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Network motifs

I Network motifs are a way to analyze the local structure of a
network:

I What kind of local substructures (motifs, graphlets) does the
network have

I Assessing the statistical significance of these substructures



What is a motif?

I A motif is a statistically overrepresented pattern of local
interactions in the network

I Overrepresentation = occurring more frequently than
expected by chance

I The rationale is that overrepresentation may denote possible
function

I The motif has emerged several times
I and it has been conserved in the evolution of the network



What is a motif?

I A motif is a small connected subgraph G ′ = (V ′,E ′)

I Size of motif is measured either by the number of vertices or
the number of edges



Types of motifs

I Motifs can be
I Directed or undirected
I Cyclic (loopy) or acyclic

matching the type of underlying network to be analyzed, e.g.
I Protein-protein interactions: undirected
I Gene regulatory interactions: directed, cyclic



Matching motifs

I A match of a motif G ′ in the target graph G = (V ,E ) is a
subgraph G ′′ = (V ′′,E ′′) which is isomorphic to motif G ′

I Two graphs G ′ and G ′′ are isomorphic if there is a bijective
mapping between the edge and vertex identities

I i.e. G ′ is transformed to G ′′ by changing the vertex and edge
identities



Alternative definition: Induced subgraph

I Isomorphic induced subgraph (graphlet): a subgraph
G ′′ = (V ′′,E ′′) in G = (V ,E ) is accepted as a match only if
it contains all edges of the original graph beteeen the nodes in
V ′′: mathematically we require that if e = (ni , nj) ∈ E and
ni , nj ∈ V ′′ then e ∈ E ′′

I Motivation: leaving out interactions from the motif may give
false ideas of the biological function



Hardness of isomorphism problems

I The complexity of graph isomorphism is in the ’grey area’ of
complexity:

I It belongs to NP class of problems (problems where solution is
easy to verify once found)

I It is not known if graph isomorphism belongs to P class of
problems (problems that can be solved efficiently)

I It is not known if graph isomorphism is NP-complete (problems
that are believed to be hard ot solve but easy to verify)

I Subgraph isomorphism, checking if a subgraph G ′′ that is
isomorphic to given graph G ′ exists in a larger graph G , is
known to be NP-complete

I No hope for really fast algorithms for finding motifs.



Motif frequency

I How many times a motif occurs in the network to be
analyzed?

I Depends on
I Definition of a match (subgraph or induced subgraph)
I Counting schemes for matches



Counting schemes
I Possible schemes for counting matches

I F1: Two matches may overlap so that they share vertices and
edges

I F2:Two matches may overlap so that they share vertices but
not edges

I F3: Two matches may not overlap, they need to have disjoint
sets of vertices



Counting schemes
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Statistical significance of motifs

I The frequency of a motif in some network does not directly
tell us its importance

I Testing for statistical significance is more informative
I How often we would expect to see this motif by chance in a

similar random network

I Need to formulate a null hypothesis and check the probability
of the motif occurring as frequently under the null hypothesis



Testing fot statistical significance

I For a null hypothesis:
I Estimate the probability distribution of the frequency of the

motif in random networks
I Analytically using a network model (e.g. ER networks)
I By generating an ensemble of random networks

I Measure the statistical significance with Z-score or p-value



Measures of motif significance: Z-score

I Denote by F(m) the frequency of motif m and by Fr (m) and
σr (m) the average and standard deviation of the motif
frequency among the randomized networks.

I Z-score: ”how far above the mean of the random networks”

Z (m) =
F(m)−Fr (m)

σr (m)

I Z-score above 2.0 is generally considered significant (”two
standard deviations”)



Measures of motif significance: P-value
I P-value: ”how often a random network has more motif

ocurrences”

P(m) =
1

N

N∑
r=1

1{Fr (m)≥F(m)}

I 1{A} denotes the indicator function, Fr (m) denotes the
motif’s frequency in r ’th randomized network

I Requires a large number of randomized networks (≈ 1000) to
be accurate

I Estimating the tail of the distribution is harder than estimating
its mean (as in Z-score)



Analytical approach using ER networks

I In ER networks an edge is present between two vertices with
probability p

I Here we also allow self loops and also these edges are present
with probability p

I The ER network should have a similar number of vertices and
edges as the real network and so

p =
E

N2

where E is the number of edges in the real network and N is
the number of vertices in the real network.

I Note that a directed network allowing self loops can have at
most N2 edges.



Probability distribution of self loops in ER networks

I The probability of having exactly k self loops is

P(k) =

(
N
k

)
pk(1− p)N−k

I The probability distribution is thus binomial with mean:

< Nself >= Np = N
E

N2
=

E

N

I and with variance (approximation via Poisson distribution)

σself =

√
E

N



Z-score

I The E. coli transcriptional network has 424 vertices and 519
edges (note that this is a different version of the network than
what we use in the exercises):

< Nself > =
E

N
=

519

424
= 1.2

σself =

√
E

N
= 1.1

I The real network has 40 self loops:

Z =
Nself− < Nself >

σself
=

40− 1.2

1.1
= 32

I Z-score is very high and thus the high number of self loops in
the E. coli transcriptional network is statistically significant



Subgraphs in ER networks

I Consider a pattern graph G with n vertices and g edges

I How often would such a pattern occur in ER networks?

I We will use counting scheme F1 (vertices and edges can
overlap)
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Subgraphs in ER networks

I To generate an instance of this pattern in a random graph, we
need to choose n vertices and place the g edges in appropriate
places:

< NG > = a−1 · N · (N − 1) · . . . · (N − n + 1) · pg

≈ a−1Nnpg

where a is the number of permutations of vertex labels of G
that give the same graph.

A
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Motif 1
a = 3
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Motif 2
a = 1



Subgraphs in ER networks

I The mean connectivity of a network is

λ =
E

N

I and then we get

< NG > ≈ a−1Nnpg

= a−1Nn

(
E

N2

)g

= a−1λgNn−g

I If we assume that the mean connectivity is constant regardless
of the size of the network, then the number of subgraphs
scales as

< NG >∼ Nn−g



Subgraphs in ER networks

I V-shaped subgraphs (3 nodes, 2 edges)
thus scale linearly with the size of the
network:

< NV−shaped >∼ N

I Number of triangle shaped subgraphs (3
nodes, 3 edges) stays constant:

< Ntriangle >∼ N0

I Subgraphs with 3 nodes and more than 3
edges become rarer when the network gets
larger
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A subgraph in ER networks and E. coli transcriptional
regulation network

I The E. coli transcriptional regulation network has 424
vertices and 519 edges:

< NG >≈ a−1λgNn−g =

(
519

424

)3

4243−3 = 1.7

I The distribution of the motif in ER networks can be
approximated by a Poisson distribution and thus the
standard deviation is

σG ≈
√
< NG > = 1.3

I The E. coli transcriptional regulation network features 42
instances of the motif and so we get:

Z =
42− 1.7

1.3
= 31
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Null hypothesis from random networks

I In traditional hypothesis testing, one typically analytically
formulates a probability distribution for the values of the
random variable of interest (here frequency of a motif)

I In network analysis, analytically determining a suitable
probability distribution may be difficult

I Instead, randomization tests are being used: a large set of
random networks of appropriate structure are generated and
the average frequency of the motif together with its variance
is recorded.

I Computationally demanding process if the networks are large



Randomization algorithm for Null model networks

I Typical method for null model generation is to take the
original network being analyzed and make large number of
randomized versions of it by modifying the network by a large
number of random edit operations

I Commonly used edit operation is to rewire the network
locally:

I Take two edges (A,B) and (C ,D) and replace them with
edges (A,D) and (C ,B)

I Preserves degree distribution of nodes
I If the nodes are chosen from a small neighborhood, also keeps

average path length close to original



Randomization algorithm for Null model networks

Additional criteria to be preserved can be set, e.g.

I Preserve number of bidirectional edges

I Preserve number of motif of size n − 1 when searching for
motifs of size n

I ...

As a guideline, the null model should be as close to the original as
possible, but randomize the property of interest.



Motif significance profile
I Motif significance profile SP is a vector of normalized Z-scores

for a particular set of motifs

SP = ((SP(m1), . . . ,SP(m2)) ,

where SP(m) = Z (mi )/
√∑

j Z (mj)2.

I Motif significance profile allows comparing different size
networks in terms of the motifs they contain

I Typically, the set of motifs contains all motifs of particular size

Z. Lin et al. WSEAS Trans. on Comp. 7(6), 2008.



Motifs and antimotifs in PPI networks and internet router
network

Milo et al. Science 298(5594), 2002.



Hardness of motif discovery

Several challenging subproblems:

I Graph isomorphism testing: required to check if two motifs
are in fact the same. No polynomial time algorithm is known
for this problem.

I Number of motifs: grows exponentially in the size of the
motif. Especially with directed motifs grows very fast.

I Number of matches: theoretically the worst case number of
potential matches is O(|Et ||Em|) where Et and Em are the
number of edges in the target and motif, respectively.

I Size of analyzed networks affects the above steps via the
number of different patterns and matches that can be found.

I Calculation of statistical significance via randomization calls
for generation and motif discovery from a large number of
networks, multiplying the computation time of all the above
points.



Study Group on Thursday

I Group 1: Students whose first name starts with A-L
I F. Schreiber and H. Schwbbermeyer: Frequency concepts and

pattern detection for the analysis of motifs in networks. Trans.
on Comput. Syst. Biol: III, pp. 89–104, 2005.

I Concentrate on section 4.

I Group 2: Students whose first name starts with M-Z
I N. Kashtan, S. Itzkovitz, R. Milo and U. Alon: Efficient

sampling algorithm for estimating subgraph concentrations and
detecting network motifs. Bioinformatics 20(11):1746–1758,
2004.

I Concentrate on the Methods section.
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