

Metabolite Identification through Machine Learning

Juho Rousu, Associate Professor Helsinki Institute for Information Technology HIIT Aalto University, Finland

University of Helsinki, December 2015

Metabolites

- Small molecules inside biological cells, 1000s different types in each living cell
- Functions: energy transport, signaling, building blocks of cells, inhibition/catalysis (drugs)
- Numerous applications in biomedicine, pharmaceuticals, biotechnology
- Identification of metabolites is a major bottleneck

Metabolite identification from Tandem Mass Spectrometric (MS/MS) data

- MS/MS fragments the ionized metabolite
- Resulting daughter ion spectrum has peaks corresponding to molecular fragments
- Our task: predict the metabolite from the daughter ion spectrum

Metabolite identification through machine learning

Two step approach:

- From a set of MS/MS spectra (x = structured input), learn a model to predict molecular fingerprints (y = multilabel output)
- 2. With predicted fingerprints retrieve candidate molecules from a large molecular database

Building blocks

- Data: Set of (MS/MS spectra, molecule) pairs for training
- Kernel representations of the inputs
- Molecular fingerprints as the outputs
- Learning algorithm to predict inputs from the outputs

Kernel methods: key characteristics

- Embedding: Data items z are embedded into a feature space via a non-linear feature map φ(z); potentially very high dimensional
- Linear models: are built for the the patterns in the feature space (typical form: w^Tφ(z)); efficient to find the optimal model, convex optimization
- Kernel trick: Algorithms work with kernels, inner products of feature vectors K (x, z) = <φ(z), φ(z)> rather than the original features φ(z); side-step the eciency problems of high-dimensionality
- Regularized learning: To avoid overtting, large feature weights are penalized, separation by large margin is favoured

Kernel ≈ similarity metric

- A kernel function is an inner product (in a Hilbert space)
- If $\phi(x)$ is a feature vector describing object x, the following is called the linear kernel

 $\mathsf{K}(\mathsf{x}, \mathsf{z}) = \varphi(\mathsf{x})^{\mathsf{T}} \varphi(\mathsf{z}) = \Sigma_{\mathsf{j}} \varphi_{\mathsf{j}}(\mathsf{x}) \varphi_{\mathsf{j}}(\mathsf{z})$

- Geometric interpretation of the linear kernel: cosine angle between two normalized feature vectors
- Non-linear kernels enable learning complex feature spaces with out extra computational cost:
 - Polynomial kernel: $K_{poly}(x,z) = (K(x, z) + c)^d$
 - Gaussian kernel: $K_{Gaussian}(x,z) = \exp(||\phi(x) \phi(z)||^2/2\sigma^2)$
 - ...

Kernels for MS/MS Spectra

- MS/MS spectra consists 2D information (mass/charge, intensity)
- Simple approach (ok, but not perfect)
 - divide m/z range into bins, each bin will give a feature ϕ_{j}
 - take peak intensity in spectrum x in a bin the feature value $\phi_j(x)$
 - Use linear kernel of the feature vectors
- Problems:
 - Noise arising from too wide bins
 - Mass error causes alignment errors if bins too narrow

Probability product kernel

- Models spectra as sets of 2D probability distributions (mass, intensity)
- Kernel: all-against-all matching of the distributions

$$p_{\chi} = \frac{1}{\ell_{\chi}} \sum_{k=1}^{\ell_{\chi}} p_{\chi(k)}, \qquad p_{\chi'} = \frac{1}{\ell_{\chi'}} \sum_{k=1}^{\ell_{\chi'}} p_{\chi'(k)}$$

 $\mathcal{K}(\chi,\chi') = \int_{\mathbb{R}^2} p_{\chi}(\mathbf{x}) p_{\chi'}(\mathbf{x}) d\mathbf{x}$. (Jebara *et al.*, 2004)

Fragmentation trees

- Models of fragmentation of a molecule in MS/MS
 - Nodes ≈ peaks ≈ molecular formula of fragments
 - Edges ≈ losses ≈ putative uncharged fragments
- Trees can be predicted from spectra
 - Also gives us the predicted molecular formula of the unknown metabolite (but not the molecular structure!)
 - We take the predicted trees as input for our method

Kernels for fragmentation trees

- Node kernels (picture): count nodes (peaks) with the same molecular formula (colors) in the two trees
- Edge kernels: count edges (losses) with the same molecular formula
- More complex ones, computed using dynamic programming:
 - Path kernels
 - Subtree kernels

Multiple kernel learning

- Idea: instead of trying to select the best kernel, learn combination weights for them
- Several methods have been proposed recent years
 - Centered alignment (Cortes et al., 2012)
 - Quadratic combination (Li and Sun, 2010)
 - L_p-norm regularized combination
- Combined kernel is used in learning the final prediction model (here: SVM predicting fingerprints)

Kernel Alignment based MKL (ALIGNF)

- Kernel Alignment = \bullet Normalized Frobenius inner product of centered kernel matrices
- Weight of input kernel = alignment to the target

NB

+ W3

NI

$$K_{c}(x,x') = (\Phi(x) - \underset{x}{\mathbf{E}}[\Phi])^{\top} (\Phi(x') - \underset{x'}{\mathbf{E}}[\Phi])$$
$$\llbracket \mathbf{1} \mathbf{1}^{\top} \rrbracket \llbracket \mathbf{1} \mathbf{1}^{\top} \rrbracket$$

$$\mathbf{K}_{c} = \left[\mathbf{I} - \frac{\mathbf{I}}{m}\right] \mathbf{K} \left[\mathbf{I} - \frac{\mathbf{I}}{m}\right]$$

CPC

W12

Outputs: molecular fingerprints

- Describe molecular properties
 - different types atoms, bonds
 - **substructures** (e.g. aromatic rings)
- Counts or Binary indicators
- Standard sets used by computational chemistry community
 - OpenBabel fingerprints
 - PubChem fingerprints

Multiple kernel learning

Scoring and ranking metabolites with fingerprints

- Goal: match the predicted fingerprints to fingerprints of known molecules in large database (e.g. Pubchem)
- Take uncertainty in the fingerprint predictions
 into account

Scoring schemes: fingerprint weights

- Uniform scoring: $w_j = 1$
- Accuracy scoring: w_i ~ cross-validation accuracy
- Maximum likelihood scoring: $w_i \sim \log P(y_i, \hat{y}_i)$
- Platt scoring: w_j ~ exp(a f(x) + b)⁻¹, where f(x) is the SVM margin

		← Fingerprints→								
candidate	У	1	1	1	0	1	1	0	0	1
predicted	ŷ	1	0	1	0	1	1	1	1	1
weight	W	0.1	1	0.5	0.3	0.8	0.9	0.2	0.7	0.6

Metabolite identification using different fingerprint prediction methods

- For each unknown metabolite, we score and rank candidate identifications
- 80% of spectra have correct hit at top 10
- ALIGNF (Cortes et al. 2012) is the best MKL method here

Huibin Shen, Kai Duehrkop, Sebastian Boecker and Juho Rousu. Metabolite Multiple Kernel Learning on Fragmentation Trees. ISMB 2014, accepted

Performance of fingerprint scoring methods

- Uniform weights and accuracy weights behave similarly
- Maximum likelihood scores in the middle
- Platt scoring is the best
 - Heuristic modification improves Platt a bit

Metabolite identification performance

- Plotting the fraction of the MS/MS spectra that have correct Pubchem molecule in top k
- 33% in top 1, 66% in top 10
 - out of millions of molecules in Pubchem
- Better than the competition by a large margin (pun intended!)

Fingerprint prediction performance w.r.t training data size

- Fingerprint prediction accuracy (blue) and F1 score (green)
- Varying training set size (100% ~3000 molecules)
- More data = better fingerprint predictions

Metabolite identification performance w.r.t training set size / fingerprints

- Proportion of correctly identified molecules (top 1 rank) as function of
 - number of fingerprints (100% ~2800) (green)
 - training set size (100% ~ 2800) (blue)
- More training data = better identifications

Summary and future work

- Metabolite identification is an important problem in molecular biology
- Significant progress in recent years in automatic identification of metabolites
- Machine learning a key technology behind recent progress
- Future work includes
 - One-step metabolite identification through structured prediction
 - Identification of novel metabolites; calls for a combinatorial search in molecular spaces
 - Joint identification of metabolites

Acknowledgements

KEPACO research group

- Dr. Celine Brouard
- MSc Huibin Shen
- Mr Eric Bach

Friedrich Schiller Universität Jena

- Prof. Sebastian Böcker
- MSc Kai Dührkop

Funding

Academy of Finland (MIDAS grant)

http://research.ics.aalto.fi/kepaco/

References

- Allen F, Greiner R, and Wishart D. Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics. June 2014.
- Dührkop, K., Shen, H., Meusel, M., Rousu, J., & Böcker, S. (2015). Searching molecular structure databases with tandem mass spectra using CSI: FingerID. *Proceedings of the National Academy of Sciences*, *112*(41), 12580-12585.
- Markus Heinonen, Huibin Shen, Nicola Zamboni, and Juho Rousu: Metabolite identification and molecular fingerprint prediction through machine learning. Bioinformatics (2012) 28 (18): 2333-2341
- Huibin Shen, Kai Dührkop, Sebastian Böcker, and Juho Rousu. Metabolite identification through multiple kernel learning on fragmentation trees. Bioinformatics (2014) 30 (12): i157-i164
- Wolf, S., Schmidt, S., Müller-Hannemann, M. & Neumann, S. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics 11, 148 (2010).
- Wang, Y., Kora, G., Bowen, B. P. & Pan, C. MIDAS: A database-searching algorithm for metabolite identification in metabolomics. Anal Chem 86, 9496–9503 (2014).

