582653 Computational methods of systems biology, Autumn 2009 Homework 3 Group 1: Thursday Nov. 26th 14-16 B119 Group 2: Thursday Nov. 26th 16-18 B119

General instructions

Problems for each exercise session will be distributed approximately one week before the session. You are expected to be prepared to present your solutions in the exercise session.

Assignments

1. Given a $4 \times m$ PWM w and a score threshold R, the p-value is defined as the probability that a given background model produces a sequence with score greater than or equal to R when aligned with w. Let P(i, r) be the probability of getting score r for a PWM containing the first i positions of w. These values can then be evaluated using the following recursion (assuming that entries in w are small integers)

$$P(0,r) = \begin{cases} 1, & \text{if } r = 0\\ 0, & \text{otherwise} \end{cases}$$
$$P(i,r) = \sum_{j \in \Sigma} q_j \cdot P(i-1,r-w[i,j])$$

where q_j is the probability of residue j in the background model. The p-value for w and R is then equal to $\sum_{r\geq R} P(m,r)$. Familiarize yourself with the method. If you are given the p-value π , how do you find the corresponding score threshold? (Hint: Use dynamic programming to evaluate P(m,r) for all r and use the dynamic programming array to find R.) For what values of i and r should P(i,r) be evaluated? Why do we allow only integers in w? What is the asymptotic running time of the method?

- 2. Try MEME at http://meme.sdsc.edu/meme/intro.html. The sequences in http://www.cs.helsinki.fi/u/lmsalmel/cmsb09/exercises/meme-data.fa contain the CREB1 binding site. Synthesize a PWM of length 8 from this data using MEME. Compare your result with the CREB1 profile in the Jaspar database, http://jaspar.cgb.ki.se/ (search for a profile with name CREB1).
- 3. Sketch an algorithm that finds from a given DNA sequence a window of width m such that this window has among all such windows the highest number of binding sites for a given set of PWMs that have score larger than T.
- 4. [Alon, Exercise 2.1]
- 5. [Alon, Exercise 2.2]
- 6. [Alon, Exercise 2.4]