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Lecture 2: Profile HMMs for
sequence families

-Profile HMM
-Learning profile HMMs
-Multiple alignment and profile HMMs
-(0ther multiple alignment methods)

Profile HMMs
• Models for (amino acid) sequence families
• Special structure (match, insert, and delete

states; specific transition structure)
• Parameter estimation from given multiple

alignment
• Can be used for examining the relation of new

sequences to the family represented by the
profile

• So-called motifs (PWMs, PSSMs) are a special
case



2

Multiple Alignment of Globins

Fig. 1 Alignment of 9 representative globins and Sperm whale (SW) myoglobin.
Eight alpha helices are shown as a-h above the alignment. Numbers between
brackets indicate the number of amino acids preceding and following the globin
domain.  [Hoogewijs et al. BMC Genomics 2007 8:356]

Ungapped score matrices
• For example, helix a in Fig. 1 is ungapped (16 columns)

• Associate with each (ungapped) position (column)  i = 1,
..., L  a probability distribution of symbols: ei(a) = position
i has symbol a with probability ei(a)

• ML estimate:
ei(a) = #a / #aligned_sequences

• Hence, assuming independence of positions (Bernoulli!)
– the probability of sequence x is: P(x) = i ei(xi)
– the log-odds with respect to random model (qa) (= the

background) is S(x) = i log(ei(xi)/qx(i))

• The resulting score matrix (ei(a)/qa)a , i=1...L is called a
position specific score matrix (PSSM) or a position
weight matrix (PWM)



3

Count matrix for PSSM from multiple alignment
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Multiple alignment
of helix a of Fig. 1

Count matrix (fragment) of helix a of Fig. 1

e1(S) = 5/10 = 0.5
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Alignments with gaps and the
structure of profile HMMs

’Backbone’ = columns
(*) that correspond to
the conserved core of
the sequence family to
be modeled;

Other columns are
needed to represent
insertions

Transition structure of a profile HMM

Backbone: match states

• Match states emit the symbols that belong to the
’backbone’ of the model
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Insert states

• Each Insert state can emit between two match
states any number of symbols that do not belong
to the backbone model

Delete states
• Delete states are needed to present ’jumps’ (gaps) that

pass some backbone states in an efficient way. This
could be done with direct transitions but that would
introduce a large number of parameters.  Therefore the
structure shown below is normally used.

• Delete states are silent (do not emit any symbol).
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Profile HMM: standard structure

• All HMM algorithms (Viterbi, Forward, Backward,
Baum-Welch training etc) can be adapted for the
profile HMM

Profile HMM for global alignment

Learning profile HMMs from alignments

• Input: Multiple alignment of some sample sequences from the
sequence family to be modeled by the profile HMM

• 1. Select some columns 1, ..., L of the alignment to the
backbone; these will correspond to the match states M1, ..., ML
of the profile HMM
– Take the best conserved columns, with no gaps

• 2. Estimate probabilities akl, ek(a)

where
– Akl = (the count of transitions k l in ) + 1 (= Laplace rule of

pseudocounts)
– Ek(a) = (the count of emissions of a from state k in ) + 1
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Learning a profile HMM: an example

Ten columns from the multiple alignment of seven globin protein sequences. The starred
columns are ones that will be treated as ’matches’ in the profile HMM.

A HMM derived from the alignment using Laplace’s rule (add pseudocount 1 to each count).
Emission probabilities shown as bars opposite the different amino acids for each match state,
transition probabilities indicated by the thickness of the lines. The I  I transition probabilities are
shown as percentages in the insert states.

Aligning Sequences to a Profile
HMM

• Alignment of a sequence against a profile
HMM: find Viterbi path
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Profile HMM for local alignment

What a multiple alignment means?
• Biologically correct multiple sequence alignment is in general not

unique, or at least, there is no precise definition of what is the best
alignment

• A correct alignment should align the substructures (for example:
alpha helices, beta strands) of different molecules such that the
structures that correspond to each other become on top of each
other. Such 3D-substructures do not, however, always have clear
boundaries in the sequence, or they are not known accurately

• Hence it is difficult to design an automatic alignment method that
would produce biologically correct results.

• Alignment algorithms are typically based only on the sequences as
such (and possibly on their evolutionary trees) but not on additional
information on the locations of the 3D-substructures
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Why multiple alignments?
• Example: The Pfam database (pfam.sanger.ac.uk) is a

large collection of protein families, each represented by
multiple sequence alignments and hidden Markov
models (HMMs) and HMMs visualized as HMM logos;
http://pfam.sanger.ac.uk/family/PF00178#tabview=tab0

• Goal of multiple alignment: put homologous residues
(amino acids, bases) among a set of sequences together
in columns

• Homologous = structurally homologous or evolutionary
homologous

• Structural = 3D shape
• Evolutionary = conservation in evolution

Protein 3D structure

http://pfam.sanger.ac.uk/family/PF00178#tabview=tab0
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Structural alignment

Structural alignment of thioredoxins from humans and the fly
Drosophila melanogaster. The proteins are shown as ribbons, with
the human protein in red, and the fly protein in yellow.

Alpha helix
Beta strand

Multiple Sequence Alignment of
Globins

Alignment of 9 representative globins and Sperm whale (SW) myoglobin. Eight
alpha helices are shown as a-h above the alignment. Numbers between brackets
indicate the number of amino acids preceding and following the globin domain.
[Hoogewijs et al. BMC Genomics 2007 8:356]
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Automatic alignment

• Manual multiple alignment is tedious

• Automatic multiple alignment
– Biologically ’correct’ alignment difficult
– Important to align the conserved/stucturally similar

residues correctly, the areas in between less
important; position specific scoring

– Typical data = the sequences (no annotations such as
structural information)

– Algorithmic challence

Multiple alignment with a known
profile HMM

If the profile HMM M is known, the following procedure
can be applied to generate multiple alignments:

• Align each sequence S(i) to the profile M separately
(Viterbi path!)

• Accumulate the obtained alignments to a multiple
alignment.

• Insert runs are not aligned, i.e. the choice of how to
put the letters in the insert regions is arbitrary (Most
profile HMM implementations simply left-justify insert
regions, as in the following example).
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Example: another profile HMM

A model (top) estimated from an alignment (bottom). The columns in
the shaded area of the alignment were treated as inserts

Alignment generated with the
profile HMM

Right: The alignment after a new
sequence was added to the set. The
new sequence is shown at the top,
and because it has more inserts,
more space-filling dots were added.

Left: The alignment of seven
sequences generated with the
profile HMM of the previous
slide. Lower-case letters mean
inserts, and the dots are just
space-filling characters to make
the matches line up correctly.
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Simultaneous estimation of a profile HMM and
multiple alignment from unaligned training

sequences

If the profile HMM M is not known, one can use the
following technique in order to obtain a profile HMM from
the given sequences X:

• Choose a length L for the profile HMM and initialize the
transition and emission probabilities.

• Train the model using the Baum-Welch algorithm and
using the sequences X as the training sequences.

• Obtain the multiple alignment of sequences X from the
resulting profile HMM, as in the previous case.

HMM Logo: example

Figure Partial logo (positions 172–209) of the Pfam pkinase model. Positions
with narrow match state stacks are likely to be deleted in typical family
members. The total width of a red-shaded (dark+light) stack visualizes the
expected number of inserted letters.The left dark-shaded part of the stack's
width represents the probability that at least one letter is inserted. The
difference is illustrated by comparing I173 with I176: Both states have
approximately the same expected contribution, but the hitting probability of I176
is higher. The insertion stack height is zero for all shown examples because the
emission probabilities correspond to the background frequencies.
PFAM: http://pfam.sanger.ac.uk/family/PF00178#tabview=tab0

http://pfam.sanger.ac.uk/family/PF00178#tabview=tab0
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Multiple alignment by multi-
dimensional dyn. programming

• Generalization of 2-dimensional dynamic
programming to N sequences

• Linear gap score (affine model also possible but
tedious to formulate)

• Multiple alignment problem
Given sequences

x(1) = x1
(1)

1...x(1)
L(1),    . . . ,  x(N) = x(N)

1...x(N)
L(N)

find a multiple alignment m for the sequences such
that iS(mi) is maximum; S(mi) is the score of the ith
column of m.

Algorithm (multi-dimensional
Needleman-Wunsch)

i(1),i(2),...,i(N) = score of the best alignment of
prefixes of length i1, i2, ..., iN of the N sequences
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1. 0,...,0 :=  0

2.  For (i1,...,iN)  :=  (1,0,...,0), ..., (L(1),L(2),...,L(N)) do

3.  S(m) := L(1),...,L(N)
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Time and space

• Let all L(i) L
• Time: O(2NLN)
• Space: O(LN)
• Too much!
• Optimal multiple alignment (for SP score)

is NP-complete (Wang&Jiang 1994)

Divide-and-conquer heuristics
• each sequence is cut in two

behind a suitable cut position
somewhere close to its
midpoint

• therefore the problem of
aligning one family of long
sequences is divided into the
two problems of aligning two
families of shorter sequences

• this is re-iterated until the
sequences are sufficiently
short

• optimal alignment by Carillo-
Lipman MSA

• finally, the resulting short
alignments are concatenated

• J.Stoye, Gene 211(1998) GC46-CG56;
• Sammeth, Morgenstern & Stoye, Bioinformatics 19,

suppl 2 (2003) ii89-ii95.
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Progressive alignment methods

• These (greedy) methods are the most commonly used
approach to multiple sequence alignment. The general
idea:
– Most progressive alignment algorithms build a “guide tree”, a

binary tree whose leaves represent sequences and whose
interior nodes represent alignments. (The methods for
constructing guide trees can be “quick and dirty” versions of
those for phylogenetic trees.)

– Main heuristic: first align the most similar pairs of sequences,
using a pairwise alignment method. Then walk up the tree and
compute at each interior node the alignment of (alignments of)
sequences associated with the direct descendants of that node.

– The root node will represent a complete multiple alignment of the
input sequences.

• Progressive alignment methods use no global scoring
function of alignment correctness.

Alignment with a guide tree
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Progressive alignment: CLUSTALW

• Construct a distance matrix of all N(N-1)/2 pairs by pairwise dynamic
programming alignment followed by approximate conversion of
similarity scores to evolutionary distances using the model of Kimura

• Construct a guide tree by using the Neighbour-Joining clustering
algorithm [Saitou & Nei]

• Progressively align at nodes in order of decreasing similarity, using
sequence-sequence, sequence-profile, and profile-profile alignment.

• Apply several additional heuristics to improve the result:
– sequences are weighted according to the branch length in the tree;
– BLOSUM80/BLOSUM50;
– position-specific and dynamically changing gap penalties;
– dynamically changing guide tree

• T-COFFEE (successor of CLUSTAL): Notredame, Higgins, Heringa
(J. Mol. Biol. 302 (2000),205-217)

Different (heuristic) alignment
algorithms give different results


