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Network motifs

» Network motifs are a way to analyze the local structure of a
network:

» What kind of local substructures (motifs, graphlets) does the
network have

» Assessing the statistical significance of these substructures
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Fig. 2. An example graph (a), a pattern (b) and all different matches of the pattern {c,
M), The vertices of the graph and of the matches are numbered consecutively



What is a motif?

» A motif is a statistically overrepresented pattern of local
interactions in the network

» Overrepresentation = occurring more frequently than
expected by chance

» The rationale is that overrepresentation may denote possible
function

» The motif has emerged several times
» and it has been conserved in the evolution of the network



What is a motif?

» A motif is a small connected subgraph G’ = (V', E')

» Size of motif is measured either by the number of vertices or
the number of edges
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Types of motifs

» Motifs can be
» Directed or undirected
» Cyclic (loopy) or acyclic
matching the type of underlying network to be analyzed, e.g.

» Protein-protein interactions: undirected
» Gene regulatory interactions: directed, cyclic




Matching motifs

» A match of a motif G’ in the target graph G = (V,E) is a
subgraph G” = (V" E") which is isomorphic to motif G’
» Two graphs G’ and G” are isomorphic if there is a bijective

mapping between the edge and vertex identities

» i.e. G’ is transformed to G” by changing the vertex and edge

identities
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Fig. 1. (a) A graph with a randomly selected subgraph (highlighted with bold lines).
This subgraph is isomorphic to the graph G'p shown in (b). The highlighted subgraph

in 7 is also a match of Gp in G



Alternative definition: Induced subgraph

» Isomorphic induced subgraph (graphlet): a subgraph
G" = (V" ,E")in G =(V,E) is accepted as a match only if
it contains all edges of the original graph beteeen the nodes in
V”: mathematically we require that if e = (n;, n;) € E and
ni,nj € V" then e € E”

» Motivation: leaving out interactions from the motif may give
false ideas of the biological function
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(a) Labeled Graph (b) Subgraph (c) Induced Subgraph




Hardness of isomorphism problems

> The complexity of graph isomorphism is in the 'grey area’ of
complexity:

» It belongs to NP class of problems (problems where solution is
easy to verify once found)

» It is not known if graph isomorphism belongs to P class of
problems (problems that can be solved efficiently)

» It is not known if graph isomorphism is NP-complete (problems
that are believed to be hard ot solve but easy to verify)

» Subgraph isomorphism, checking if a subgraph G” that is
isomorphic to given graph G’ exists in a larger graph G, is
known to be NP-complete

» No hope for really fast algorithms for finding motifs.



Motif frequency

» How many times a motif occurs in the network to be
analyzed?

» Depends on

» Definition of a match (subgraph or induced subgraph)
» Counting schemes for matches
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Fig. 2. An example graph (a), a pattern (b) and all different matches of the pattern {c,
My

M), The vertices of the graph and of the matches are numbered consecutively
lor identification purposes.



Counting schemes

> Possible schemes for counting matches
» Fi: Two matches may overlap so that they share vertices and
edges
» JFo:Two matches may overlap so that they share vertices but
not edges
» F3: Two matches may not overlap, they need to have disjoint

sets of vertices
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Fig. 2. An example graph (a). a pattern (b) and all different matches of the pattern {c,
My — Ms). The vertices of the graph and of the matches are numbered consecutively
for identification purposes,



Counting schemes

Graph elements shared

by different matches Values for the example in Fig
Concept|Vertices Edges F‘l'equencyl Selected matches
Fi yes yes 5 {My, My, Mz, My, Ms}
Fa yes no 2 {My, My} or {Mg, My}
Fr no yes - -
Fa no no 1 one of { My, Ma, My, My, M5}
(a) (b)
1

Fig. 2. An example graph (a), a pattern (b) and all different matches of the pattern {c,

My . The vertices of the graph and of the matches are numbered consecutively
lor identification purposes.
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Statistical significance of motifs

» The frequency of a motif in some network does not directly
tell us its importance
» Testing for statistical significance is more informative
» How often we would expect to see this motif by chance in a
similar random network
» Need to formulate a null hypothesis and check the probability
of the motif occurring as frequently under the null hypothesis



Testing fot statistical significance

» For a null hypothesis:

» Estimate the probability distribution of the frequency of the
motif in random networks

> Analytically using a network model (e.g. ER networks)
» By generating an ensemble of random networks

» Measure the statistical significance with Z-score or p-value



Measures of motif significance: Z-score

» Denote by F(m) the frequency of motif m and by F,(m) and
or(m) the average and standard deviation of the motif
frequency among the randomized networks.

» Z-score: "how far above the mean of the random networks”
F(m) — F(m)
or(m)

Z(m) =

» Z-score above 2.0 is generally considered significant (" two
standard deviations")
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Measures of motif significance: P-value

» P-value: "how often a random network has more motif
ocurrences”

1 N
P(m) = 5 2_ UF(m=F(m)
r=1
» 1;,; denotes the indicator function, F,(m) denotes the
motif’s frequency in r'th randomized network
» Requires a large number of randomized networks (~ 1000) to
be accurate
» Estimating the tail of the distribution is harder than estimating
its mean (as in Z-score)
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Analytical approach using ER networks

> In ER networks an edge is present between two vertices with
probability p

» Here we also allow self loops and also these edges are present
with probability p

» The ER network should have a similar number of vertices and
edges as the real network and so

E
P:W

where E is the number of edges in the real network and N is
the number of vertices in the real network.

» Note that a directed network allowing self loops can have at
most N? edges.



Probability distribution of self loops in ER networks

» The probability of having exactly k self loops is

P = () pra- o

» The probability distribution is thus binomial with mean:

E E
Negt >= Np = N-— = —
< st == NP =Ng5 =

» and with variance (approximation via Poisson distribution)

E

Oself = Y}

N



/-score

> The E. coli transcriptional network has 424 vertices and 519
edges (note that this is a different version of the network than
what we use in the exercises):

E 519
<Nself> = N:m:12
E
Oself = N =11

» The real network has 40 self loops:

Nself_ < Nself > . 40— 1.2 -

7 =
Oself 1.1

32

» Z-score is very high and thus the high number of self loops in
the E. coli transcriptional network is statistically significant



Subgraphs in ER networks

» Consider a pattern graph G with n vertices and g edges
» How often would such a pattern occur in ER networks?

» We will use counting scheme Fj (vertices and edges can
overlap)



Subgraphs in ER networks

> To generate an instance of this pattern in a random graph, we
need to choose n vertices and place the g edges in appropriate
places:
<Ng> = al.N-(N=1)-....(N=n+1)-p
~ a N"pg
where a is the number of permutations of vertex labels of G
that give the same graph.

0 0

Motif 1 Motif 2
a=3 a=1



Subgraphs in ER networks

» The mean connectivity of a network is

E
A= —
N

» and then we get

<Ng> = aN"ps

E g
_ —1pn

= a INEN"E

> If we assume that the mean connectivity is constant regardless
of the size of the network, then the number of subgraphs
scales as
< Ng >~ N""8



Subgraphs in ER networks

» V-shaped subgraphs (3 nodes, 2 edges)
thus scale linearly with the size of the
network:

< Nsthaped >~ N

» Number of triangle shaped subgraphs (3
nodes, 3 edges) stays constant:

0
< Ntriangle >~ N

» Subgraphs with 3 nodes and more than 3
edges become rarer when the network gets
larger

[
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A subgraph in ER networks and E. coli transcriptional
regulation network

> The E. coli transcriptional regulation network has 424
vertices and 519 edges:

1
< Ng >~ a 1\8N"8 = (59

3
424373 =17
424

» The distribution of the motif in ER networks can be
approximated by a Poisson distribution and thus the
standard deviation is

og ~ /< Ng>=13

» The E. coli transcriptional regulation network features 42
instances of the motif and so we get:

2-17

V4 =31
1.3



Null hypothesis from random networks

» In traditional hypothesis testing, one typically analytically
formulates a probability distribution for the values of the
random variable of interest (here frequency of a motif)

» In network analysis, analytically determining a suitable
probability distribution may be difficult

> Instead, randomization tests are being used: a large set of
random networks of appropriate structure are generated and
the average frequency of the motif together with its variance
is recorded.

» Computationally demanding process if the networks are large



Randomization algorithm for Null model networks

» Typical method for null model generation is to take the
original network being analyzed and make large number of
randomized versions of it by modifying the network by a large
number of random edit operations

» Commonly used edit operation is to rewire the network
locally:

» Take two edges (A, B) and (C, D) and replace them with
edges (A, D) and (C, B)

> Preserves degree distribution of nodes

> If the nodes are chosen from a small neighborhood, also keeps
average path length close to original



Randomization algorithm for Null model networks

Additional criteria to be preserved can be set, e.g.
» Preserve number of bidirectional edges

» Preserve number of motif of size n — 1 when searching for
motifs of size n

L

As a guideline, the null model should be as close to the original as
possible, but randomize the property of interest.



Motif significance profile

» Motif significance profile SP is a vector of normalized Z-scores
for a particular set of motifs

SP = ((SP(m1),...,SP(m2)),

where SP(m) = Z(m;)/,/>_; Z(m;)?.
» Motif significance profile allows comparing different size

networks in terms of the motifs they contain

» Typically, the set of motifs contains all motifs of particular size
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Motifs and antimotifs in PPl networks and internet router

network

Pattern Protein interactions Internet routers
Nota motif Not a motif
C=0.981 C=0.977
Motif (Z=48) Motif (Z = 4600)
C=0.019 C=0.023
Motif (Z=15) Not a motif
C=0.680 C=0.931
Anti-motif (Z=-19) Motif (Z=18)
C=0.024 C=0.013

Anti-motif (Z——18)
€=0292

Anti-motif (Z=—7)
C=0.048

XOIM > D)

Nota motif Molif (Z = 356)
C=00013 C=0.004
Anti-motif (Z = 4.3) Motif (Z=137)
C=0.0019 C=0.002
Nota motif Motif (Z ND)
€ =0.0004 € =0.0005

Milo et al. Science 298(5594), 2002.




Hardness of motif discovery

Several challenging subproblems:

> Graph isomorphism testing: required to check if two motifs
are in fact the same. No polynomial time algorithm is known
for this problem.

» Number of motifs: grows exponentially in the size of the
motif. Especially with directed motifs grows very fast.

» Number of matches: theoretically the worst case number of
potential matches is O(|E:||Em!) where E; and E,, are the
number of edges in the target and motif, respectively.

> Size of analyzed networks affects the above steps via the
number of different patterns and matches that can be found.

» Calculation of statistical significance via randomization calls
for generation and motif discovery from a large number of
networks, multiplying the computation time of all the above
points.



Study Group on Thursday

» Group 1: Students whose first name has exactly 5 characters

» F. Schreiber and H. Schwbbermeyer: Frequency concepts and
pattern detection for the analysis of motifs in networks. Trans.
on Comput. Syst. Biol: Ill, pp. 89-104, 2005.

» Concentrate on section 4.

» Group 2: Students whose first name does not have exactly 5
characters
» N. Kashtan, S. Itzkovitz, R. Milo and U. Alon: Efficient
sampling algorithm for estimating subgraph concentrations and
detecting network motifs. Bioinformatics 20(11):1746-1758,
2004.
» Concentrate on the Methods section.
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