SCANDEX: Service Centric Networking for Challenged
Decentralised Networks

Arjuna Sathiaseelan Liang Wang Andrius Aucinas
Computer Laboratory Computer Laboratory Computer Laboratory
University of Cambridge University of Cambridge University of Cambridge

Cambridge, UK
first.last@cl.cam.ac.uk

Gareth Tyson
School of EECS
Queen Mary University
London, UK

first.last@eecs.gmul.ac.uk

ABSTRACT

Do-It-Yourself (DIY) networks are decentralised networks
built by an (often) amateur community. As DIY networks
do not rely on the need for backhaul Internet connectivity,
these networks are mostly a mix of both offline and online
networks. Although DIY networks have their own home-
grown services, the current Internet-based cloud services are
often useful, and access to some services could be beneficial
to the community. Considering that most DIY networks
have challenged Internet connectivity, migrating current ser-
vice virtualisation instances could face great challenges. Ser-
vice Centric Networking (SCN) has been recently proposed
as a potential solution to managing services more efficiently
using Information Centric Networking (ICN) principles. In
this position paper, we present our arguments for the need
for a resilient SCN architecture, propose a strawman SCN
architecture that combines multiple transmission technolo-
gies for providing resilient SCN in challenged DIY networks
and, finally, identify key challenges that need to be explored
further to realise the full potential of our architecture.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Network
Communications

Keywords

Information Centric Networking, Service Migration

1. INTRODUCTION

Recent years have seen an increase in localised communi-
cation paradigms, e.g., community networks, do-it-yourself

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DIYNetworking’15, May 18, 2015, Florence, Italy.

Copyright © 2015 ACM 978-1-4503-3503-4/15/05 ...$15.00.
http://dx.doi.org/10.1145/2753488.2753490.

Cambridge, UK
first.last@cl.cam.ac.uk

Cambridge, UK
first.last@cl.cam.ac.uk

Jon Crowcroft
Computer Laboratory
University of Cambridge
Cambridge, UK
first.last@cl.cam.ac.uk

(DIY) networks and mobile ad hoc networks. Such networks
do not rely on the need for managed backhaul Internet con-
nectivity and, hence, they are a mix of both online and offline
(i.e., they can be both connected and disconnected from the
wider Internet). Although such decentralised networks can
have their own homegrown services, it is fair to say that
current Internet-based cloud services could be beneficial to
many communities. Clearly, disconnected offline networks
would find it impossible to access such remote cloud services
though.

The above suggests that building technologies that sup-
port easy hosting and migration of local services could be
highly beneficial in DIY networks. If remote cloud ser-
vices could be migrated within individual DIY setups, then
users could seamlessly use them without requiring consis-
tent egress connectivity. This, however, is not trivial. Key
questions include: (1) Which services should be migrated?
(2) When should they be migrated? (3) Can these services
continue to operate without remote connectivity? (4) How
should state be managed? The difficulty of addressing these
questions is exacerbated by the unpredictable nature of DIY
networks, which may frequently move between online and
offline statuses.

The advent of virtualisation technologies, especially low
cost unikernels, offers an interesting avenue of exploration in
this space. Unikernel architectures [1] allow very small (e.g.,
2MB) virtual machine services to be migrated across a net-
work with very little cost. Such capabilities are ideal for DIY
networks, which may struggle to host and transport larger
virtual machines. This paper argues that the integration
of services with DIY networks, underpinned by a uniker-
nel architecture, could open up a whole new communica-
tions paradigm, enabling low cost DIY networks to become
far more powerful in their capabilities. Although attrac-
tive, the above principles bring many challenges. Whereas
transporting unikernel-based services within a datacenter is
trivial, transporting them across unpredictable and unsta-
ble networked environments is far more difficult. Even if the
service is migrated successfully, many existing services are
online-only (e.g., Google Maps) and therefore would struggle
to operate once subsequent egress connectivity fails.

Service Centric Networking (SCN) [6] has recently been
proposed as a potential solution for deploying and manag-
ing networked services. It has largely emerged from the In-
formation Centric Networking (ICN) community [9]. SCN
decouples the service from their origin location, removing
the need for the current end-to-end client server model. This
means that the service and/or content can be served directly
by any host that currently has the service/content. Current
SCN architectures do not yet offer the necessary underly-
ing support to operate in challenged scenarios (e.g., where
a DIY network loses egress connectivity). Instead, SCN so-
lutions focus mainly on well-connected environments. Al-
though mobility has been partially addressed by certain ICN
solutions [5], they still do not offer resilience during periods
of total disconnectivity [13]. As such, we argue that SCN
principles should be extended to better support the unique
properties of DIY networks.

This position paper proposes SCANDEX (SCNx)' — a
strawman architecture (c.f. Fig. 1) specifically designed to
support services in challenged DIY community networks.
Unlike previous SCN designs, we focus on supporting sit-
uations where networks may have unpredictable and inter-
mittent connectivity. This extends to both intra- and inter-
network connectivity. We underpin SCNx with unikernel-
based services that can be seamlessly migrated, cached and
executed across (theoretically) all devices within the net-
work. Rather than hosting services in fixed predetermined
locations, SCNx allows them to be hosted anywhere. To en-
able this, we borrow principles from the ICN, SCN and Delay
Tolerant Networking (DTN) [8] communities. A name-based
routing scheme allows clients to access any nearby copy of
the service, which may be cached and replicated at will. Im-
portantly, we integrate delay tolerant techniques to allow
services to be passed through the network in a store-and-
forward fashion, thereby mitigating the problems brought
about by communication failures. We believe that this of-
fers a positive first step towards bringing popular services to
DIY community networks.

2. BACKGROUND

An SCN is a network that is explicitly built around the
concept of services [6]. Any node can offer services to the
network, and any (authorised) node can consume them. Un-
like more traditional service oriented architectures (SOAs),
the network is inherently involved in the process by allowing
services to "migrate” to any network location and exist as a
self-contained unit (e.g., within a router or middlebox).

The principles of SCN have emerged largely from the
Information Centric Networking (ICN) community. ICN
fundamentally changes the communications API by allow-
ing nodes to request unique content objects, identified us-
ing unique names. The network is then solely responsible
for returning the requested object. By decoupling content
from specific locations, it becomes possible to easily cache
these atoms within the network. Several ICN projects (]9,
10, 11]) have advocated redesigning the Internet based on
these principles. In essence, such projects propose name-
based routing/resolution schemes that allow clients to dis-
cover (cached) copies of content, thereby returning the ob-
ject in the “optimal” manner. SCN follows similar princi-

! Akin to Spandex, our architecture allows flexibility for op-
erating across diverse challenged environments.

ples, but, instead, allows services to be discovered and ac-
cessed independent of their location. It has been noted that
these properties are very promising in challenged environ-
ments [12, 13]. For example, by caching a service near to
the user, it may become possible for the user to access it
locally when backhaul Internet connectivity is not available
(e.g., after an earthquake).

As of yet, however, mainstream SCN implementations
struggle in more challenged environments (where connec-
tivity at both the front and backhaul are intermittent or
disrupted for a period of time), as global synchronous con-
nectivity needs to be available. For example, if a service
were hosted in a location where no end-to-end path exists
between it and the consumer, a request would simply fail.
SCN is therefore only beneficial in challenged environments
when an accessible cached copy of the service exists. In con-
trast, DTN addresses this concern by supporting disruption
and discontinuity in end-to-end paths [8]. Rather than re-
lying on contemporaneous connectivity on all segments of
an end-to-end path (as IP networks do), DTN operates in a
store-and-forward fashion. Intermediate nodes assume tem-
porary responsibility for messages and keep them until an
opportunity arises to forward them to the next hop. This in-
herently deals with temporary disconnections or disruptions,
allowing service instances to be progressively passed through
the network hop-by-hop until reaching their consumers.

We have previously proposed an architecture that com-
bines IP, ICN and DTN into a single unified architecture,
allowing content to be accessed via any available technol-
ogy [3]. Here, we build on this work to also support the
migration of services (as well as content). Such services are
modelled as unikernels: small VMs dedicated to executing
a single role. Alternative methods, such as Linux contain-
ers [4], could also be used to host services. Much like ICN
supports the caching of content as a independent unit, we
propose to make service instances (unikernels) entirely mo-
bile and cacheable. This is underpinned by a name-based
routing strategy (similar to ICN), that allows local services
to be easily discovered and accessed. Through this, we in-
tend to allow DIY networks, that may suffer periods of of-
fline disconnection, to utilise local services that otherwise
would become unavailable. Importantly, we integrate DTN
capabilities, allowing services to be opportunistically dis-
tributed through the network in a hop-by-hop fashion. This
is particularly critical in DIY networks, where the assump-
tion of constant egress connectivity is often false.

3. SCANDEX (SCNX)

3.1 Overview

We propose SCANDEX (SCNx), a strawman SCN ar-
chitecture specifically designed for challenged decentralised
networks. It allows services to exist in the network as self
contained objects (similar to information objects in ICN).
Each service is uniquely identified and can be, thus, cached
(and accessed) from any location. Clients contact services
by issuing a service request containing the service’s unique
identifier, alongside any input parameters (c.f., Section 4).
Services, themselves, can be in one of two states: stored and
instantiated. A stored state is not running and is, instead,
within memory as a static object; an instantiated service is
one that is running and able to accept service execution re-
quests. In SCNx, individual services are actually unikernel

Architectural 0 @ W .
Components mBroker éFN @GW ﬁlSEG 7a Service

Control path

Service path

Intermittent path

Island A

Service
.-Interest

FAEEREN Island B
— -"S'emipe
Publish.

Figure 1: Example SCNx network.

VMs [1], which are produced by Publishers and requested
by Subscribers. Subscriptions are performed by consumers
sending Interest messages that request a given service.

An SCNx network consists of four key components as fol-
lowing. Note the components are logical hence can be mul-
tiplexed on the same physical nodes.

1. Service Ezecution Gateways (SEG): These are the
points of attachment for clients and servers, and could
exist as wireless access points or base stations. A SEG
also hosts and executes services on behalf of its at-
tached clients.

2. Forwarding Nodes (FN): These are are responsible for
routing requests for services towards available copies.
These nodes also cache services locally, thereby allow-
ing local copies to be returned to the client (they do
not execute services though).

3. Edge Gateways (GW): These are responsible for con-
necting different domains (two separate networks).
Gateways can also temporarily function as Publish-
ers and Subscribers of services, i.e., a proxy to request
services from another network on behalf of one of its
users.

4. Brokers: These perform the service resolution and are
also responsible for performing intradomain forward-
ing. Every device (SEG, FN, GW) that wants to be
part of the SCNx network within a domain should reg-
ister with a broker and should be reachable by the bro-
ker. Reachability can be either through a direct path
between the broker and the device, or through hop-
by-hop store-and-forward if the path is intermittent
(i.e., DTN). The brokers could use distributed rout-
ing protocols such as OSPF to discover the network
topology. Brokers between different domains specifi-
cally exchange Interest messages using scoped flood-
ing. Brokers could also exchange service resolution
information. Brokers can reside in a standalone device
or within a SEG, FN and/or Edge Gateways.

A unique feature of SCNx is that it integrates many differ-
ent technologies together as transmission strategies. We de-
fine a transmission strategy as being a mechanism by which
any objects containing control or data information can be
transported from one location to another. For example,
based on the environment of a DIY network, SCNx could
transport an instance of a requested service or an Interest
via IP, DTN or other source routing methods (e.g., Bloom
filters), if supported. Through this, SCNx adapts the DIY
network to use the most appropriate communications tech-
nologies for its specific needs (c.f., Section 4).

3.2 [Example of Operation

The operation of SCNx is best explained via an example
(Figure 1). Imagine a disaster area, where an earthquake has
damaged local communications infrastructure. Several local
DIY networks have quickly emerged, operating using ad hoc
wireless links. The regional authorities have invested in a
Unmanned Aerial Vehicle (UAV) that flies along predeter-
mined paths over the disaster zone. When the UAV comes
into wireless contact with a DIY network, it can temporar-
ily communicate. The UAV may, or may not, have back-
haul Internet connectivity. The UAV and the DIY networks
all operate SCNx. For simplicity, all nodes on an intrado-
main level utilise the same communications technologies; we
assume a (relatively) well connected setup that might, for
example, be connected by classic ad hoc protocols such as
AODV.

We highlight the key components of SCNx using an ex-
ample request. A client node in Island A wishes to access
a service that is located in Island B. Each client is attached
to its local DIY network via a SEG. A service request is
therefore initially passed from the client to the SEG (i.e.,
stipulating the name of the desired service). If the SEG
possesses a copy of the service locally in its cache, the re-
quest is simply passed to the local service instance and it
is executed immediately (note that execution occurs on the
SEG). If, however, the SEG does not have a local copy, the
request must be forwarded on. The SEG translates the re-
quest to a service Interest (request) using the SCNx naming
format later discussed in Section 4.

Interests are then passed through the network via FNs to
a Broker. Each DIY network must contain at least one Bro-
ker. These are responsible for indexing all services that are
locally available in the DIY network (intradomain). This
means all SEGs that host services must register them with
the Broker. If the Broker is aware of an intradomain in-
stance of the service, the broker contacts the device that
has the instance and requests that it migrates the service to
the SEG using a specific transmission module that is suit-
able for the underlying network topology. If the underlying
network has stable connectivity, this transmission strategy
could be carried out using standard IP or using a source
routing method (e.g., Bloom filters). If the underlying net-
work is challenged, then the transmission strategy would be
a DTN (using the Bundle Protocol [8] or other DTN op-
tions). Once the service instance is migrated, the SEG then
instantiates the migrated instance and serves it to its clients.

If the Broker does not know of any copies of the service
within its own network, it is necessary to forward the Inter-

est on an interdomain level via the GW. Before forwarding
the Interest, the broker records the Interest as pending (de-
noting this is yet unresolved). Interdomain communications
are far more challenging than intradomain communications
because different network islands may utilise different tech-
nologies that may even vary over time based on conditions.
Most problematic is the intermittent connectivity that may
make the distribution of state information difficult. To ad-
dress this, the Broker floods its neighbouring networks with
the Interest. The exact mechanism by which the neighbours
are contacted will vary based on their capabilities. We en-
visage two key possibilities:

e Synchronous: If the Broker has full synchronous con-
nectivity (e.g., IP) to other network islands and/or the
UAV, it will directly contact them. It will forward the
Interest and wait for the response.

e DTN: If the Broker only has intermittent connectivity
to other network islands and/or the UAV, it will tem-
porarily store the Interest until another network/UAV
comes into communications range. Based on the TTL,
these networks/UAVs may forward the Interest further
to other parties. Most notably, the UAV would carry
the Interest and forward it when it comes into contact
with Island B.

Either of the above transmission strategies will result in
the Interest being passed into Island B. It will enter via Is-
land’s GW; this node will then take responsibility for trying
to obtain the service from its local area. To achieve this,
the GW will pass the Interest to its network’s Broker, re-
questing the service. As the service is located in Island B,
the Broker discovers the service and instructs the host to
pass it to the GW. The GW in B now has the migrated in-
stance locally in its cache. The Broker in Island B instructs
the GW to forward the service instance using a DTN trans-
mission strategy to the UAV. The GW now forwards the
service instance using a DTN transmission strategy via the
UAV reaching the GW in island A. When the GW in Island
A receives the service instance, it caches it and then pub-
lishes this to its own broker. The broker upon receiving the
Publish message, recognises there is a pending Interest, and
instructs the GW to forward the service instance to the ac-
tual subscriber using intradomain forwarding. The SEG on
receipt of the service instance, instantiates the service and
serves the clients locally over standard IP.

4. KEY CHALLENGES

In this section, we briefly summarise a list of key chal-
lenges that needs to be explored further to realise the full
potential of our architecture.

4.1 Service Caching and Synchronization

SCNx caches services within the network. By deploy-
ing the services to SEGs as close to clients as possible, the
services are made available during periods of disconnection
from the wide area network. Although service popularity
follows a highly skewed distribution, it is unlikely that we
can run all the services simultaneously at the SEG given the
limits of physical resources. To assist in this, the forward-
ing nodes (FN) become storage nodes that cache the small
unikernels (yet do no execute them).

Various caching algorithms can be implemented to achieve
different goals. For example, the most popular services could
be moved to the edge to reduce service latency and network

GET /api/0.6/map?bbox=11.54,48.14,
11.543,48.145 HTTP/1.1
Host: api.openstreetmap.org

Figure 2: An example RESTful API request for a map
within a bounding box.

use. If the SEG does not have sufficient capacity for the ser-
vice, we can use LRU/LFU to evict the less popular ones. If
there are other copies in the network, the SEG can simply
drop the evicted service. If the evicted service is the only
copy registered in the Broker (i.e., the only copy in the net-
work), instead of dropping the service completely, we can
push the evicted services to an upstream FN. The SEG can
then inform the Broker about the eviction and the location
of the evicted service.

Multiple instances of a service can also exist within the
network, which introduces complexity but improves service
availability. If multiple instances exist within a SCNx net-
work, the Broker maintains a list of all available copies. If a
service is evicted out of the cache, the Broker unregisters the
service and updates the information by flooding. The bro-
ker should pick which service instance it should forward the
request to avoid duplicate responses. By allowing stateful
services and mutable content, however, we are confronted
with the state synchronisation problem of the services, i.e.,
it is necessary to provide services with the means of merging
their state. The merge semantics are service-dependent and
should not be implemented within the native SCNx architec-
ture. Instead, the services themselves need to be designed
to incorporate state updates from each other. One option of
doing so is to provide a version control mechanism for state
synchronisation [14], where each application decides how to
resolve state conflicts.

For stateless services, multiple copies usually only intro-
duce negligible storage overhead. Comparing the significant
improvement on the system robustness, service availability
and latency reduction, the overall cost is marginal. How-
ever, for stateful services, proper synchronization mecha-
nisms must be implemented to guarantee the different ser-
vice copies have a consistent view of the service state. Ob-
viously, we need to balance the trade-off between synchro-
nization overhead and latency reduction.

4.2 Service Representation and Registration

One of the key strengths of SCNx is the interoperability
with legacy clients and services through the use of the SEG.
A client can simply interact with the SEG via a well known
protocol (HTTP), leaving the SEG to translate wider inter-
actions into SCNx. This is possible because there is a direct
mapping between the hierarchical RESTful API style ad-
dresses (Fig. 2) and SCNx service names. As RESTful API
calls can contain parameters both within the URL and the
body of the request, we only map the URL onto the SCNx
service name and put the request content into the body of
the Interest message. The representation does not distin-
guish static content from services since everything is consid-
ered as a service. For example, raw static content is wrapped
into a service publishing files in response to subscriptions.
This generalisation therefore incorporates the efficient large
content distribution as that in various ICN proposals. If
a user requests a map within a certain bounding box from
the Open Street Map, the coordinates of the location (bbox

parameter) are embedded into a request which is used by a
SEG to construct a service Interest.

Service registration is managed by the SEG. As it con-
trols when to instantiate or evict a service, it announces
to the Brokers every service it has instantiated by flooding
an Interest message to all Brokers within its own domain.
The registration information is a tuple < name, loc > which
contains both the identifier and locator(s) of a service. The
name of a service is simply its SCNx name, whereas the loc is
a list of locators for every potential underlying transmission
strategy. The reason is that each transmission strategy has
a well-defined locator scheme. In order to incorporate the
flexibility in routing and guarantee the reachability of the
service, the broker needs to know how to describe the ser-
vice location in every transmission strategy. For instance,
the locator in IP transmission strategy can be defined as
1P : PORT combination; the one in LIPSIN or Bundle Pro-
tocol can be defined as node’s id; the one in DHT can be the
hash value of id; etc. A key challenge is therefore managing
this complexity, which is non-trivial. In a challenged and
dynamic environment, state management can be costly; it
is therefore important to develop techniques that can man-
age this large body of dynamic state in a low overhead and
reliable manner.

Service discovery itself is also an important topic that
needs further investigation: users could potentially utilise
conventional methods such as search engines to discover vari-
ous services. However, such services themselves may become
inaccessible when the network is isolated. In such cases,
in-network service discovery can be implemented; by query-
ing the available Brokers, a list of available services could
be returned using a well-defined format, e.g., Web Service
Definition Language (WSDL). A key challenge is that this
might violate the need to interoperate with legacy clients.
That said, some lightweight service directories can be im-
plemented as default services constantly residing within the
network to provide context-based content provision and rec-
ommendation.

4.3 Distributed Authentication

The authentication requirements of SCNx are reduced by
using self-contained service VMs (unikernels) as the basic
representation. Implementation details together with any
security credentials stored within the VM are not directly
accessible to any other nodes or services due to the strong
isolation offered by the VM hypervisor running on a SEG.
Authentication between the user and the service is there-
fore specific to each service and can use a variety of current
methods, such as password or cookies.

Authentication of individual requests and responses be-
comes more challenging when they traverse the boundaries
between the legacy and the SCNx networks. Subscribe mes-
sages must not be encrypted for correct routing to publish-
ers, and, of course messages may traverse multiple hops in
the network which may not be trusted. End-to-end encryp-
tion commonly used today (e.g., TLS) is therefore not viable.

One possible approach (due to the small service footprint
and strong isolation) is to require each SEG to run a corre-
sponding authentication sub-service for each service it serves
or forwards requests for. This sub-service can then be used
for RESTful to SCNx request translation: it would termi-
nate the encrypted connection using service keys, sign and
potentially encrypt the contents of the newly generated sub-

Figure 3: Service dependency and migration strategies

scription message, but provide the hierarchical service name
for the SEG to use for resolving the service. This, although
viable, does, however, introduce extra overheads, while also
assuming the authentication sub-service is entirely trusted.

4.4 Managing Service Dependencies

Authentication is just one example where a service is a
combination of multiple, smaller sub-services. This intro-
duces new challenges, as it becomes necessary for service
dependencies to be resolved. Such dependencies can be de-
scribed using a directed acyclic graph (DAG), used com-
monly in Service-Oriented Architectures (SOA). In existing
proposals [6], the service dependency is described as an ag-
gregation of multiple independent chains, which are required
to be explicitly embedded in the header of an Interest. In
SCNx, a user only needs to interact with the root of a ser-
vice DAG. The services themselves initiate communication
with other sub-services they depend on.

Figure 3 presents a simple example. Service A is the re-
quested root service, which depends on the outputs from B
and C. Meanwhile, both B and C rely on service D. Four
dashed squares represent four SEG nodes. The weight of
a node represents the cost of running it and the weight of
an arrow represents traffic cost between communicating ser-
vices. In this example, the amount of traffic between A and
B (also C and D) is small, but the cost of running both of
these services may be too high for the same SEG. At the
same time, there is a considerable amount of traffic from
both B and C to D. By duplicating service D at both nodes
where B and C reside, we can significantly reduce traffic foot-
print. However, if there is negligible traffic between B and
D (also C and D), the weight of the corresponding edges are
small. As such, the service will be executed remotely. In this
case, duplicating the service D only introduces more traffic
overhead comparing to transmitting the service results.

Of course, this is only a toy example and real-world sce-
narios would be far more challenging; managing the place-
ment and execution of these dependent services will be a key
line of future work. For example, measuring, modelling and
predicting network cost is not a trivial operation. It could
be addressed in a centralised way at the Broker, however,
this requires the broker to not only have the knowledge of
all service dependencies, but also their costs. Though such
information can be obtained by sampling and sharing their
footprint, it adds further overheads and additional state syn-
chronisation. Another option would be for each node to
independently estimate the costs of its service dependencies
and manage them autonomously without assistance from the
Broker. As described above, the SEG makes the decision to

run a service locally or to forward each service request to
a corresponding node elsewhere in the network. The ex-
plicitly recorded cost together with the DAG of dependent
sub-services forms the basis for a SEG to decide whether to
migrate the service and if yes — which parts of it.

4.5 Transmission Strategy Selection

SCNx incorporates multiple transmission strategies into
the architecture, hence the Broker needs to select the best
strategy for both delivering the control and data information
objects. From the users’ perspective, such decisions should
be completely transparent. Although the underlying topol-
ogy (whether it’s fixed or mobile) does not change often,
intelligent in-network decision making requires the SCNx
network to be context-aware and event-driven so that it can
respond quickly to the changes in network conditions, and
adjust the strategy adaptively. Such a goal is achieved by
exchanging the information among the Brokers in the con-
trol plane. Whenever a network event happens, e.g., node
failure, link failure or network partition, the event will be
detected by the nearby nodes and the update will be propa-
gated to every broker within the network domain. Therefore,
the brokers can have a consistent view of the network con-
dition to help them in deciding proper transmission strate-
gies. Although seemingly straightforward, this is actually
quite challenging, particularly in highly dynamic environ-
ments where changes may occur often. In the worst-case
scenario, the optimal transmission strategy may change mo-
ments after one has already been initiated. Therefore, the
stability of the protocol should also be taken into account to
prevent the system from oscillating between different trans-
mission strategies quickly.

5. CONCLUSION

Migrating current service virtualisation instances over de-
centralised networks is a challenge. In this paper, we have
discussed this problem, and considered SCN as a solution.
Although SCN, as a concept, has existed for years, we ex-
tend it to explicit consider the needs of challenged DIY net-
works. We have proposed SCANDEX (SCNx), a strawman
SCN architecture that combines multiple transmission tech-
nologies such as IP and DTN for providing resilient SCN in
challenged DIY networks.

Intentionally, we have given a broad overview of the topic.
Our future work centres on building up these principles with
the goal of deploying SCNx. To this end, we have explored
several key challenges that we will have to face. A common
thread running through these is that of service management.
In essence, SCNx wishes to integrate the management of
services into the network as an explicit responsibility (much
like packet forwarding is today). A key question, however, is
whether or not network architectures are ready for such an
expansion in their role. For example, delivering, storing and
executing services can have many wider implications for net-
work design, particularly given the extra overheads involved.
A key line of future work is therefore understanding and
controlling these implications. We aim to begin by building
models that can capture the needs of services, such that de-
cision making entities (e.g., Brokers and SEGs) can properly
utilise this contextual data. Most prominently, it becomes
necessary to decide when (and where) a service should be
stored, and when it should be discarded. This is a non-trivial
optimisation that will involve the conflicting needs of many

parties. Another key challenge we face is design of data syn-
chronisation mechanisms that can allow stateful services to
operate in environments where disconnections are the norm.
Of course, in all cases this dynamism has an impact on the
underlying service routing and resolution protocols as well:
control messages must be distributed, just as routing control
messages are disseminated in IP. Potentially, SCNx faces a
much greater burden though, as the number of services is
likely to far exceed the number of nodes IP deals with. We
also have a long way to go before we can fully exploit the
architectural potential of things like dynamic transmission
strategy selection. Although highly attractive, it remains to
be seen how effectively a network can manage its own con-
text information to inform these decisions. Despite these
challenges, we argue that the advantages of using SCN prin-
ciples in DIY networks is huge. Consequently, we feel our
approach is well founded and is worthwhile pursuing.

Acknowledgements

Work funded by EU H2020 UMobile Project (Grant agree-
ment no: 645124).

6. REFERENCES

[1] A. Madhavapeddy, D. Scott, Unikernels: The Rise of
the Virtual Library Operating System,
Communications of the ACM, January 2014.

[2] G. Xylomenos et al,, A Survey of Information-Centric
Networking Research, IEEE Communications Surveys
and Tutorials, May 2014.

[3] A. Sathiaseelan et al, An Internet Architecture for the
Challenged, IAB ITAT Workshop, December 2013.

[4] J. Hadley, Y. Elkhatib et al, MultiBox: Lightweight
Containers for Multi-cloud Deployments, EGC
Workshop, November 2015.

[5] G.Tyson et al. A survey of mobility in
information-centric networks, Communications of the
ACM, December 2013.

[6] T. Braun et al, Service-Centric Networking, IEEE
1ICC, December 2011.

[7] B.H. Bloom, Space/time trade-offs in hash coding
with allowable errors, Communications of the ACM,
July 1970.

[8] K. Fall, A Delay-Tolerant Network Architecture for
Challenged Internets, IRB-TR-03-003, February 2003

[9] V. Jacobson et al, Networking Named Content, ACM
CoNEXT, December 2009.

[10] D. Trossen, G. Parisis, Designing and Realizing an
Information-Centric Internet, IEEE Communications
Magazine, July 2012.

[11] T. Koponen et al, A Data-Oriented (and Beyond)
Network Architecture, ACM SIGCOMM, October
2007.

[12] G Tyson et al, Towards an information-centric
delay-tolerant network, IEEE INFOCOM NOMEN,
April 2013.

[13] G. Tyson et al, Beyond Content Delivery: Can ICNs
Help Emergency Scenarios?, IEEE Network, June
2014.

[14] B. Farinie et al, Mergeable Persistent Data Structures,
JFLA 2015.

