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Metabolites 

            

• Small molecules inside biological cells, 1000s different 

types in each living cell 

• Functions: energy transport, signaling, building blocks of 

cells, inhibition/catalysis (drugs) 

• Numerous applications in biomedicine, pharmaceuticals, 

biotechnology 

• Identification of metabolites is a major bottleneck 



Metabolite identification from Tandem 

Mass Spectrometric (MS/MS) data 

            

• MS/MS fragments the ionized metabolite 

• Resulting daughter ion spectrum has peaks corresponding 

to molecular fragments 

• Our task: predict the metabolite from the daughter ion 

spectrum 
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Related work

I Traditional methods rely on reference MS/MS database.

I A multi-label prediction task rely on molecular fingerprint

prediction (Heinonen et al., 2012).

Two step approach: 

1. From a set of MS/MS spectra (x = structured input), 

learn a model to predict molecular fingerprints (y = 

multilabel output) 

2. With predicted fingerprints retrieve candidate 

molecules from a large molecular database 

 

            

Pubchem 



Building blocks 

• Data: Set of (MS/MS spectra, molecule) pairs for training 

• Kernel representations of the inputs 

• Molecular fingerprints as the outputs 

• Learning algorithm to predict inputs from the outputs 
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 Kernel methods: key characteristics 

• Embedding:  Data items z  are embedded into a feature 

space  via a non-linear feature map  φ(z); potentially very 

high dimensional 

• Linear models:  are built for the the patterns in the feature 

space (typical form: wΤφ(z)); efficient to find the optimal 

model, convex optimization 

• Kernel trick:  Algorithms work with kernels, inner products of 

feature vectors K (x, z ) = <φ(z), φ(z)> rather than the original 

features  φ(z) ; side-step the eciency problems of high-

dimensionality 

• Regularized learning:  To avoid overtting, large feature 

weights are penalized, separation by large margin is 

favoured 



Kernel ≈ similarity metric 

• A kernel function is an inner product (in a Hilbert space) 

• If  φ(x) is a feature vector describing object x, the 

following is called the linear kernel 

 K (x, z ) =  φ(x )Tφ(z ) = Σj  φj(x) φj(z) 

• Geometric interpretation of the linear kernel: cosine 

angle between two normalized feature vectors 

• Non-linear kernels enable learning complex feature 

spaces with out extra computational cost: 

– Polynomial kernel: Kpoly (x,z ) = (K (x, z ) + c )d   

– Gaussian kernel: KGaussian(x,z) = exp(||φ(x )-φ(z)||2/2σ2) 

– ... 

 

 

 



Kernels for MS/MS Spectra 

• MS/MS spectra consists 2D 

information (mass/charge, intensity) 

• Simple approach (ok, but not perfect) 

– divide m/z range into bins, each bin will 

give a feature φj 

– take peak intensity in spectrum x in a bin 

the feature value φj(x) 

– Use linear kernel of the feature vectors 

• Problems: 

– Noise arising from too wide bins 

– Mass error causes alignment errors if 

bins too narrow 

 

 
            



Probability product kernel 

• Models spectra as sets of 2D probability 

distributions (mass, intensity) 

• Kernel: all-against-all matching of the 

distributions 

            



Fragmentation trees 

• Models of fragmentation of a molecule in MS/MS 

– Nodes ≈ peaks ≈ molecular formula of fragments 

– Edges ≈ losses ≈ putative uncharged fragments 

• Trees can be predicted from spectra  

– Also gives us the predicted molecular formula of the 

unknown metabolite (but not the molecular structure!) 

– We take the predicted trees as input for our method 

 

 

            



Kernels for fragmentation trees 

• Node kernels (picture): count nodes (peaks) with the 

same molecular formula (colors) in the two trees  

• Edge kernels: count edges (losses) with the same 

molecular formula 

• More complex ones, computed using dynamic 

programming: 

– Path kernels 

– Subtree kernels 
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Multiple kernel learning 

• Idea: instead of trying to select the best kernel, learn  

combination weights for them 

• Several methods have been proposed recent years 

– Centered alignment (Cortes et al., 2012) 

– Quadratic combination (Li and Sun, 2010) 

– Lp-norm regularized combination 

• Combined kernel is used in learning the final prediction 

model (here: SVM predicting fingerprints) 

K = W1 PPK + W2 NB + W3 NI + W12 CPC+



Kernel Alignment based MKL (ALIGNF) 

PPK NB NI CPC

KY KY KY KY

W1 W2 W3 W12

KY = Y Y'X

K = W1 PPK + W2 NB + W3 NI + W12 CPC+

• Kernel Alignment = 

Normalized Frobenius inner 

product of centered kernel 

matrices 

• Weight of input kernel = 

alignment to the target  

 Kc’ = fingerprint kernel 

 

 
K = W1 PPK + W2 NB + W3 NI + W12 CPC+



Outputs: molecular fingerprints 

• Describe molecular properties 

– different types atoms, bonds 

– substructures (e.g. aromatic rings) 

• Counts or Binary indicators 

• Standard sets used by 

computational chemistry 

community  

– OpenBabel fingerprints 

– PubChem fingerprints 
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New fingerprint prediction framework

            



Scoring and ranking metabolites with 

fingerprints 

• Goal: match the predicted fingerprints to 

fingerprints of known molecules in large 

database (e.g. Pubchem) 

• Take uncertainty in the fingerprint predictions 

into account 
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Scoring schemes: fingerprint weights 

• Uniform scoring: wj = 1 

• Accuracy scoring: wj ~ cross-validation accuracy 

• Maximum likelihood scoring: wj  ~ log P(yj,ŷj) 

• Platt scoring: wj ~ exp(a f(x) + b)-1, where f(x) is the SVM 

margin 

----- Fingerprints  ---- 

candidate y 1 1 1 0 1 1 0 0 1 

predicted ŷ 1 0 1 0 1 1 1 1 1 

weight w 0.1 1 0.5 0.3 0.8 0.9 0.2 0.7 0.6 



Metabolite identification using different 

fingerprint prediction methods 

1 2 5 10 20 50 100

402 compounds in MASSBANK

Rank (log scale)

P
ro

p
o

rt
io

n
 o

f 
d

a
ta

s
e

t 
(%

)

0

20

40

60

80

100

L3 MKL

NB

UNIMKL

ALIGNF

PPK

NUM

• For each unknown 

metabolite, we score 

and rank candidate 

identifications 

• 80% of spectra have 

correct hit at top 10 

• ALIGNF (Cortes et al. 

2012) is the best MKL 

method here 
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Performance of fingerprint scoring 

methods 

• Uniform weights and 

accuracy weights 

behave similarly 

• Maximum likelihood 

scores in the middle 

• Platt scoring is the 

best 

– Heuristic modification 

improves Platt a bit 



Metabolite identification performance 
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• Plotting the fraction of the 

MS/MS spectra that have 

correct Pubchem molecule in 

top k 

• 33%  in top 1, 66% in top 10 

– out of millions of 

molecules in Pubchem  

• Better than the competition 

by a large margin (pun 

intended!) 



Fingerprint prediction performance w.r.t 

training data size 

• Fingerprint prediction 

accuracy (blue) and F1 

score (green) 

• Varying training set size 

(100% ~3000 molecules) 

• More data = better 

fingerprint predictions 
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Metabolite identification performance 

w.r.t training set size / fingerprints 

• Proportion of correctly 

identified molecules (top 1 

rank) as function of 

– number of fingerprints 

(100% ~2800) (green) 

– training set size (100% ~ 

2800) (blue) 

• More training data = 

better identifications 
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Summary and future work 

• Metabolite identification is an important problem in 

molecular biology 

• Significant progress in recent years in automatic 

identification of metabolites 

• Machine learning a key technology behind recent 

progress 

• Future work includes 

– One-step metabolite identification through structured prediction 

– Identification of novel metabolites; calls for a combinatorial 

search in molecular spaces 

– Joint identification of metabolites 
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