
582670 Algorithms for Bioinformatics, 4 cr — Exam
19.10.2011 — Solutions/grading

1. Greedy algorithms and genome rearrangements.

Simulate the improved breakpoint reversal sort 4-approximation algorithm on the
permutation

4 3 2 7 9 6 5 1 8.

Based on the properties of this problem instance, estimate how many more rever-
sals does the algorithm make compared to the optimal solution?

Solution.

Recall increasing and decreasing strips. One element strips are defined as decreas-
ing, except for the special case of elements 1 and n: if they are located at their
correct positions, then there is no breakpoint before / after, respectively, and they
can be seen as increasing strips.

The improved breakpoint reversal sorting finds a reversal distance of 4 reversals:

4 3 2 (7 9 6 5 1) 8 7bp
(4 3 2 1) 5 6 9 7 8 5bp
1 2 3 4 5 6 (9 7 8) 3bp
1 2 3 4 5 6 (8 7) 9 2bp
1 2 3 4 5 6 7 8 9 0bp

Originally there were 7 breakpoints and, since each reversal can remove at most
two breakpoints, we have OPT ≥ 3.5 (i.e. OPT ≥ 4) reversals. In this problem
instance, the improved breakpoint reversal sort used four reversals and therefore
it returned an optimal solution.

Grading:

• +8 points for correct simulation of the improved breakpoint reversal sort.

• +4 points from relating the answer to the lower bound.

• Some points given for partially correct simulations.

2. Algorithms for finding phylogenetic trees. (12 points)

Define the problem of finding a phylogenetic tree. UPGMA and neighbor joining
algorithm both solve this problem. Describe briefly the common idea behind the
algorithms. How do they differ? In which conditions are the algorithms able to
construct the correct tree?

Solution:

See course material for answers.

Grading:



• +3 points for problem definition
• +3 points for describing the common idea
• +3 points for describing the differences
• +3 points for describing conditions for correct tree construction

3. Dynamic programming and sequence alignment. (6+6 points)

A tandem repeat P k of a pattern P = p1 . . . pm is a pattern of length k ·m formed
by concatenating k copies of P . The tandem repeat problem is to find the best
global alignment between some interval of a text T = t1 . . . tn and a tandem repeat
P k for some k. When computing global alignments the premium for matching is
+1 and the mismatch and gap penalties are −1.

For example given the pattern P = GGT and the text T = ACCGGTGCTGTAA the best
tandem repeat is given by k = 3 and the following alignment:

ACCGGTGCTG-TAA
GGTGGTGGT

(a) Modify the global alignment dynamic programming solution to solve the
tandem repeat problem by computing the alignment matrix between Pn (the
maximum number of times P can possibly repeat in T ) and T . What is the
running time of the algorithm?

(b) Devise an algorithm based on dynamic programming that solves the tandem
repeat problem in O(nm) time. (Hint: Modify the alignment DAG to wrap
around for the occurrences of P .)

Solution:

(a) We want to align a prefix of Pn against any substring of T . Thus deletions in
the beginning of T should be free but deletions in the beginning of Pn should
not. Therefore we initialize D as

D[0, j] = 0, where 0 ≤ j ≤ n

D[i, 0] = −i, where 0 ≤ i ≤ nm

The array is filled using the normal recursion for the alignment problems:

D[i, j] = max


D[i− 1, j − 1] + δ(Pn[i], T [j])
D[i− 1, j] + δ(Pn[i],−)
D[i, j − 1] + δ(−, T [j])

The best global alignment score between any substring of T and a tandem
repeat P k is the maximum score in the matrix on the rows k ·m for 0 ≤ k ≤ n.
The alignment can be obtained by tracing through the matrix as usual.
The running time of this algorithm is O(n2m).
Grading:



• +2 points for the initialization
• +1 points for using the standard recurrence
• +2 points for explaining how to find the maximum score
• +1 points for the time complexity

(b) We will use a dynamic programming table D of size nm here. The interpre-
tation is that D[i, j] gives the maximal score for aligning the suffix of T [1, j]
against P kP [1...i] for some k.
We will now initilize the first row of the matrix differently allowing also a new
repeat of P to start. Essentially we will allow the alignment DAG to wrap
around from the last row to the first one:

0, j − 1 0, j

1, j − 1 1, j

... ...

m, j − 1 m, j

The recurrence relation corresponding to computing the first row (for other
rows the recurrence does not change) of the matrix:

D[0, j] = max

{
0
D[m, j]

We will fill the matrix in comlumnwise manner. The problem here is that the
valueD[m, j] is not available when we computeD[0, j]. However, we can argue
that the maximum value in column j cannot be obtained from the previous
value in the same column (considering the column circular) because deletions
always decrease the score. So ignoring the value D[m, j] in initialization will
give us at least one correct value in column j and the rest of the values cannot
be greater than the correct value. Furthermore all values computed after the
correct value are also correct and so in particular D[m, j] will be computed
correctly. Therefore doing a second round of computation using the correct
value for D[m, j] for each column, we will compute the scores correctly. (This
was actually more complicated than I thought...)
The maximum score can now be obtained by finding the maximum value in
the last row of the table. The actual alignment can be found by tracing back
in the matrix and this will also reveal the value for k.
There are nm cells in the matrix and each will be computed twice. Therefore
the runtime of the algorithm is O(nm).
Grading:

• +2 points for using an n×m table
• +4 points for understanding the wrap around idea
• Some points were reduced for minor errors in the details of the algorithm.



• The evaluation of the recurrence was more involved than intended and
thus no points were reduced for not getting that right.

4. Your choice.

Choose one of the (non-trivial) problems studied during the course (in study
groups, lectures, or/and exercises) not related to the three assignments above.
Define the problem (input, output), explain how the problem is motivated by
molecular biology, and describe an algorithm for the problem either simulating an
example or by giving its pseudocode.

Solution. The most popular problem was shortest common superstring. Other
choices were partial digest problem, sequencing by hybridization, motif finding
problem and median string problem.

Grading:

• +4 points for correct definition

• +4 points for correct simulation or pseudocode.

• +4 points for correct motivation.

• Some points reduced when the description was not clear enough, or mistakes
in simulation.


