breakpoint reversal sort and
analyse the running time of your implementation.

5. Shortest approximate superstring.

Let S = S1, S2, . . . , Sn ⊆ Σ∗ be a set of strings from alphabet Σ. Given a threshold
parameter k, an approximate superstring of S is defined as a string T such that
for each Si ∈ S it holds dH(Si, T [ji · · · ji + |Si| − 1]) ≤ k for some ji, where dH()
denotes the Hamming distance.

A greedy approximation algorithm for finding the shortest approximate superstring
can be derived as follows. Let an approximate overlap of A = αγ,B = γ′β ∈ S
be pair of strings (γ, γ′) such that dH(γ, γ′) ≤ k and the length of the overlap
|γ| = |γ′| is maximum among all ways to to write A and B in parts A = αγ and
B = γ′β. Iterate the following until there is only one string in set S: (1) Choose
αγ,B = γ′β ∈ S with maximum approximate overlap; (2) remove A and B from
S and insert αγβ into S.

Simulate the above greedy algorithm with k = 1 on the set
{ACACGATC, ATGACAAA,TAATAAGA,CAGGATCA}.
Is the solution of your simulation a valid approximate superstring? Does the
algorithm always find a valid approximate superstring? If not, give a modification
so that it does.

