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Course topics

I Computational models for biological networks (Leena Salmela)

I Gene regulation (Antti Honkela)

I Probabilistic analysis of sequence level problems
(Veli Mäkinen)



Practical arrangements

I Mondays: Lectures to introduce the topics

I Thursday mornings: Study group to deepen the knowledge on
the subject

I Thursday afternoons: Exercise sessions

I 23.11.-27.11. Visiting lecturers (no exercise session)



How to pass the course?

I Attending study groups on Thursday mornings is mandatory

I Attending visiting lectures on Monday 23.11. and Thursday
26.11. is mandatory

I Submit the exercises and get at least 6 points for each three
exercise sets (network models, gene regulation, probabilistic
analysis of sequence-level problems)

I If you miss a study group or visiting lecture, contact the
lecturers for an alternative assignment



Grading

I Grading is based on submitted exercises

I 60 points will be available

I 30 points =⇒ Passed, 50 points =⇒ 5

I No exam

I Not possible to pass with a separate exam
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Protein-protein interaction network

I Vertices are proteins

I The proteins are connected if they interact with each other.



Metabolic network

I Vertices are metabolites,
i.e. chemical compounds

I Edges describe how the
cell can transform a
metabolite into another



Gene regulatory network
I Vertices are genes
I Genes are linked if one regulates the other

Source: Shen-Orr SS, Milo R, Mangan S, Alon U. 2002
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(Shortest path) distance

I Distance dij is the length of the
shortest path between vertices ni

and nj , i.e. the minimal number of
edges one needs to traverse to get
from ni to nj

I The shortest path may not be
unique, but the length of the
shortest path is unique

I In directed network, we may have
dij 6= dji

I If there is no path between ni and
nj , we have dij =∞

Ignoring weights, above we
have d12 = 2,
d13 = 1,d14 = 2,. . .



Diameter and average path length

I The diameter dm = max(dij ) is
the maximal distance between any
two nodes (= the longest shortest
path)

I Average or characteristic path
length
d = 〈dij〉 = 1

N2
V

∑NV
i=1

∑NV
j=1 dij Ignoring weights, above

dm = 3, d ≈ 1.57



Efficiency

I Efficiency, or average inverse path
length: deff = 〈1/dij〉

I Useful when average path length
is infinite (disconnected network)

I Fully connected network has
efficiency deff = 1, graph with no
edges has deff = 0 Ignoring weights, above

deff ≈ 0.73



Weighted graphs

I If the edges in the graph have
associated weights wij , it is
natural to define distances based
on the weights:

I dij as the sum of weights in the
minimum weight path between ni

and nj

I Maximum and average path
length as well as efficiency
naturally generalize by changing
the distance measure to the
weighted version

With weights, d12 = 40 (red
path), d ≈ 24.2,
dm = 50 = d25, deff = 0.06



Finding shortest paths

Finding shortest paths in graphs is part of classical algorithm
theory, two efficient algorithms

I Dijkstra’s algorithm: given a vertex find shortest paths to all
other vertices, basic implementation runs in O(N2

V ) time, can
be implemented faster for sparse graphs

I Floyd-Warshall algorithm: find shortest paths for all pairs of
vertices in the graph in O(N3

V ) time; outputs a distance

matrix (dij )
NV
i ,j=1 in same time.

I Both work with weighted formulations



Shortest path distances in empirical networks

Path length analysis of many networks
that occur in nature reveals the
small-world property

I Metabolite graphs: average path
length d ≈ 3 (NV ≈ 103 − 104)

I WWW: links chains between two
web documents d ≈ 16
(NV > 109)

I Erdös number: shortest co-author
chain to Paul Erdös, d = 4.65
(NV ≈ 4× 105)

I ...

Paul Erdös (1913-1996, a Hungarian

mathematician, published over 1400 scientific

papers over his lifetime with over 500

different co-authors



Node degree

I Degree ki of vertex ni is the
number of edges adjacent to a
vertex

I In a network without self-loops
and without multiple edges
between any pair of edges: degree
= number of neighbours

I In directed networks: in-degree is
the number of incoming edges and
out-degree is the number outgoing
edges



Degree distribution

I Given a fixed set of vertices, p(k) denotes the probability that
a randomly chosen vertex has degree k .

I (Empirical) degree distribution is the list of probabilities (or
relative frequencies) p(k), k = 0 . . .NV .

I Analysis of the degree distribution is an important means to
characterize networks



Degree distribution

Fitting the empirical degree
distribution to a theoretical distribution
given by a mathematical law is an
important tool for network analysis

I Regular lattice: p(k) ≈ 1, where k
is a constant

I Scale free network: p(k) ∝ k−γ

I Random network:
p(k) ∝

(NV−1
k

)
pk (1− p)NV−1−k



Degree distribution

The degree distributions of of scale-free network and random
network look markedly different

I Scale free network: p(k) ∝ k−γ (power law, heavy tail)

I Random network: p(k) ∝
(NV−1

k

)
pk (1− p)NV−1−k (binomial,

light tail)



Fitting degree distributions

I Typically the fitting of the empirical distribution is based on
the histogram of observations for p(k)

I This is prone to errors in the region of high degree nodes due
to low number of observations

I Binning can help: divide the range of k into intervals and put
all observations in the interval into a common bin

I Cumulative degree distribution pc (k) =
∑∞

l=k p(l), the
likelyhood that a given node has degree at least k , is more
reliable and does not require binning



Degree correlations and assortative mixing

Degree correlation is a statistic that reveals additional information
of the connection patterns of the nodes

I Assortative networks: high correlation between the degrees of
adjacent nodes; highly connected nodes mostly connect to
other highly connected nodes

I Disassortative networks: highly connected nodes mostly
connect to low degree nodes

I Assortativity index −1 ≤ r ≤ 1: Pearson correlation
coefficient of degrees of adjacent nodes, r > 0 assortative,
r < 0 disassortative



Examples

Social networks are typically assortative, technological and
biological networks tend to be disassortative

(M. Newman. Phys. Rev. E 67, 026126 (2003) )



Clustering coefficient

I Clustering coefficient measures the
probability that two vertices with
a common neighbor are connected

I Let Ei denote the number of edges
between the neighbors of vi , and
Emax = ki (ki − 1)/2 the
theoretical maximum. Clustering
coefficient for vertex ni is now

Ci =
Ei

Emax
=

2Ei

ki (ki − 1)

I Clustering coefficient for the whole
graph is obtained by averaging
over the vertices



Clustering coefficient in natural networks

I Natural networks often have
relatively high clustering
coefficient indicating local
clustering within the network

I Negative correlation between the
degree and the clustering
coefficient has also been observed;

I Low degree nodes lie in local
clusters, while the neighbors of
high degree nodes are less often
connected

I Indicates modular network
structure

Example: PPIs in Mouse and
Human:

(http://bccs.bristol.ac.uk/toProgramme

/ project/2008/Angela Onslow S08/)



Matching index

To be functionally related, two
vertices do not need to be
connected, examples:

I Two transcription factor
proteins regulating the
same gene

I Two metabolite molecules
taking part in similar
reactions

Zamora-Lopez. Frontiers in Neuroinformatics 4, 2010



Matching index

I Matching index measures
the amount of neighbors
the two nodes share:

MIij =
Sharedij

ki + kj − Sharedij

I Similarity in terms of
perceiving the
neighborhood similarly

Zamora-Lopez. Frontiers in Neuroinformatics 4, 2010
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Models of complex networks

I Theoretical models of networks are
needed as a basis for comparison
to determine the significance of
global properties or non-trivial
substructures of natural networks.

I We will look at three specific
models

I Erdös-Renyi Model
I Watts-Strogatz Model
I Barabasi-Albert model



Erdös-Renyi Model

I ER network consists of NV vertices

I Edge is drawn between a pair of
nodes randomly with probability p

I Degree distribution of the ER
model is binomial:
p(k) ∝

(NV−1
k

)
pk (1− p)NV−1−k

I Degree distribution can be
approximated by Poisson
distribution for large graphs



Erdös-Renyi Model

Significant body of theoretical research exists for the ER model,
e.g.

I For NV p < 1 the network almost surely has no large
connected components

I For NV p ≈ 1 the network will almost surely have one large
connected component

I For NV p > logNV the network will almost surely be
connected

I ER network has the small-world property when p > 1/NV

with average path length scaling as l ∼ logNV

I No local clustering, expected clustering coefficient
C = p = 〈k〉 /NV for all nodes



Watts-Strogatz model

1. Arrange vertices in a ring structure

2. Connect each vertex to K closest
neighbours

3. With probability prew , rewire each
each edge by detaching from one
end and attaching to a randomly
chosen vertex.

After steps (1-2) there is local
clustering, step (3) lowers average path
length by creating shortcuts

http://en.wikipedia.org/wiki/File:Watts strogatz.svg



Watts-Strogatz model

I Even for low rewiring probability
(prew << 1) the average path
length goes down rapidly

I Small average path length and
local clustering is retained for
intermediate prew

I When prew → 1, we get ER model,
i.e. local clustering is destroyed

I Degree distribution is similar to
ER graph: homogeneuos and
peaked around k = K

http://en.wikipedia.org/wiki/File:Watts strogatz.svg



Barabasi-Albert model

I Start with an initial small
connected network of N0 vertices

I Iteratively add new vertices and
connect the new vertex to m ≤ N0

vertices

I Draw the nodes that will be
connected the the new vertex with
probability proportional to their
degree (preferential attachment):

ρ(ni ) = ki/
∑

j

kj (BA graph from http://melihsozdinler.blogspot.com/)



Barabasi-Albert model

I Unlike ER or WS model,
Barabasi-Albert model explain the
inhomogeneuos degree distribution
observed in natural graphs

I With enough iterations, the degree
distribution of the BA model is
scale-free, with p(k) ∼ k−3

I Average path length in BA
networks has been found to be
smaller than in ER and WS models
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Robustness and Attack tolerance

I Robustness against pertubations
(mutations, environment changes)
is a preferable property for
biological networks

I Networks analysis is interested in
preservation of network topology
under perturbations (usually:
removals of vertices or edges)



Robustness and Attack tolerance

I Both ER networks and scale-free
networks (such as BA model) are
robust towards random deletions
of nodes and connections

I A random mutation is likely to
hit a low degree node in BA
model

I Scale-free networks are not robust
towards intentioanl attacks

I Removal a set of highly
connected nodes may collapse
the global structure

I ”Robust, yet fragile”



Modularity and hierarchical organization

I Many natural networks are
observed to posses
modular structure with
densely connected
functional clusters of
nodes that are sparsely
connected to other nodes.

I Also, hierarchical
organization of network
structure can be observed

I The random network
models discussed above,
do not directly explain
these phenomena

(Zhao et al. BMC Bioinformatics 2006, 7:386)



Modularity and hierarchical organization

I Barabasi and Albert model has
been later extended to that
direction

I Based on replicating basic
modules and wiring them to the
central module of rest of the
network

I Recursive application leads to
hierarchical organization

I Deterministic rather than
random procedure
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Statistical testing of network properties

I How to determine if an observed property of the network is
significant or if it occured just by chance?

I Set up a null hypothesis

I Test if the observed property is consistent with the null
hypothesis



Statistical testing of network properties: Example

I Suppose that we have observed a
clustering coefficient C for a given
network. Is the network highly clustered?

I Null hypothesis: The clustering coefficient
is consistent with a network of the same
size and degree distribution.

I Create an ensemble of random networks
with same size and degree distribution and
compute the clustering coefficient of each
network

I Reject the null hypothesis if the
probability of a network with clustering
coefficient of at least C is low enough

I If the null hypothesis can be rejected, we
can conclude that the network is highly
clustered as compared to the null model.



What next?

I Thursday 10-12: Study group on analytical properties of ER
networks

I Thursday 12-14: Exercise session



Moodle Enrolment

I https:

//moodle.helsinki.fi/course/view.php?id=18471

I Enrolment key: BIOMODELS

https://moodle.helsinki.fi/course/view.php?id=18471
https://moodle.helsinki.fi/course/view.php?id=18471
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