Algorithms for Bioinformatics (Autumn 2012)

Exercise 4 (Thu 4.10, 10-12, B119, Niko Välimäki)

1. Shortest common superstring and ATSP.

Solve the shortest common superstring problem on set $S=$ \{CTTA,TGAT,TACT, GATG\} by reducing the problem to asymmetric traveling salesman problem through the prefix graph and dummy vertex as described at the lecture.

2. Shortest common superstring and minimum weight cycle cover.

Simulate the 4-approximation algorithm for shortest common superstring problem on the same set S as above. Visualize also the minimum weight perfect matching corresponding to the minimum weight cycle cover. What is the real approximation factor achieved on this instance?

3. Graph editing.

Eulerian path in a graph is a path that visits all edges exactly once. Insert and delete minimum number of edges to/from the graph below so that it has an Eulerian path.

4. Sequencing by hybridization.

A measurement from a hybridization experiment estimates that the 3-mer spectrum of s would be $\operatorname{Spectrum}(s, 3)=\{G A G, G A T, T A G, A T A, A T A, A G A, T A C\}$. Construct s by the Eulerian path approach described at the course, taking into account that there might be one ℓ-mer missing from the measured spectrum. Hint: Note that because the spectrum contains twice the 3-mer ATA, the graph should have two edges from AT to TA.

5. Preprocessing for gene rearrangement study.

Consider you have the genome sequences of two species A and B and you would like to study their rearrangement distance. Each gene in A may have several putative homologs with different local alignment score in B, and vice versa. How would you find a one-to-one mapping between all genes in A to genes in B so that the sum of the corresponding local alignment scores is maximized? Here we may assume that A has at most as many genes as B (otherwise their role can be switched). Hint. Reduce to a graph problem and add some dummy nodes/edges.

