

Chap 5 of Alon

5.1 Introduction

- We will see in this chapter that sensory transcription networks are largely made of just *four families* of network motifs:
 - 1) auto-regulation motifs (Chap 3)
 - 2) FFLs with multiple outputs (Chap 4 & 5)
 - 3) single-input modules (SIMs), and
 - 4) dense overlapping regulons (DORs)

SIM (cont.)

- The most important task of a SIM is to control a group of genes according to the signal sensed by the master regulator X
- Genes Z_i in a SIM always have a common biological function (for example, they participate in a specific metabolic pathway; see Fig 5.2 on the next slide)

- SIM as a temporal expression program: genes Z_i are activated one by one in a defined order, based on different activation thresholds K_i of X for each of the target genes Z_i
- Thresholds K_i depend on the specific binding sites of X
- These sites can be slightly different, resulting in different K_i for each Z_i
- When the activity level of X changes gradually in time (this is a relatively slow change for example in metabolic regulation), it crosses the thresholds K_i at different times and the genes Z_i are turned ON/OFF in the implied order
- When the level of X first goes up and then comes down, the genes Z_i are affected in the last-in-first-out (LIFO) order

5.4 Topological generalizations of network motifs

- 199 possible 4-node patterns: Fig 5.5; over 9000 5-node patterns e.t.c.
- To group patterns into families with a shared functional theme, define topological generalizations of motifs
- Fig. 5.6
- The multi-output FFL is the only one of the generalizations of FFL in Fig 5.6 that is actually a motif (i.e., it occurs in real networks significantly often)

Generating FIFO order by multioutput FFL How can FIFO (first-in-first-out) order be generated by • the multi-output FFL? The activation thresholds K_{xi} for X determine the activation order _ of the regulated genes – As the threshold $K_{_{XY}}$ is the smallest, Y stays on the longest time when X eventually goes down - Hence, as we have OR gate FFL, Y alone can keep the regulated genes Z_i still on while the level of X goes below of its activation thresholds K_{xi} for the Zi's This means that the genes Z_i will be turned off in the order of the _ thresholds K_{Yi} for Y; if this order is reversed compared to that of the thresholds K_{Xi} for X, we get the FIFO order This design was experimentally found in the flagella system (Kalir and Alon 2004)

