Solutions

Exchange reactions: $v_1, v_2, v_3, v_8, v_{11}$. Stoichiometric matrix:

S =

1	0	0	-1	0	0	0	0	0	0	0
0	1	0	0	-1	0	0	0	0	0	0
0	0	1	0	0	-1	0	0	0	0	0
0	0	0	-1	1	0	0	0	0	0	0
0	0	0	0	1	1	-1	0	0	0	0
0	0	0	1	0	0	0	-1	0	0	0
0	0	0	1	0	0	0	0	-1	0	0
0	0	0	0	0	0	1	0	0	-1	0
0	0	0	0	0	0	0	0	1	1	-1

FBA problem:

 $\max v_{11}$
such that $S\mathbf{v} = \mathbf{0}$
 $0 \le v_1, v_2, v_3 \le 1$

Matlab commands:

>> f' ans = 0 0 0 0 0 0 0 0 0 0 1 >> b' ans = 0 0 0 0 0 0 0 0 0 >> L' ans = 0 0 0 -Inf -Inf -Inf -Inf -Inf -Inf -Inf >> U' ans = 1 1 1 InfInf Inf Inf Inf Inf Inf Inf >> [X,v]=linprog(-f,[],[],S,b,L,U)

Optimization terminated.

Х =

1.0000 1.0000 1.0000 1.0000 1.0000 2.0000 1.0000 2.0000 3.0000

v =

-3.0000

Note that since linprog minimizes, the objective function and result are given as opposite numbers. The maximum for v_{11} is hence 3. This solution is unique, because $v_1 = v_2 = v_3 = 1$ are already at upper limits.