Solutions

Exchange reactions: $v_{1}, v_{2}, v_{3}, v_{8}, v_{11}$.
Stoichiometric matrix:
S =

1	0	0	-1	0	0	0	0	0	0	0
0	1	0	0	-1	0	0	0	0	0	0
0	0	1	0	0	-1	0	0	0	0	0
0	0	0	-1	1	0	0	0	0	0	0
0	0	0	0	1	1	-1	0	0	0	0
0	0	0	1	0	0	0	-1	0	0	0
0	0	0	1	0	0	0	0	-1	0	0
0	0	0	0	0	0	1	0	0	-1	0
0	0	0	0	0	0	0	0	1	1	-1

FBA problem:

$$
\begin{array}{r}
\max v_{11} \\
\text { such that } S \mathbf{v}=\mathbf{0} \\
0 \leq v_{1}, v_{2}, v_{3} \leq 1
\end{array}
$$

Matlab commands:

```
>> f'
ans =
    0
>> b'
ans =
    0
>> L'
ans =
    0 0 0 - Inf - Inf - Inf - Inf -Inf - Inf -Inf - Inf
>> U'
ans =
    1 1 1 Inf Inf Inf Inf Inf Inf Inf Inf
>> [X,v]=linprog(-f,[],[],S,b,L,U)
```


Optimization terminated.

$\mathrm{X}=$
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
2.0000
1.0000
1.0000
2.0000
3.0000
v =
-3.0000

Note that since linprog minimizes, the objective function and result are given as opposite numbers. The maximum for v_{11} is hence 3 . This solution is unique, because $v_{1}=v_{2}=v_{3}=1$ are already at upper limits.

