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Lecture 5: Auto-regulation – a
network motif
Chapter 3 of Alon

3.1 Introduction

1.  Define a way (based on statistical
significance) to detect network motifs

2. Auto-regulation motif
3.  Auto-regulation has useful functions:

speed-up of response, stabilizer
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3.2 Patterns, randomized networks,
and network motifs

• To define statistical significance, compare the network to an
ensemble of randomized networks

• Patterns that occur in the real network significantly more often than
in randomized networks with the same characteristics (number of
nodes, number of edges) are called network motifs

• Edges are easily lost in a transcrition network: a mutation that
changes a single DNA letter in a promoter can abolish (or create) a
binding of a transcription factor and cause the loss or addition of an
edge

• See the example in the book (pp 28-29): a change of any DNA letter
of the genome can be reached many times very rapidly (within less
than a day) in bacterial populations

=> Edges in the network motifs must be constantly selected in order
to survive randomization forces in unexpected high amounts
=> Motifs must give some advantages to the organism

3.2.1 Detecting motifs by comparison to
randomized networks

• Erdös-Renyi (ER) model of random graphs:
directed edges are assigned at random between
pairs of nodes
– N nodes & E edges

=> There are N2 possible directed edges (includes the
self-edges)

– In the ER model, the E edges are placed at random in
the N2 possible positions
=>  each possible edge is present with probability p =
E/N2 (Explain why!)
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Blue nodes have self-edges

Fig 3.1a. Self-regulating genes in a network of transcription interactions in E.
coli. Nodes that correspond to genes (operons) which encode transcription
factor proteins that regulate their own promoters (self-regulating genes,
represented by self-edges) are shown in blue. This network, which we will use
as an example in the coming chapters, has N=420 nodes, E=520 edges and
Es=40 self edges.

N=420 Nodes
E=520 Edges
Es=40 self-edges

‘Real’ Network Randomized network
(Erdos – Renyi model)

N=10 nodes
E= 14 edges
Es=4 self-edges

N=10 nodes
E= 14 edges
Es=1 self-edge

Fig 3.1b
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3.3 Auto-regulation  - a network
motif

• Self-edge: originates and ends at the same node
– E. Coli network: 40 self-edges (Fig 3.1 a)

• Self-edges auto-regulation
• Negative auto-regulation: repressor proteins that

repress their own transcription
– E. Coli network: 34 cases of negative auto-regulation

• Is negative auto-regulation significantly more
frequent in the real network than in a random
graph with the same number of nodes and
edges?

XA

Fig 3.2a: Gene X is simply regulated by A.

XA

Fig 3.2b: Gene X is negatively auto-regulated, and simply regulated by A.
Repressor X binds a site in its own promoter and thus acts to repress its own
transcription. The symbol --| stands for repression. The repression threshold is K
(defined as the concentration of X needed to repress the promoter activity by 50%).

K
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Auto-regulation (cont.)
• The selection probability of a self-edge

pself =  1/N

• Probability of having k self-edges is binomially distributed (throwing a coin E
times and getting k heads):

• Average number < > of self-edges in a random graph ( from Poisson
approximation of binomial distribution):

<Nself>rand ~  Epself =  E/N

• Standard deviation of the number of self-edges (Poisson approximation)
rand =  (E/N)-1/2

• Def. (Z-score): The Z-score Z(a) of a value a of a random variable x is
Z(a)  =  |a – mean(x)| / (x)

where (x) is the standard deviation of x. Score Z(a) is the deviation from
the mean measured in standard deviations.
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Example: self-edges of E. coli
network are a motif

• E. coli’s network (Fig 3.1) has N = 424, E = 519.
Then

<Nself>rand ~ E/N ~ 1.2
rand ~ 1.2 ~ 1.1

<Nself>real = 40

=>  Z(40) = (40 - 1.2)/1.1 ~ 35

• 35 standard deviations mark a very high
significance
=> self-edges (and also the 34 negatively auto-
regulating self-edges for which Z ~ 30) are a
network motif
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3.4 Negative auto-regulation
speeds the response time

• Let protein X be negatively auto-regulated: X X
• Recall that the dynamics of X is (from the dynamics of X Y in

Lect 4 when X=Y):

dX/dt = f(X) – X

• where f(X) = the rate of production of X = the input function for
repressive self-regulation of X = the decreasing Hill function

• If X is much smaller than the repression coefficient K, then the
production rate of X reaches its maximal value 

• If X is high, then no transcription occurs and hence f(X) ~ 0.

( )
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Speed-up of response time (cont.)
• We solve the dynamics using logic approximation where f(X) = 0, if X > K,

and f(X) = if X < K:
f(X) = (X < K)

• Let X be initially absent (X=0) and its production starts at t=0. Then
dX/dt = X      while X<K

• At early times we have X << . Hence we can neglect degradation and
have

X(t) ~ t                 while X<K and X << 

• However, when X levels reach the self-repression threshold X = K, the
production of X stops (small oscillations will occur around X=K if there are
delays in the system)
=>  X effectively locks itself into a steady-state level equal to the repression
coefficient of its own promoter (Fig. 3.3)

Xst = K
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Fig 3.3: Dynamics of a negatively auto-regulated gene product. Production
starts at t=0. Full line: Negatively auto-regulated gene with maximal production
rate =5, auto-repression threshold K=1, and degradation/dilution rate =1.
Dashed line: Dynamics of the same gene if auto-regulation is removed,
resulting in simple regulation that approaches a higher, unrepressed  steady-
state Xst= =5.
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Speed-up of response time (cont.)
• Response time: X(T1/2) = Xst/2
• Using linear approximation X = t, we obtain

T1/2
(n.a.r.) =  Xst / 2 =  K / 2 ((n.a.r.) = negative auto-regulation)

• Note: Evolutionary selection can tune parameters and K independently
– K modified, for example, by mutations in the binding site of X in the promoter

tuned by mutations in the binding site of RNAp (RNA polymerase) in the
promoter

• Response time of simply regulated vs negatively auto-regulated genes?

T1/2
(n.a.r.) / T1/2

(n.a.r.) = ( simple / ) / 2 ln 2

=> the larger is , the smaller is the n.a.r. response time as compared with
the simple response time (Figs 3.4 & 3.6)
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T1/2
(nar) T1/2

(simple)

X/Xst

time   t
Fig 3.4 Dynamics of negatively auto-regulated gene product (full line) and simply
regulated gene product (dashed line) which reach the same steady-state level and
have equal degradation/dilution rates . The response time is the time that the protein
level reaches 50% of  the steady state, denoted T1/2

(nar) and T1/2
(simple) for the negatively

auto-regulated and simply regulated gene products. The parameters =5, =1, simple
= 1 were used.
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Fig 3.6: Experiment on negatively auto-regulated and simply-regulated genes.The experiment used
green-fluorescent protein fused to the TetR repressor as a reporter and automated fluorescence
measurements on growing E. coli cells. Protein concentration is normalized to its steady-state level.
Shown also are the analytical solutions for a simply auto-regulated gene and for a negatively auto-
regulated gene with a Hill input function with n=1 in the limit of strong auto-repression (solved
exercise 3.1). Source: Rosenfeld, Elowitz, Alon, JMB 323:785 2002
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3.5 Negative auto-regulation promotes
robustness to fluctuations in production rate

• Simple gene regulation is affected quite strongly by
fluctuations in production rate , as Xst = and hence
a change in leads to proportional change in Xst

• In contrast, negative auto-regulation can buffer such
fluctuations, as the steady-state level depends only on
the repression threshold of X for its own promoter: Xst =
K

• Positive auto-regulation slows the response time relative
to simple regulation (see Fig 3.5). The dynamics are
initially slow but with a growing level of X, its production
rate increases due to positive autoregulation loop. This
results in a concave curve that reaches 50% of its
steady-state value at a delay relative to simple
regulation.
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Fig 3.5: Dynamics of negatively auto-regulated gene, a simply regulated gene and a positively  auto-
regulated gene. The negatively and positively auto-regulated genes have a Hill-input function with Hill
coefficient n=1. Shown is protein concentration normalized by its steady-state value, X/Xst, following
an increase in production rate. Time is in cell-generations, or for actively degraded proteins, log(2)/ ,
where alpha is the protein degradation/dilution rate. Note that the response-time is T ½ = log(2) / = 1
for simple regulation,  T1/2=0.21 for negative auto-regulation, and  T1/2~2 for positive auto-regulation
with the present parameters. The response-time is constructed by the intersect of the dynamics with
horizontal line at X/Xs = 0.5.
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