
Code Quality

Copyright © 2009 Esko Luontola 2

What is Clean Code?
"You know you are working on clean code when each routine you

read turns out to be pretty much what you expected."
- Ward Cunningham

"Clean code can be read, and enhanced by a developer other than
its original author."

- Dave Thomas

"Clean code always looks like it was written by someone who
cares. There is nothing obvious that you can do to make it better."

- Michael Feathers

"Clean code is simple and direct. Clean code reads like well-
written prose."
- Grady Booch

Clean Code ch1 / http://www.informit.com/articles/article.aspx?p=1235624

http://www.informit.com/articles/article.aspx?p=1235624

Copyright © 2009 Esko Luontola 3

Technical Debt

http://martinfowler.com/bliki/TechnicalDebt.html
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html
Clean Code ch1 / http://www.informit.com/articles/article.aspx?p=1235624
http://www.laputan.org/mud/

"Doing things the quick and dirty way sets us up with a technical debt,
which is similar to a financial debt. Like a financial debt, the technical

debt incurs interest payments, which come in the form of the extra effort
that we have to do in future development because of the quick and dirty

design choice.
We can choose to continue paying the interest, or we can pay down the
principal by refactoring the quick and dirty design into the better design.
Although it costs to pay down the principal, we gain by reduced interest

payments in the future."

http://martinfowler.com/bliki/TechnicalDebt.html
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://www.informit.com/articles/article.aspx?p=1235624
http://www.laputan.org/mud/

Copyright © 2009 Esko Luontola 4

Refactoring
● "Refactoring is the process of changing a software system in such a

way that it does not alter the external behavior of the code yet
improves its internal structure."
-- Martin Fowler, Refactoring

● refactoring vs. Refactoring (a few seconds/minutes vs. days)
● DRY – Don't Repeat Yourself
● Code Smells
● Keeping the code at top quality is required for writing code using

TDD. Otherwise bad code will grind it to a halt.
(see SOLID principles: http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod)

● A good regression test suite is needed. Run all tests after every
change, to make sure that you broke nothing. Refactor only when all
tests are green. Revert to last working state if you can't make the
tests green – then try again with smaller steps.

http://www.refactoring.com/
http://c2.com/cgi/wiki?DontRepeatYourself
http://blog.objectmentor.com/articles/2007/07/20/whats-your-unit-of-measure
http://blog.objectmentor.com/articles/2008/07/21/tdd-is-how-i-do-it-not-what-i-do
http://randomactsofcoding.blogspot.com/2009/09/my-barriers-to-learning-tdd.html

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://www.refactoring.com/
http://c2.com/cgi/wiki?DontRepeatYourself
http://blog.objectmentor.com/articles/2007/07/20/whats-your-unit-of-measure
http://blog.objectmentor.com/articles/2008/07/21/tdd-is-how-i-do-it-not-what-i-do
http://randomactsofcoding.blogspot.com/2009/09/my-barriers-to-learning-tdd.html

Copyright © 2009 Esko Luontola 5

Meaningful Names
● The name says what it is for, not what it is.
● Avoid encodings of any kind.
● Functions and variables have the same level of abstraction.
● Use pronounceable names.
● Shun names that disinform or confuse.
● Make context meaningful.
● Length of identifier matches scope.
● No lower-case L or upper-case o, ever.

Clean Code ch2 / http://tottinge.blogsome.com/meaningfulnames/
http://agileinaflash.blogspot.com/2009/02/meaningful-names.html
http://butunclebob.com/ArticleS.TimOttinger.ApologizeIncode

int elapsedTimeInDays;
int daysSinceCreation;
int daysSinceModification;
int fileAgeInDays;int d; // elapsed time in days

class DtaRcrd102 {
 private Date genymdhms;
 private Date modymdhms;
 private final String pszqint = "102";
...

class Customer {
 private Date generationTimestamp;
 private Date modificationTimestamp;
 private final String recordId = "102";
...

→
→

http://tottinge.blogsome.com/meaningfulnames/
http://agileinaflash.blogspot.com/2009/02/meaningful-names.html
http://butunclebob.com/ArticleS.TimOttinger.ApologizeIncode

Copyright © 2009 Esko Luontola 6

Some Code Smells
● "In computer programming, code smell is any symptom in

the source code of a program that possibly indicates a
deeper problem."

– Duplicated Code
– Comments
– Long Method
– Large Class
– Feature Envy
– Divergent Change
– Shotgun Surgery
– Hard-to-Test Code
– Fragile Test
– Slow Tests

etc.
http://www.codinghorror.com/blog/archives/000589.html
http://en.wikipedia.org/wiki/Code_smell
http://xunitpatterns.com/Test%20Smells.html

http://www.codinghorror.com/blog/archives/000589.html
http://en.wikipedia.org/wiki/Code_smell
http://xunitpatterns.com/Test%20Smells.html

Copyright © 2009 Esko Luontola 7

Demo: (Big) Refactoring Example
● Situation:

An application server used java.math.BigInteger as the ID
for entity objects which are stored in the object database.
This is the Primitive Obsession code smell. It will need to be
replaced with a new class (EntityId), in order to make its
intent clearer and future refactorings easier.

● Codebase size:
4400 SLOC production code
7300 SLOC test code

● Total time spent refactoring:
2 hours
(Demo: ~15 min, commit entityid-refactor~3 onwards)

http://dimdwarf.sourceforge.net/ (commit 27ca4474 on 2009-08-13)
http://blogs.jetbrains.com/idea/2006/08/switching-between-api/

http://dimdwarf.sourceforge.net/
http://blogs.jetbrains.com/idea/2006/08/switching-between-api/

Copyright © 2009 Esko Luontola 8

1. Create target class

Copyright © 2009 Esko Luontola 9

2. Create temporary adapter class

Copyright © 2009 Esko Luontola 10

3. Migrate* all usages of the original class to the adapter
(hundreds of usages)

* IDEA 8: Refactor | Migrate

Copyright © 2009 Esko Luontola 11

4. Add to the adapter class all methods and fields of the
original class, until the project compiles and tests pass

Copyright © 2009 Esko Luontola 12

5. Put the target class next to the original class

Copyright © 2009 Esko Luontola 13

6. Delegate original method to target method

7. Inline* original method

* IDEA 8: Refactor | Inline

Copyright © 2009 Esko Luontola 14

8.1 Repeat until the adapter and target classes have the same methods

Copyright © 2009 Esko Luontola 15

8.2 Repeat until the adapter and target classes have the same methods

Copyright © 2009 Esko Luontola 16

* IDEA 8: Refactor | Migrate

9. Migrate* all usages of the adapter class to the target
(hundreds of usages)

Copyright © 2009 Esko Luontola 17

10. Delete the adapter class and do final cleanups

Copyright © 2009 Esko Luontola 18

10 Ways to Improve Your Code

http://www.infoq.com/presentations/10-Ways-to-Better-Code-Neal-Ford (59 min)
http://qconsf.com/sf2008/file?path=/qcon-sanfran-2008/slides//NealFord_10_Ways_to_Improve_Your_Code.pdf

http://www.infoq.com/presentations/10-Ways-to-Better-Code-Neal-Ford
http://qconsf.com/sf2008/file?path=/qcon-sanfran-2008/slides//NealFord_10_Ways_to_Improve_Your_Code.pdf

Copyright © 2009 Esko Luontola 19

Summary of 10 Ways to...

1. Composed Method
● "Divide your program into methods that perform one

identifiable task. Keep all of the operations in a method at
the same level of abstraction. This will naturally result in
programs with many small methods, each a few lines long."

● Benefits:
– shorter methods easier to test
– method names become documentation
– large number of very cohesive methods
– discover reusable assets that you didn't know were there

Copyright © 2009 Esko Luontola 20

Summary of 10 Ways to...

2. Test-Driven Design
● Benefits:

– first consumer
– think about how the rest of the world uses this class
– creates consumption awareness
– forces mocking of dependent objects
– naturally creates composed method
– cleaner metrics (e.g. cyclometric complexity)

Copyright © 2009 Esko Luontola 21

Summary of 10 Ways to...

3. Static Analysis
4. Good Citizenship

● "How classes react to one another in a civilized society."
● Example: static methods

– good: stateless utility methods
– bad: mixing state + static (e.g. the evil singleton pattern)

5. YAGNI – You Ain't Gonna Need It
● Discourages gold plating:

– build the simplest thing that we need right now
– don't indulge in speculative development

● increases software entropy
● only saves time if you can guarantee you won't have to change it later
● leads to (the evil version of) frameworks

Copyright © 2009 Esko Luontola 22

Summary of 10 Ways to...

6. Question Authority
● angry monkeys: test names (camel case hard to read)
● non-intuitive: pair programming (15% slower, 15% fewer

defects; real-time code review)
7. SLAP - Single Level of Abstraction Principle

● "Keep all lines of code in a method at the same level of
abstraction."
– jumping abstraction layers makes code hard to understand
– composed method → SLAP
– refactor to slap, even if it means single-line methods

8. Polyglot Programming
● "Leveraging existing platforms with languages targeted at

specific problems and applications."

Copyright © 2009 Esko Luontola 23

Summary of 10 Ways to...

9. Every Nuance
● "If you are going to spend time primarily in a language, it

makes sense to learn all the nuances of that language – all
the little back alleys and strange little places where you
hardly ever go."

10. Anti-Objects
● "The metaphor of objects can go too far by making us try to

create objects that are too much inspired by the real world."
● "Take something that appears to be the opposite of what you

think you should be writing code about, and see if that yields
a simpler solution to your problem."
– "Pacman smell": intelligence not in the ghost, but in the maze

Copyright © 2009 Esko Luontola 24

Course Material
● Clean Code, chapter 1: Clean Code

= http://www.informit.com/articles/article.aspx?p=1235624
● Clean Code, chapter 2: Meaningful Names

≈ http://tottinge.blogsome.com/meaningfulnames/
≈ http://agileinaflash.blogspot.com/2009/02/meaningful-names.html

● http://martinfowler.com/bliki/TechnicalDebt.html
● http://c2.com/cgi/wiki?DontRepeatYourself
● http://butunclebob.com/ArticleS.TimOttinger.ApologizeIncode
● http://www.codinghorror.com/blog/archives/000589.html
● http://xunitpatterns.com/Test%20Smells.html
● http://www.infoq.com/presentations/10-Ways-to-Better-Code-Neal-Ford

http://www.informit.com/articles/article.aspx?p=1235624
http://tottinge.blogsome.com/meaningfulnames/
http://agileinaflash.blogspot.com/2009/02/meaningful-names.html
http://martinfowler.com/bliki/TechnicalDebt.html
http://c2.com/cgi/wiki?DontRepeatYourself
http://butunclebob.com/ArticleS.TimOttinger.ApologizeIncode
http://www.codinghorror.com/blog/archives/000589.html
http://xunitpatterns.com/Test%20Smells.html
http://www.infoq.com/presentations/10-Ways-to-Better-Code-Neal-Ford

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

