Lecture 1

1.1 Preliminaries on probabilistic models of biological sequences 1.2 Hidden Markov Models for sequence families

Probabilistic models

- Probabilistic model: abstract 'system' that produces different outcomes (objects) with different probabilities; the model assigns each object x an associated probability $P(x)$
- A model typically has (several) parameters (real numbers); we denote all parameters by Θ
- Probabilistic models \leftrightarrow probability distributions of the object family
- Example: rolling a die
- Parameters $\Theta=\left(p_{1}, \ldots, p_{6}\right)$
- Probability of rolling i: $P(i)=p_{i}$
- Unloaded (fair) die: $p_{1}=\ldots=p_{6}=1 / 6$
- Independence of consecutive rolls: $P(1,6,3)=p_{1} p_{6} p_{3}$

Random sequence model (Bernoulli model)

- Alphabet Σ of symbols
- DNA alphabet (bases): A, C, G, T
- RNA alphabet (bases): A, C, G, U
- Protein alphabet (20 amino acids): A, .., V
- $\mathrm{q}_{\mathrm{a}}=$ the occurrence probability of $a \in \sum$ in a sequence, independent of the rest of the sequence (= Bernoulli model)

Random sequence model (Bernoulli model)

- Probability of sequence $x=x_{1} x_{2} \ldots x_{n}$ is

$$
P(x)=q_{x(1)} q_{x(2)} \cdots q_{x(n)}
$$

- This is the base-level model to compare other models against
- NOTE on the notation used: Because of the limitations of PowerPoint, I must sometimes write $x(i)$ instead of x_{i}

Maximum likelihood (ML) estimation

- Goal: estimate the parameters Θ of a probabilistic model from a training data D
- Example:
- \#a = total number of a's in all sequences of a sequence database DB
$-|D B|=$ total length of DB
- ML estimate

$$
\mathrm{q}_{\mathrm{a}}=\# \mathrm{a} /|\mathrm{DB}|
$$

Overfitting

- D too small \rightarrow danger of overfitting in ML estimation
- Example: rolling a die
- 3 rolls gives, say, three times 6 . Then $D=6,6,6$
- ML estimate for Θ :
- $p_{1}=\ldots=p_{5}=0$
- $p_{6}=\# 6 / 3=3 / 3=1$
- Any good? Obviously overfitting!
- Solution: add pseudocounts to the observed counts

ML estimation in general

- $\Theta=$ parameters of the model
- Find Θ such that $\mathrm{P}(\mathrm{D} \mid \Theta)$ (= probability of the training data in model Θ) is largest possible
- ML model for $D: \Theta_{M L}=\arg _{\ominus} \max P(D \mid \Theta)$
- Overfitting
- Pseudocounts

Hidden Markov Models for sequence families

Durbin et al., Chapters 3,4,5

Markov chain

- Definition: A Markov chain for modeling sequences $x_{1} x_{2} \ldots$ of symbols in alphabet \sum is a triplet (Q, $\left.\left\{p\left(x_{1}=s\right) \mid s \in Q\right\}, A\right)$, where:
- Q is a finite set of states. Each state corresponds to a symbol in the alphabet Σ.
- p gives the initial state probabilities.
- A is the set of state transition probabilities, denoted by $a_{s t}$ for each $s, t \in Q$.
- For each $s, t \in Q$ the transition probability is:

$$
a_{s t} \equiv P\left(x_{i}=t / x_{i-1}=s\right)
$$

Markov chain for modeling DNA sequences

- $\sum_{t} a_{s t}=1$ for every s

Markov property

Assume that $X=\left(x_{1}, \ldots, x_{L}\right)$ is a random process with a memory of length 1, i.e., the value of the random variable x_{i} depends only on its predecessor x_{i-1}. Then we can write:

$$
\begin{array}{ll}
\forall s_{1}, \ldots, s_{i} \in \Sigma \quad & P\left(x_{i}=s_{i} / x_{1}=s_{1}, \ldots, x_{i-1}=s_{i-1}\right)= \\
= & P\left(x_{i}=s_{i} / x_{i-1}=s_{i-1}\right)=a_{s(i-1), s(i)}
\end{array}
$$

The probability of the whole sequence X will therefore be:

$$
P(X)=p\left(x_{1}\right) \cdot \Pi_{\mathrm{i}=2, \ldots, \mathrm{~L}} a_{x(i-1), x(i)}
$$

We can add fictitious begin and end states together with corresponding symbols x_{0} and x_{L+1}. Then we can define $\forall s \in \Sigma$: $a_{0, s}$ $\equiv p(s)$, where $p(s)$ is the initial probability of the symbol s. Hence:

$$
P(X)=\prod_{\mathrm{i}=1, \ldots, \mathrm{~L}} a_{x(i-1), x(i)}
$$

CpG islands

CpG island: DNA regions where dinucleotide CG occurs relatively often (normally the dinucleotide CG is quite rare because of frequent methylation mutations $\mathrm{CG} \rightarrow \mathrm{TG}$ that convert CG to TG)

Markov chain for CpG island: Markov chain for not-CpG island:

+	A	C	G	T
A	0.180	0.274	0.426	0.120
C	0.171	0.368	$\underline{0.274}$	0.188
G	0.161	0.339	0.375	0.125
T	0.079	0.355	0.384	0.182

-	A	C	G	T
A	0.300	0.205	0.285	0.210
C	0.322	0.298	$\underline{0.078}$	0.302
G	0.248	0.246	0.298	0.208
T	0.177	0.239	0.292	0.292

Hidden Markov Model

- Definition A Hidden Markov Model (HMM) is a triplet $M=(\Sigma, Q, \Theta)$, where:
$-\Sigma$ is an alphabet of symbols
$-Q$ is a finite set of states, capable of emitting symbols from the alphabet Σ
$-\Theta$ is a set of probabilities, comprised of:
- State transition probabilities, denoted by $a_{k l}$ for each $k, I \in Q$, such that $\sum_{\mathrm{t}} a_{k l}=1$ for all k
- Emission probabilities, denoted by $e_{k}(b)$ for each k $\in Q$ and $b \in \Sigma$, such that $\sum_{\mathrm{b}} e_{k}(b)=1$ for all k

Example: Dishonest casino

- The states are $Q=\{F, L\}$, where F stands for "fair" and L for "loaded"
- The alphabet is $\Sigma=\{1,2$, 3, 4, 5, 6\}
- Fair die: $p_{i}=1 / 6$ for all i
- Loaded die: $\mathrm{p}_{1}=\ldots=\mathrm{p}_{5}=$ $1 / 10 ; p_{6}=1 / 2$
- Probability of switching from fair to loaded is 0.05 , and of switching back is 0.1

State transition probabilities

- A path

$$
\Pi=\left(\pi_{1}, \ldots, \pi_{L}\right)
$$

in the model M is a sequence of states. The path itself follows a simple Markov chain, so the probability of moving to a given state depends only on the previous state. As in the Markov chain model, we define the state transition probabilities on the path Π :

$$
a_{k l}=P\left(\pi_{i}=l / \pi_{i-1}=k\right)
$$

Emission probabilities

- In a hidden Markov model there isn't a one-toone correspondence between the states and the symbols. Therefore, in a HMM we introduce a new set of parameters, $e_{k}(b)$, called the emission probabilities.
- Given an emission sequence $X=\left(x_{1}, \ldots, x_{L}\right) \in$ Σ^{*} for path Π, define:

$$
e_{k}(b)=P\left(x_{i}=b / \pi_{i}=k\right)
$$

- $e_{k}(b)$ is the probability that symbol b is seen when we are in state k.

Probability of emitting X from path Π

- The joint probability of the observed sequence X and the path of states Π is therefore:

$$
P(X, \Pi)=a_{\pi(0), \pi(1)} \cdot \prod_{i=1, \ldots, L} e_{\pi(i)}\left(x_{i}\right) a_{\pi(i), \pi(i+1)}
$$

where we denote
$\pi_{0}=$ begin state,
$\pi_{L+1}=$ end state

The decoding problem

- INPUT: A hidden Markov model $M=(\Sigma, Q, \Theta)$ and a sequence $X \in \Sigma^{*}$, for which the generating path $\Pi=\left(\pi_{1}, \ldots, \pi_{L}\right)$ is unknown.
- QUESTION: Find the most probable generating path Π^{*} for X, i.e., a path such that $P\left(X, \Pi^{*}\right)$ is maximized:

$$
\Pi^{*}=\operatorname{argmax}_{\Pi}\{P(X, \Pi)\}
$$

Viterbi algorithm

- Calculates the most probable path in a hidden Markov model using a dynamic programming algorithm (Viterbi 1967, Bellman 1957)
- Let X be a sequence of length L. For $k \in Q$ and $0 \leq i \leq$ L, we consider a path Π ending at k, and the probability of Π generating the prefix $\left(x_{1}, \ldots, x_{i}\right)$ of X
- Denote by $v_{k}(i)$ the probability of the most probable path for the prefix $\left(x_{1}, \ldots, x_{i}\right)$ that ends in state k :

$$
v_{k}(I)=\max _{\{\Pi \Pi(i)=k\}} P\left(x_{1}, \ldots, x_{i}, \Pi\right)
$$

Viterbi (cont.)

1. Initialize:

$$
\begin{aligned}
& v_{\text {begin }}(0):=1 \\
& v_{k}(0):=0 \text { if } k \neq \text { begin }
\end{aligned}
$$

2. For each $i=0, \ldots, L-1$ and for each $I \in Q$ calculate:

$$
v(i+1):=e\left(x_{i+1}\right) \cdot \max _{k \in Q}\left\{v_{k}(i) \cdot a_{k}\right\}
$$

3. Finally, the value of $P\left(X, \Pi^{*}\right)$ is:

$$
P\left(X, \Pi^{*}\right):=\max _{k \in Q}\left\{v_{k}(L) \cdot a_{k, \text { end }}\right\}
$$

- Reconstruct the path Π^{*} itself by keeping back pointers during the recursive stage and tracing them afterwards

Complexity of Viterbi

- Complexity: We calculate the values of $O(/ Q / \cdot L)$ cells of the matrix V, spending $O(/ Q)$ operations per cell. Therefore the overall
- time complexity is $O\left(L \cdot \mid Q \beta^{2}\right)$, and
- the space complexity is $O(L \cdot|Q|)$

Viterbi example

```
Rolls 315116246446644245311321631164152133625144543631656626566666 FFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFPFFFFFFFGFFFLLLLLLLLLLLLLL
Viterbi FFFFFFFFFFFFPFFFFFFFFFFFFFFFFPFFFPFFFFFFFFFPFFFFLLLLLLLLLLLL
Rolls 651166453132651245636664631636653162326455236266666625151631 Die LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLILLFFFFFFFFE Viterbi LLLLLLFFFPFFFFFFFFLLLLLLLLLLLLLLLLLLLLILLLLLLLLLLLLLFFFFFFFF
Rolls 222555441666566563564324364131513465146353411126414626253356 Die FFFFFFFSLLLLLLILLLLLLFFFFFFFFFFFFFFFBFFFFFFFFFFFFFFFPFFFFFLL Viterbi FFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFPFFFEFFFFFFFFPFPFFFPFFFPFFFL
Rolls 366163666466232534413661661163252562462255265252265435353336
```



``` Viterbi LLLLLLLLLLLLFFFFFFFFFFFFFFFPPFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls 233121625364414432335163243633665562466662632666612355245242 Die FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLGLLLLLLLLLLLLLEFFFFFFFFF Viterbi FFFFFFFFFFFFFFFFFFFPFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
```

Running the Viterbi algorithm on the dishonest casino example: The numbers show 300 rolls of a die. Below is shown which die was actually used for that roll (F for fair and L for loaded). Under that, the prediction by the Viterbi algorithm is shown.

Exercise Problem (extra)

- Develop an algorithm that finds for a given HMM and length L the most probable emission sequence of length L.

Posterior Decoding

- INPUT: A hidden Markov model $M=(\Sigma, Q$, Θ) and a sequence $X \in \Sigma^{*}$, for which the generating path $\Pi=\left(\pi_{1}, \ldots, \pi_{\nu}\right)$ is unknown.
- QUESTION: For each $1 \leq i \leq L$ and $k \in Q$, compute the probability $P\left(\pi_{i}=k / X\right)$
- For this we shall need some extra definitions and algorithms

Forward algorithm

- Given a sequence $X=\left(x_{1}, \ldots, x_{L}\right)$, the problem is to compute the total probability of emitting X

$$
P(X)=\sum_{\Pi} P(X, \Pi)
$$

- Computation proceeds in forward direction, from time 0 to time L
- Denote by $f_{k}(i)$ the probability of emitting the prefix (x_{1}, \ldots, x_{i}) and eventually reaching state $\pi_{i}=k$:

$$
f_{k}(I)=P\left(x_{1}, \ldots, x_{i}, \pi_{i}=k\right)
$$

Forward (cont.)

- Use the same initial values for $f_{k}(0)$ as was done in the Viterbi algorithm:

$$
\begin{aligned}
& f_{\text {begin }}(0):=1 \\
& f_{k}(0):=0, \text { if } k \neq \text { begin }
\end{aligned}
$$

- In analogy to Viterbi, for each $i=0, \ldots, L-1$ and for each $I \in Q$ calculate

$$
f_{l}(i+1):=e_{l}\left(x_{i+1}\right) \cdot \sum_{k \in Q} f_{k}(i) \cdot a_{k l}
$$

- Terminate the process by calculating

$$
P(X):=\sum_{k \in Q} f_{k}(L) \cdot a_{k, \text { end }}
$$

Backward algorithm

- Given a sequence $X=\left(x_{1}, \ldots, x_{L}\right)$, the problem is (again) to compute

$$
P(X)=\sum_{\pi} P(X, \Pi)
$$

- Computation proceeds backwards, from time L to time 0
- Denote by $b_{k}(i)$ the probability of emitting the suffix $\left(x_{i+1}, \ldots, x_{L}\right)$, given $\pi_{i}=k$:

$$
b_{k}(i)=P\left(x_{i+1}, \ldots, x_{L}, \pi_{i}=k\right)
$$

Backward (cont.)

- Initialization

$$
b_{k}(L):=a_{k, \text { end }} \text { for all } k \in Q
$$

- In the backward direction, for each $i=\mathrm{L}-1, \ldots, 0$ and for each $I \in Q$ calculate

$$
b_{k}(I):=\sum_{l \in Q} a_{k l} \cdot e_{l}\left(x_{i+1}\right) \cdot b_{l}(i+1)
$$

- Terminate the process by calculating

$$
P(X):=\sum_{I \in Q} a_{\text {begin }, l} \cdot e_{(}\left(x_{1}\right) \cdot b_{l}(1)
$$

Complexity

- All the values of $f_{k}(I)$ and $b_{k}(I)$ can be calculated in $O\left(L \cdot|Q|^{2}\right)$ time and stored in $O(L \cdot \mid Q)$ space, as it is the case with Viterbi algorithm

Posterior decoding (cont.)

- The forward and backward probabilities give $P\left(\pi_{i}=k \mid X\right)$:
- Since process X has memory of only length 1 , we have $P\left(X, \pi_{i}=k\right)=$

$$
\begin{aligned}
& =P\left(x_{1}, \ldots, x_{i}, \pi_{i}=k\right) \cdot P\left(x_{i+1}, \ldots, x_{L} \mid x_{1}, \ldots, x_{i}, \pi_{i}=k\right)= \\
& =P\left(x_{1}, \ldots, x_{i}, \pi_{i}=k\right) \cdot P\left(x_{i+1}, \ldots, x_{L} \mid \pi_{i}=k\right)= \\
& =f_{k}(1) \cdot b_{k}(1)
\end{aligned}
$$

- Using the definition of conditional probability, we obtain the solution to the posterior decoding problem:

$$
P\left(\pi_{i}=k \mid X\right)=\frac{P\left(X, \pi_{i}=k\right)}{P(X)}=\frac{f_{k}(i) \cdot b_{k}(i)}{P(X)}
$$

Here $P(X)$ is obtained using the forward or backward algorithm

The posterior probability of being in the state corresponding to the fair die in the dishonest casino example. Shaded areas: the roll was generated by a loaded die.

Parameter estimation for HMMs

The learning problem for HMMs: Given training data $D=$ $X^{(1)}, \ldots, X^{(n)}$ where each $\mathrm{X}^{(\mathrm{i})}$ is a sequence in the emission alphabet, construct the HMM that will best characterize D

Solution: We need to assign values to Θ that will maximize the probabilities of the sequences $X^{(i)}$ (= ML estimate).
Sequences are assumed independent, hence:

$$
\mathrm{P}\left(\mathrm{X}^{(1)}, \ldots, \mathrm{X}^{(\mathrm{n})} \mid \Theta\right)=\prod_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{P}\left(\mathrm{X}^{(\mathrm{i})} \mid \Theta\right)
$$

ML estimate

$$
\begin{aligned}
& \Theta^{*}=\operatorname{argmax}_{\Theta}\left\{\operatorname{Score}\left(X^{(1)}, \ldots, X^{(n)} \mid \Theta\right)\right\} \\
& \operatorname{Score}\left(X^{(1)}, \ldots, X^{(n)} \mid \Theta\right)=\log P\left(X^{(1)}, \ldots, X^{(n)} \mid \Theta\right)=\sum_{j=1}^{n} \log (P(X(i) \mid \Theta))
\end{aligned}
$$

Estimation when the state sequence is known

Assume that the state sequences $\Pi^{(1)}, \ldots, \Pi^{(n)}$ through the HMM are known for $X^{(1)}, \ldots, X^{(n)}$ (for example, by an annotation of the $X^{(i)}$ s that indicates the CpG islands (if we want to model CpG islands))

Count the total number of each event along these paths:
$A_{k l}$ - the number of transitions from the state k to l
$E_{k}(b)$ - the number of times that an emission of the symbol b occurred in state k

ML estimators

$$
\mathrm{a}_{\mathrm{k} 1}=\frac{\mathrm{A}_{\mathrm{k} 1}}{\sum_{\mathrm{q} \in \mathrm{Q}} \mathrm{~A}_{\mathrm{kq}}} \quad \mathrm{e}_{\mathrm{k}}(\mathrm{~b})=\frac{\mathrm{E}_{\mathrm{k}}(b)}{\sum_{\sigma \in \mathrm{\Sigma}} E_{k}(\sigma)}
$$

Overfitting: use pseudocounts $A_{k l}:=A_{k l}+r_{k l} \ldots$ (Laplace rule: $r_{k l}=1$)

Estimation when the state sequence is unknown: Baum-Welch training

- The Baum-Welch algorithm, which is a special case of the EM technique (Expectation-Maximization), can be used for heuristically finding an approximate ML solution
- Big picture:
- start with some Θ;
- compute expected values for $A_{k l}$ and $E_{k}(b)$ in model Θ for the training data $\mathrm{X}^{(\mathrm{i})}$;
- estimate new a and e (= new Θ) from these expected values;
- continue iterating this way until the value of the objective function $\log P(X \mid \Theta)$ changes less than some predefined threshold.
- BW always monotonically converges to a local optimum

BW more precisely

- $f_{k}(i)$ and $b_{k}(i)$ as in Forward/Backward algorithms
- Probability of taking transition $\mathrm{k} \rightarrow$ and emitting $\mathrm{x}_{\mathrm{i}+1}$ from state I when HMM emits a sequence $x=x_{1} \ldots x_{L}$:

$$
P\left(\pi_{i}=k, \pi_{i+1}=l \mid x, \Theta\right)=f_{k}(i) a_{k \mid} e_{1}\left(x_{i+1}\right) b_{l}(i+1) / P(x \mid \Theta)
$$

- \rightarrow Expected number of times that $\mathrm{k} \rightarrow$ is used for training data D :

$$
\begin{equation*}
A_{k l}=\sum_{j} P\left(X^{(j)} \mid \Theta\right)^{-1} \sum_{i} f\left(f_{k}\right)_{k}(i) a_{k l} e_{l}\left(x^{(j)}{ }_{i+1}\right) b_{j}(i+1) \tag{*}
\end{equation*}
$$

- \rightarrow Expected number of times of emitting symbol b from state k for training data D :

$$
\begin{equation*}
E_{k}(b)=\sum_{j} P(x(j) \mid \Theta)^{-1} \sum_{\{i \mid x j(i)=b\}} f_{k}(i) b_{k}^{j}(i) \tag{**}
\end{equation*}
$$

Baum-Welch Algorithm

- Input: training data D , threshold T , limit M
- 1. Initialization: $\Theta:=\left(\left(a_{k l}\right)_{k \varepsilon V, l \varepsilon V},\left(e_{k}(b)\right)_{k \varepsilon V, b \varepsilon \Sigma}\right)$ arbitrary initial values
- 2. Iterative search:
- Set all the A and E variables to their pseudocount values r (or 0)
- Expectation-step. For each $\mathrm{X}^{(0)}$ in D do:
- Calculate $f_{k}(i)$ for all k, i using the Forward algorithm
- Calculate $b_{k}(i)$ for all k, i using the Backward algorithm
- Using the calculated values $f_{k}(i)$ and $b_{k}(i)$, evaluate and add the contribution of $x^{(j)}$ to values $A_{k l}$ and $E_{k}(b)\left(\left(^{*}\right)\right.$ and $\left({ }^{* *}\right)$ on the previous slide)
- Maximization step. Calculate new Θ :

$$
\mathrm{a}_{\mathrm{kl}}:=\frac{\mathrm{A}_{\mathrm{kl}}}{\sum_{\mathrm{q} \in \mathrm{Q}} \mathrm{~A}_{\mathrm{kq}}} \quad \mathrm{e}_{\mathrm{k}}(\mathrm{~b}):=\frac{\mathrm{E}_{\mathrm{k}}(b)}{\sum_{\sigma \in \Sigma} E_{k}(\sigma)}
$$

- 3. Stop?
- Repeat Step 2 untill $\log P\left(D \mid \Theta_{\text {new }}\right)-\log P\left(D \mid \Theta_{\text {old }}\right) \leq T$ or the number of iterations taken is $=M$

Viterbi training

- Similar to the BW-algorithm but parameters a and e are updted using the A and B counts obtained from the most probable paths $\Pi^{*}\left(x^{(1)}\right)$, $\ldots, \Pi^{\star}\left(x^{(n)}\right)$ for $x^{(1)}, \ldots, x^{(n)}$. These paths can be found using the Viterbi algorithm.
- Converges always as the Viterbi paths can change only finitely many times (as they are finite structures)
- Does not maximize $\log P(D \mid \Theta)$ (see Durbin pp 64-65

HMM model structure

- Choice of model topology: complete transition graph (i.e., $\mathrm{E}=\mathrm{V} \times \mathrm{V}$) is difficult to train as it has lots of local maxima
- Prune E using prior knowledge of the problem.
- Elimination of transition $\mathrm{k} \rightarrow \mathrm{l} \leftrightarrow \mathrm{a}_{\mathrm{kl}}=0$
- The topological structure should be such that it has natural correspondence with the problem to be modeled
- Silent states:
- no emissions
- If there are no cycles consisting of only silent states, then the above algorithms work after small modifications (for example, the Forward algorithm should traverse the silent states in the socalled topological order; as there are no cycles, such an order exists)

Example: HMM architecture of GENESCAN

Prediction of exons (genes)

Numerical stability of HMM algorithms

- Long multiplications of probability values can lead to numerical problems: underflow of floating-point numbers
- Two main solution techniques
- Log transformations: $x \rightarrow+$
- Does not work if both x and + are present in the algorithm (Viterbi ok, Forward/Backward not)
- Scaling of probabilities
- Details: see Durbin pp 77-78

