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Lecture 1

1.1 Preliminaries on probabilistic
models of biological sequences
1.2 Hidden Markov Models for
sequence families

Probabilistic models
• Probabilistic model: abstract ’system’ that produces

different outcomes (objects) with different probabilities;
the model assigns each object x an associated
probability P(x)

• A model typically has (several) parameters (real
numbers); we denote all parameters by 

• Probabilistic models probability distributions of the
object family

• Example: rolling a die
– Parameters = (p1,...,p6)
– Probability of rolling i: P(i) = pi
– Unloaded (fair) die: p1 = ... = p6 = 1/6
– Independence of consecutive rolls: P(1,6,3) = p1p6p3
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Random sequence model
(Bernoulli model)

• Alphabet of symbols
– DNA alphabet (bases): A, C, G, T
– RNA alphabet (bases): A, C, G, U
– Protein alphabet (20 amino acids): A, ..., V

• qa = the occurrence probability of a in
a sequence, independent of the rest of the
sequence (= Bernoulli model)

Random sequence model
(Bernoulli model)

• Probability of sequence x = x1x2...xn is
P(x) = qx(1)qx(2)...qx(n)

• This is the base-level model to compare
other models against

• NOTE on the notation used: Because of
the limitations of PowerPoint, I must
sometimes write x(i) instead of xi
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Maximum likelihood (ML)
estimation

• Goal: estimate the parameters of a
probabilistic model from a training data D

• Example:
– #a = total number of a’s in all sequences of a

sequence database DB
– |DB| = total length of DB
– ML estimate

qa = #a / |DB|

Overfitting

• D too small danger of overfitting in ML
estimation

• Example: rolling a die
– 3 rolls gives, say, three times 6. Then D = 6, 6, 6
– ML estimate for :

• p1 = ... = p5 = 0
• p6 = #6/3 = 3/3 = 1

– Any good? Obviously overfitting!
– Solution: add pseudocounts to the observed counts
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ML estimation in general

= parameters of the model
• Find such that P(D| )  (= probability of

the training data in model ) is largest
possible

• ML model for D:  ML= arg max P(D| )
• Overfitting
• Pseudocounts

Hidden Markov Models for
sequence families

Durbin et al., Chapters 3,4,5
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Markov chain
• Definition: A Markov chain for

modeling sequences x1x2 ... of
symbols in alphabet is a triplet (Q,
{p(x1=s) | s Q}, A), where:
– Q is a finite set of states. Each state

corresponds to a symbol in the
alphabet .

– p gives the initial state probabilities.
– A is the set of state transition

probabilities, denoted by ast for each
s, t Q.

• For each s, t Q the transition
probability is:

ast P(xi = t | x 1 = s)

t ast = 1 for every s

Markov chain for modeling
DNA sequences

Markov property
Assume that X = (x1, . . . , xL) is a random process with a memory of
length 1, i.e., the value of the random variable xi depends only on its
predecessor x 1. Then we can write:

s1, . . . , si P(xi = si | x1 = s1, . . . , x 1 = s 1) =
= P(xi = si | x 1 = s 1) = as(i 1),s(i)

The probability of the whole sequence X will therefore be:

P(X) = p(x1) · i=2,...,L ax(i 1),x(i)

We can add fictitious begin and end states together with
corresponding symbols x0 and xL+1. Then we can define s : a0,s

p(s), where p(s) is the initial probability of the symbol s. Hence:

P(X) = i=1,...,L ax(i 1),x(i)
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CpG islands
CpG island: DNA regions where dinucleotide CG occurs
relatively often (normally the dinucleotide CG is quite rare
because of frequent methylation mutations CG TG that
convert CG to TG)

0.1820.3840.3550.079T

0.1250.3750.3390.161G

0.1880.2740.3680.171C

0.1200.4260.2740.180A

TGCA+

0.2920.2920.2390.177T

0.2080.2980.2460.248G

0.3020.0780.2980.322C

0.2100.2850.2050.300A

TGCA-

Markov chain for CpG island: Markov chain for not-CpG island:

Hidden Markov Model

• Definition A Hidden Markov Model (HMM)
is a triplet M = ( ,Q, ), where:

is an alphabet of symbols
– Q is a finite set of states, capable of emitting

symbols from the alphabet 
is a set of probabilities, comprised of:

• State transition probabilities, denoted by akl for
each k, l Q, such that t akl = 1 for all k

• Emission probabilities, denoted by ek(b) for each k
Q and b , such that b ek(b) = 1 for all k
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Example: Dishonest casino
• The states are Q = {F,L},

where F stands for ”fair”
and L for ”loaded”

• The alphabet is = {1, 2,
3, 4, 5, 6}

• Fair die: pi = 1/6 for all i
• Loaded die: p1 =...= p5 =

1/10; p6 = ½
• Probability of switching

from fair to loaded is 0.05,
and of switching back is 0.1

State transition probabilities

• A path
= ( 1, . . . , L)

in the model M is a sequence of states. The path
itself follows a simple Markov chain, so the
probability of moving to a given state depends
only on the previous state. As in the Markov
chain model, we define the state transition
probabilities on the path :

akl = P( i = l | 1 = k)
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Emission probabilities
• In a hidden Markov model there isn’t a one-to-

one correspondence between the states and the
symbols. Therefore, in a HMM we introduce a
new set of parameters, ek(b), called the
emission probabilities.

• Given an emission sequence X = (x1, . . . , xL)
for path , define:

ek(b) = P(xi = b | i = k)
• ek(b) is the probability that symbol b is seen

when we are in state k.

Probability of emitting X from path 

• The joint probability of the observed
sequence X and the path of states is
therefore:

P(X, ) = a (0) (1) i=1,...,Le (i)(xi) a (i), (i+1)

where we denote
0 = begin state,
L+1 = end state



9

The decoding problem

.
• INPUT: A hidden Markov model M = ( ,Q, )

and a sequence X , for which the
generating path = ( 1, . . . , L) is unknown.

• QUESTION: Find the most probable generating
path for X, i.e., a path such that P(X, ) is
maximized:

= argmax {P(X, )}

Viterbi algorithm
• Calculates the most probable path in a hidden Markov

model using a dynamic programming algorithm (Viterbi
1967, Bellman 1957)

• Let X be a sequence of length L. For k Q and 0 i 
L, we consider a path ending at k, and the probability
of generating the prefix (x1,...,xi) of X

• Denote by vk(i) the probability of the most probable path
for the prefix (x1,...,xi) that ends in state k:

vk(i) = max{ | (i)=k} P(x1,...,xi, )
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Viterbi (cont.)
• 1. Initialize:

vbegin(0) := 1
vk(0) := 0 if k begin

• 2. For each i = 0, . . . , L 1 and for each l Q
calculate:

vl(i + 1) := el(xi+1) maxk Q {vk(i) akl}

• 3. Finally, the value of P(X, ) is:
P(X, ) := maxk Q {vk(L) ak,end}

• Reconstruct the path itself by keeping back pointers
during the recursive stage and tracing them afterwards

Complexity of Viterbi

• Complexity: We calculate the values of
O(|Q| L) cells of the matrix V, spending
O(|Q|) operations per cell. Therefore the
overall
– time complexity is O(L |Q|2), and
– the space complexity is O(L |Q|)
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Viterbi example

Running the Viterbi algorithm on the dishonest casino example:
The numbers show 300 rolls of a die. Below is shown which die was
actually used for that roll (F for fair and L for loaded). Under that, the
prediction by the Viterbi algorithm is shown.

Exercise Problem (extra)

• Develop an algorithm that finds for a given
HMM and length L the most probable
emission sequence of length L.
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Posterior Decoding

• INPUT: A hidden Markov model M = ( ,Q,
) and a sequence X , for which the

generating path = ( 1, . . . , L) is
unknown.

• QUESTION: For each 1 i  L and k Q,
compute the probability P( i = k | X)

• For this we shall need some extra
definitions and algorithms

Forward algorithm
• Given a sequence X = (x1, . . . , xL), the problem

is to compute the total probability of emitting X
P(X) = P(X, )

• Computation proceeds in forward direction, from
time 0 to time L

• Denote by fk(i) the probability of emitting the
prefix (x1, . . . , xi) and eventually reaching state

i = k :
fk(i) = P(x1, . . . , xi, i = k)
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Forward (cont.)

• Use the same initial values for fk(0) as was done
in the Viterbi algorithm:

fbegin(0) := 1
fk(0) := 0, if k begin

• In analogy to Viterbi, for each i = 0, . . . , L 1
and for each l Q calculate

fl(i + 1) := el(xi+1) k Q fk(i) akl

• Terminate the process by calculating
P(X) := k Q fk(L) ak,end

Backward algorithm

• Given a sequence X = (x1, . . . , xL), the
problem is (again) to compute

P(X) = P(X, )
• Computation proceeds backwards, from

time L to time 0
• Denote by bk(i) the probability of emitting

the suffix (xi+1,...,xL), given i = k:
bk(i) = P(xi+1, . . . , xL, i = k)
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Backward (cont.)

• Initialization
bk(L) := ak,end for all k Q

• In the backward direction, for each i = L-1,...,0
and for each l Q calculate

bk(i) := l Q akl el(xi+1) bl(i +1)

• Terminate the process by calculating
P(X) := l Q abegin,l el(x1) bl(1)

Complexity

• All the values of fk(i) and bk(i) can be
calculated in O(L |Q|2) time and stored in
O(L |Q|) space, as it is the case with
Viterbi algorithm
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Posterior decoding (cont.)
• The forward and backward probabilities give P( i = k | X):
• Since process X has memory of only length 1, we have

P(X, i = k) =
= P(x1,...,xi, i = k) P(xi+1,...,xL | x1,...,xi, i = k) =
=P(x1,...,xi, i = k) P(xi+1,...,xL i = k) =
= fk(i) bk(i)

• Using the definition of conditional probability, we obtain
the solution to the posterior decoding problem:

Here P(X) is obtained using the forward or backward
algorithm

( , ) ( ) ( )( | )
( ) ( )

i k k
i

P X k f i b iP k X
P X P X

π
π

= ⋅
= = =

The posterior probability of being in the state corresponding
to the fair die in the dishonest casino example. Shaded
areas: the roll was generated by a loaded die.
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Parameter estimation for HMMs
The learning problem for HMMs: Given training data D =
X(1), ..., X(n) where each X(i) is a sequence in the emission
alphabet, construct the HMM that will best characterize D

Solution: We need to assign values to that will maximize
the probabilities of the sequences X(i) (= ML estimate).
Sequences are assumed independent, hence:

ML estimate

n
(1) (n) (i)

i=1

P(X , . . . ,X | ) = P(X | )Θ Θ∏

(1) (n) = argmax {Score(X , . . . ,X | )}∗
ΘΘ Θ

n
(1) (n) (1) (n)

j=1

Score(X , . . . ,X | ) = log P(X , . . . ,X | ) = log(P(X(i)| ))Θ Θ Θ∑

Estimation when the state sequence is known
Assume that the state sequences (1) ,..., (n) through the
HMM are known for X(1) ,...,X(n) (for example, by an
annotation of the X(i)s that indicates the CpG islands (if we
want to model CpG islands))

Count the total number of each event along these paths:

Akl - the number of transitions from the state k to l

Ek(b) - the number of times that an emission of the
symbol b occurred in state k

ML estimators

Overfitting: use pseudocounts Akl := Akl + rkl . . . (Laplace
rule: rkl = 1)

kl
kl

kqq Q

Aa =
A

∈∑
k

k
E ( )e (b) =

( )k

b
E

σ
σ

∈Σ∑
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Estimation when the state sequence is
unknown: Baum-Welch training

• The Baum-Welch algorithm, which is a special case of
the EM technique (Expectation-Maximization), can be
used for heuristically finding an approximate ML solution

• Big picture:
– start with some ;
– compute expected values for  Akl and  Ek(b)  in model for the

training data X(i);
– estimate new  a  and  e  (= new ) from these expected values;
– continue iterating this way until the value of the objective function

log P(X| ) changes less than some predefined threshold.

• BW always monotonically converges to a local optimum

BW more precisely
• fk(i) and bk(i) as in Forward/Backward algorithms
• Probability of taking transition k l and emitting xi+1 from

state l when HMM emits a sequence x = x1 ... xL:

P( i=k, i+1=l | x, ) = fk(i)aklel(xi+1)bl(i+1)/P(x| )

Expected number of times that k l is used for
training data D:

Akl = j P(X(j) )-1
i f(j)k(i) akl el(x(j)

i+1)bj
l(i+1)     (*)

Expected number of times of emitting symbol b from
state k for training data D:

Ek(b) = j P(x(j)| ) -1
{i | x^j(i)=b} fjk(i) bj

k(i)          (**)



18

Baum-Welch Algorithm
• Input: training data D, threshold T, limit M

• 1. Initialization: := ((akl) V,l V,(ek(b)) V,b ) arbitrary initial values

• 2. Iterative search:
– Set all the A and E variables to their pseudocount values r (or 0)
– Expectation-step. For each X(j) in D do:

• Calculate fk(i) for all k, i using the Forward algorithm
• Calculate bk(i) for all k, i using the Backward algorithm
• Using the calculated values fk(i) and bk(i), evaluate and add the

contribution of x(j) to values Akl and Ek(b) ((*) and (**) on the previous slide)
– Maximization step. Calculate new :

• 3. Stop?
– Repeat Step 2 until log P(D | new) – log P(D | old) T or the number

of iterations taken is = M

kl
kl

kqq Q

Aa :=
A

∈∑
k

k
E ( )e (b) :=

( )k

b
E

σ
σ

∈Σ∑

Viterbi training
• Similar to the BW-algorithm but parameters a

and e are updted using the A and B counts
obtained from the most probable paths *(x(1)),
..., *(x(n)) for x(1), ..., x(n). These paths can be
found using the Viterbi algorithm.

• Converges always as the Viterbi paths can
change only finitely many times (as they are
finite structures)

• Does not maximize log P(D | )  (see Durbin pp
64-65



19

HMM model structure
• Choice of model topology: complete transition graph

(i.e., E = V x V) is difficult to train as it has lots of local
maxima
– Prune E using prior knowledge of the problem.
– Elimination of transition k l   akl = 0
– The topological structure should be such that it has natural

correspondence with the problem to be modeled

• Silent states:
– no emissions
– If there are no cycles consisting of only silent states, then the

above algorithms work after small modifications (for example,
the Forward algorithm should traverse the silent states in the so-
called topological order; as there are no cycles, such an order
exists)

Example: HMM architecture of GENESCAN

Prediction of
exons (genes)



20

Numerical stability of HMM
algorithms

• Long multiplications of probability values
can lead to numerical problems: underflow
of floating-point numbers

• Two main solution techniques
– Log transformations: x +

• Does not work if both x and + are present in the
algorithm (Viterbi ok, Forward/Backward not)

– Scaling of probabilities
• Details: see Durbin pp 77-78


