
BDD
TDD

Test-Driven Development

Behaviour Driven Development

Test-First Programming

Test-Driven Design

Copyright © 2009 Esko Luontola 2

Three Rules of TDD

1. You are not allowed to write any production code unless it
is to make a failing unit test pass.

2. You are not allowed to write any more of a unit test than is
sufficient to fail; and compilation failures are failures.

3. You are not allowed to write any more production code
than is sufficient to pass the one failing unit test.

http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd

Now most programmers, when they first hear about this technique, think: "This is
stupid!" "It's going to slow me down, it's a waste of time and effort, It will keep me
from thinking, it will keep me from designing, it will just break my flow." However,
think about what would happen if you walked in a room full of people working this
way. Pick any random person at any random time. A minute ago, all their code
worked.

Let me repeat that: A minute ago all their code worked! And it doesn't matter who
you pick, and it doesn't matter when you pick. A minute ago all their code worked!

„

http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd

Copyright © 2009 Esko Luontola 3

Benefits
● Better focus: First think about what you want and write it down as a

test. Afterwards think about how to implement it.
● Immediate feedback of your changes – change a line, run all tests,

after a couple of seconds you will know whether anything was broken
or whether everything works.

● Debuggers are needed very rarely – it's faster to undo your changes
to the latest working state (~5 min ago).

● Once fixed bugs will not reappear.
● Tests are documentation – code samples of API usage.
● Fearless change! You can change code that your predecessor

wrote. If you break something, you will know it in seconds.
● Better design. Fun! For code to be testable, it needs to be

decoupled, so TDD makes you do more design. Also, writing tests
first makes you think more about how the API is used.

http://blog.objectmentor.com/articles/2008/07/21/tdd-is-how-i-do-it-not-what-i-do
http://blog.objectmentor.com/articles/2008/06/24/so-you-want-your-code-to-be-maintainable
http://blog.objectmentor.com/articles/2008/02/16/the-quality-of-tdd
http://anarchycreek.com/2009/05/26/how-tdd-and-pairing-increase-production/
http://onjava.com/pub/a/onjava/2003/04/02/javaxpckbk.html

http://blog.objectmentor.com/articles/2008/07/21/tdd-is-how-i-do-it-not-what-i-do
http://blog.objectmentor.com/articles/2008/06/24/so-you-want-your-code-to-be-maintainable
http://blog.objectmentor.com/articles/2008/02/16/the-quality-of-tdd
http://anarchycreek.com/2009/05/26/how-tdd-and-pairing-increase-production/
http://onjava.com/pub/a/onjava/2003/04/02/javaxpckbk.html

Copyright © 2009 Esko Luontola 4

(1) Write one failing test.
- Run all tests and see it to fail, to
be sure that the test works as
expected. This step tests the test.

(2) Do the simplest change to
make the one failing test pass.
- If the change is not simple,
comment out the test and refactor
the code first, so that the new design
will make the change simple. Keep
your steps small.

(3) Refactor the code – improve its structure without changing its external
behaviour. This is the hardest step. Good design skills are needed!
- Run tests after every change to make sure that the refactoring did not affect the code's
behaviour. If it's been over 5 minutes since all tests passed, you have entered
"refactoring hell" and you should revert to the last known working state (without version
control your last known working state is an empty disk).

http://agileinaflash.blogspot.com/2009/02/red-green-refactor.html

Cycle time:
max 5-10 min

http://www.c2.com/cgi/wiki?RefactoringHell
http://agileinaflash.blogspot.com/2009/02/red-green-refactor.html

Copyright © 2009 Esko Luontola 5

Demo: Bowling Game Kata

http://butunclebob.com/ArticleS.UncleBob.TheBowlingGameKata
(Demo: ~20 min)

http://butunclebob.com/ArticleS.UncleBob.TheBowlingGameKata

Copyright © 2009 Esko Luontola 6

Testing or Design?
● For developers new to TDD, it may be easier to think of

TDD first as a testing technique. Use TDD to implement a
pre-existing design. ("Test-First Programming")
● Here TDD lets you bring your defect rates down.

● When defects are in control, keep your eyes open and
listen to the code. If some code or test is hard to write,
there is an opportunity for you to learn something about
the way the code is written. Maybe the design is wrong
and you need to improve it. ("Test-Driven Design")
● Now TDD has become a design technique.
● Try using TDD for 6 months without any up-front design,

to see with how little you can get away with.

http://programmingtour.blogspot.com/2009/07/test-first-and-test-driven-conversation.html (39 min)

http://programmingtour.blogspot.com/2009/07/test-first-and-test-driven-conversation.html

Copyright © 2009 Esko Luontola 7

TDD's Learning and Adoption
Experienced practitioners, particularly those that have been involved in helping other
developers learn the practice, note a life-cycle to TDD's learning and adoption:

1) The developer starts writing unit tests around their code using a test framework like
JUnit or NUnit.

2) As the body of tests increases the developer begins to enjoy a strongly increased
sense of confidence in their work.

3) At some point the developer has the insight (or is shown) that writing the tests before
writing the code, helps them to focus on writing only the code that they need.

4) The developer also notices that when they return to some code that they haven't
seen for a while, the tests serve to document how the code works.

5) A point of revelation occurs when the developer realises that writing tests in this way
helps them to “discover” the API to their code. TDD has now become a design
process.

6) Expertise in TDD begins to dawn at the point where the developer realizes that TDD
is about defining behaviour rather than testing.

7) Behaviour is about the interactions between components of the system and so the
use of mocking is fundamental to advanced TDD.

We have observed this progression in many developers, but unfortunately while most,
with a little help, find their way to step 4, many miss the big wins found at steps 5, 6
and 7.

http://behaviour-driven.org/Introduction

„

http://behaviour-driven.org/Introduction

Copyright © 2009 Esko Luontola 8

What Test Should I Write?
● TDD is all about specifying behaviour.

● Behaviour Driven Development: "BDD is TDD done right."
● To know what behaviour to specify next (by writing it in the

form of a test), ask the question: "What’s the next most
important thing the system doesn’t do?"

● Test method names should be sentences that read like a
specification of the behaviour that is being specified by
that particular test.
● See this course's exercises for lots of examples.

● Start with a trivial test. It gets your started (and might cover
an important corner case).
● If summing all values in a list, first sum an empty list.
● If writing a Tetris game, first test that the board is empty.

http://dannorth.net/introducing-bdd
http://techblog.daveastels.com/files/BDD_Intro.pdf

http://dannorth.net/introducing-bdd
http://techblog.daveastels.com/files/BDD_Intro.pdf

Copyright © 2009 Esko Luontola 9

Expected-Actual Format
(works maybe 9 times out of 10)

expected = 6
actual = sum(1, 2, 3)
assert expected == actual

Copyright © 2009 Esko Luontola 10

Given-When-Then Format
(works maybe 9 times out of 10)

http://dannorth.net/introducing-bdd

Given some initial context (the givens),
When an event occurs,
Then ensure some outcomes.

Scenario 1: Account is in credit
Given the account is in credit
And the card is valid
And the dispenser contains cash
When the customer requests cash
Then ensure the account is debited
And ensure cash is dispensed
And ensure the card is returned

Scenario 2: Account is overdrawn
past the overdraft limit

Given the account is overdrawn
And the card is valid
When the customer requests cash
Then ensure a rejection message is

displayed
And ensure cash is not dispensed
And ensure the card is returned

http://dannorth.net/introducing-bdd

Copyright © 2009 Esko Luontola 11

Principles
● Do The Simplest Thing That Could Possibly Work
● YAGNI – You Ain't Gonna Need It

● "Always implement things when you actually need them,
never when you just foresee that you need them."

● "Even if you're totally, totally, totally sure that you'll need a
feature later on, don't implement it now. Usually, it'll turn out
either
– a) you don't need it after all, or
– b) what you actually need is quite different from what you

foresaw needing earlier."
● When following TDD, changing the system afterwards is

easy. Keep the system as simple as possible and add
complexity/flexibility later when the need arises.

http://c2.com/cgi/wiki?DoTheSimplestThingThatCouldPossiblyWork
http://c2.com/cgi/wiki?YouArentGonnaNeedIt
http://en.wikipedia.org/wiki/You_Ain't_Gonna_Need_It

http://c2.com/cgi/wiki?DoTheSimplestThingThatCouldPossiblyWork
http://c2.com/cgi/wiki?YouArentGonnaNeedIt
http://en.wikipedia.org/wiki/You_Ain't_Gonna_Need_It

Copyright © 2009 Esko Luontola 12

Course Material
● http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd
● http://butunclebob.com/ArticleS.UncleBob.TheBowlingGameKata
● http://butunclebob.com/ArticleS.UncleBob.ThePrimeFactorsKata
● http://agileinaflash.blogspot.com/2009/02/red-green-refactor.html
● http://dannorth.net/introducing-bdd
● http://techblog.daveastels.com/files/BDD_Intro.pdf
● http://c2.com/cgi/wiki?DoTheSimplestThingThatCouldPossiblyWork
● http://c2.com/cgi/wiki?YouArentGonnaNeedIt

http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd
http://butunclebob.com/ArticleS.UncleBob.TheBowlingGameKata
http://butunclebob.com/ArticleS.UncleBob.ThePrimeFactorsKata
http://agileinaflash.blogspot.com/2009/02/red-green-refactor.html
http://dannorth.net/introducing-bdd
http://techblog.daveastels.com/files/BDD_Intro.pdf
http://c2.com/cgi/wiki?DoTheSimplestThingThatCouldPossiblyWork
http://c2.com/cgi/wiki?YouArentGonnaNeedIt

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

