
Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 90

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 90

Espoo 2004 HUT-TCS-A90

PROOF COMPLEXITY OF CUT–BASED TABLEAUX

FOR BOOLEAN CIRCUIT SATISFIABILITY CHECKING

Matti Järvisalo

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI

Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 90

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 90

Espoo 2004 HUT-TCS-A90

PROOF COMPLEXITY OF CUT–BASED TABLEAUX

FOR BOOLEAN CIRCUIT SATISFIABILITY CHECKING

Matti Järvisalo

Helsinki University of Technology

Department of Computer Science and Engineering

Laboratory for Theoretical Computer Science

Teknillinen korkeakoulu

Tietotekniikan osasto

Tietojenkäsittelyteorian laboratorio

Distribution:

Helsinki University of Technology

Laboratory for Theoretical Computer Science

P.O.Box 5400

FIN-02015 HUT

Tel. +358-0-451 1

Fax. +358-0-451 3369

E-mail: lab@tcs.hut.fi

©c Matti Järvisalo

ISBN 951-22-7020-X

ISSN 1457-7615

Multiprint Oy

Helsinki 2004

ABSTRACT: This report deals with propositional satisfiability checking. Most
successful satisfiability checkers are based on the Davis–Putnam method and
assume that the input formulae are in conjunctive normal form (CNF). In
this work an alternative approach is considered. A tableaux–based method for
a more general formula representation called Boolean circuits is introduced.
The method can be seen as a generalisation of the Davis–Putnam method to
Boolean circuits.

The effectiveness of the tableau method is investigated. In particular, the
role of the important splitting / cut rule is considered. The effect that restric-
tions on the use of the cut rule have on proof complexity, i.e., on the size of
proofs producible, is studied.

It is shown that restricting the application of the cut rule in any of the
natural locality based ways considered causes an exponential increase in
the proof complexity. Moreover, there are exponential differences between
the proof complexity of all the restricted methods. The results rely on the
resolution–boundedness of the methods and on properties of certain circuit
families such as a Boolean circuit representation of the well–known pigeon–
hole principle.

The results apply to the Davis–Putnam method for formulae in CNF ob-
tained from Boolean circuits using Tseitin’s translation. Thus it is shown that
locality based cut restrictions, such as splitting on the input gates only, in-
crease the size of proofs exponentially in the worst–case in Davis–Putnam
based satisfiability checkers.

KEYWORDS: propositional satisfiability, satisfiability checking, Boolean cir-
cuits, cut rule, proof complexity, polynomial simulation, resolution, Davis–
Putnam method

Contents

1 Introduction 1

1.1 Background . 1

1.2 Scope and Contributions . 3

1.3 Outline for the Rest of the Work 3

2 Preliminaries 5

2.1 Propositional Logic . 5

2.2 The Satisfiability Problem and NP-Completeness 6

2.3 Propositional Proof Complexity and Simulation 6

2.4 Resolution . 7

3 Boolean Circuits 9

3.1 Definition . 9

3.2 Representing Sets of Clauses as Boolean Circuits 11

4 A Tableau Method 13

4.1 The BC Method . 13

4.2 Variations of BC . 13

4.3 Completeness and Soundness 15

4.4 Relations Between Variations of BC 18

4.5 Resolution–Boundedness . 19

5 Circuit Gadgets 22

5.1 Pigeon-Hole Principle and the PHPn+1
n Gadget 22

5.2 The TD Gadget . 23

5.3 The UNSAT Gadget . 24

5.4 The XOR Gadget . 25

6 Main Results 29

6.1 BCbu vs BCi . 29

6.2 BCi+td vs BCi . 30

6.3 BCi+td vs BCtd . 30

6.4 BCbu+td vs BCi+td . 31

6.5 BCbu+td vs BCbu . 32

6.6 BC vs BCbu+td . 33

6.7 BCi vs BCtd . 34

6.8 BCbu vs BCtd . 35

6.9 BCbu vs BCi+td . 35

6.10 Corollaries . 36

6.11 Relevance to the Davis–Putnam Method 36

7 Conclusion 40

7.1 Further Work . 40

Bibliography 42

iv CONTENTS

List of Figures

1 A resolution tree refutation for the set of clauses UNSATa,b. . 8
2 A Boolean circuit. 10
3 An example of why Boolean circuits are a compact represen-

tation. 11
4 Tableau method BC for Boolean circuits. 14
5 A BC-refutation for C>(UNSATa,b). 15
6 An obvious ordering of BC and its variations based on the

p-simulation relation. 18
7 A cut tree corresponding to the BC-refutation shown in Fig-

ure 5. 20
8 (a) The PHPn+1

n gadget graphically, (b) a part of the PHPn+1
n

gadget in detail. 23
9 (a) The structure of the TDn gadget, (b) the TDn gadget

graphically. 24
10 Why BCtd-refutations corcerning the TDn gadget are large. . 24
11 The UNSATa,b gadget graphically. 25
12 The Boolean function xor as a Boolean circuit. 25
13 (a) The structure of the XORn gadget, (b) the XORn gadget

graphically. 26
14 Circuit for Theorems 6.1 and 6.2. 29
15 Circuit for Theorem 6.3. 31
16 Circuit for Theorem 6.4. 32
17 Circuit for Theorem 6.5. 32
18 Circuit for Theorem 6.6. 33
19 How to generate a polynomial size BC-refutation for the cir-

cuit shown in Figure 18. 34
20 Circuit for Theorem 6.9. 36
21 Summary of the ordering of BC and its restricted variations

based on the p–simulation relation. The case BCbu 6≡ BCtd

is omitted from the picture for clarity. 36

LIST OF FIGURES v

1 INTRODUCTION

In this chapter general background is given and the scope of this work is
defined.

1.1 Background

The problem of finding out whether a propositional formula is satisfiable,
i.e., evaluates to true with some truth assignment, is called the propositional
satisfiability problem (SAT) [28]. It is an archetypical NP-complete problem
[6], and thus hard to solve. Because of its universal nature, a variety of prob-
lems, e.g., in the areas of planning [21, 22], model checking of finite state
systems [5, 4], testing [23], and verification [3], can be seen as SAT prob-
lem instances. Due to this, there is a high demand for more feasible ways of
solving SAT instances, ranging from industrial applications to pure research.
Various methods for checking the satisfiability of SAT instances have been
developed (see [15] and [35] for surveys) and applied successfully to many
interesting domains. The success builds on recent significant advances in
the performance of SAT checkers based both on stochastic local search al-
gorithms and on complete systematic search, see e.g. [30, 26, 24, 1, 25, 13].
Still, universally efficient methods are yet to be found.

Most successful satisfiability checkers assume that the input formulae are
in conjunctive normal form (CNF) [27]. The reason for this is that it is
simpler to develop efficient data structures and algorithms for CNF than for
arbitrary formulae. Moreover, propositional formulae can be transformed
in polynomial time (see e.g. [29]) into CNF while preserving the satisfiabil-
ity of the instance. Therefore one usually employs a more general formula
representation and then transforms the formula into CNF. However, such a
polynomial time translation introduces auxiliary variables, and it should be
noticed that an increase in the number of variables in an instance reflects
in the worst–case exponentially to the performance of typical SAT checkers.
On the other hand, using CNF makes efficient modelling of an application
cumbersome.

In addition to being hard to use directly as a modelling language, by trans-
lating other representations to CNF one often hides information about the
structure of the original problem. One way of representing propositional
formulae in a more general, structure–preserving way is to use Boolean cir-
cuits (see e.g. [28]). Basically, Boolean circuits are acyclic directed graphs
in which the nodes – representing sub-formulas of the instance – are called
gates, and dependencies between different gates are represented by edges.
Boolean circuits are interesting because they allow for a compact and natural
representation in many domains, in which the representation can be simpli-
fied by sharing common subexpressions and by preserving natural structures
and concepts of the domain. Boolean circuits can be translated into CNF
using a standard translation, often referred to as Tseitin’s translation, as it was
first discussed in [33]. This translation introduces a new variable for each
Boolean connective in the formula, resulting in a linear size CNF transla-
tion.

Recognising the factors that affect the difficulty of satisfiability checking,

1 INTRODUCTION 1

i.e. the time needed to determine whether an instance is satisfiable or not,
giving a satisfying truth assignment in the positive case, is crucial if one is to
find more efficient method for the task. The basis of most state–of–the–art
SAT checkers today is the Davis–Putnam procedure (DPLL) [11, 12]. The
efficiency of a typical DPLL based SAT checking system depends on

(i) the applied search space pruning techniques, e.g., non-branching de-
duction rules, non-chronological backtracking (see e.g. [25]), and con-
flict-driven learning (see e.g. [34]), and on

(ii) the splitting rule (i.e., on which Boolean variables to apply the explicit
cut that induces branching, and what kind of heuristics is this decision
based on).

Different approaches to measuring the efficiency of SAT checking methods
can be considered. One can compare SAT checkers by experimental eval-
uation, i.e., investigate how long does it take for checkers to give an answer
to different types of instances. There exists a variety of publicly available
benchmark instance sets from different problem domains. While of practi-
cal importance, there are many difficulties concerned with such aspects as
benchmark problem coverage and implementational issues in performing
objective experimental evaluation. Another approach is worst–case analysis
of SAT checking algorithms (see e.g. [10]), i.e., giving analytic proof of upper
bounds on the running times of algorithms w.r.t. instance size. Heuristics
applied in particular algorithms has a huge effect on the worst–case perfor-
mance. Tight upper bounds are of great theoretical interest and an active
area of research. Although there is potential for also breakthroughs in prac-
tise, upper bounds can be a misleading measure, as an algorithmic idea that
is highly successful in practise, with very good average–case performance,
does not stand out in such analysis.

A third approach, the one taken in this work, is to investigate how large are
the minimal–size proofs for different formulae. This measure is called proof
complexity (see e.g. [2]). Proof complexity is of our interest, as it allows one
to differentiate the heuristic performance from the algorithmic idea and to
consider how small proofs can be established assuming optimal heuristic be-
haviour. The relative proof complexity of SAT checking methods gives a way
of proving in this sense the theoretical superiority of one method to another,
or, showing that different methods cannot be compared to one another.

In this work we consider solving instances of Boolean circuit satisfiability.
A tableau method for satisfiability checking that works directly with Boolean
circuits has been developed [20] and implemented [19]. The idea is to avoid
translating circuits to CNF. Tseitin’s translation introduces a number of new
variables linear to the size of the circuit. This results in increased computa-
tional complexity, as the performance of SAT checking algorithms depends
in the worst–case exponentially on the number of variables in the instance.
We employ Boolean circuits as the input format, thus allowing for a more
structured representation than propositional formulae. Instead of standard
(cut free) tableau techniques [8] the tableau method for Boolean circuits
employs a direct cut rule combined with deterministic (non-branching) de-
duction rules. The aim is to achieve high performance while avoiding some

2 1 INTRODUCTION

computational problems in cut free tableaux [9, 8]. The rules in the method
are related to the successful Davis–Putnam procedure, although DPLL as-
sumes input in CNF. This gives us means of generalising the main results of
this work to DPLL.

1.2 Scope and Contributions

In this work we study satisfiability checking methods for Boolean circuits. We
focus on the splitting/cut rule. Namely, the research problem is:

How do restrictions on the use of the cut rule effect the proof
complexity in Boolean circuit satisfiability checking based on
tableaux?

For instance, one may think that it is a good idea to restrict the cuts to the
input gates only as they determine the values of all other gates. Therefore,
the search space for a circuit with K gates and N input gates, K ≥ N ,
would be 2N instead of 2K . This approach is proposed, for example, in [31,
14]. However, our results show that doing so will in the worst case result in
exponentially larger proofs compared to the unrestricted cut rule. In addition
to the input gate restricted cuts, we study several other natural locality based
restrictions of the cut rule, e.g., “top-down” cuts that are made only on the
children of the already determined gates and “bottom-up” cuts that can be
applied on input gates and on the parents of the already determined gates.
Our results show that restricting the cut in any of the considered ways can
result in exponentially larger proofs than the unrestricted cut. In addition,
we show that there are also exponential differences in the proof complexity
between the restricted versions of the cut rule.

The tableau method we introduce is based on a subset of the rules in the
method introduced in [20]. The set of rules in our method are closely related
to those in the DPLL method. Thus the main results directly apply to SAT

checkers for CNF formulae that are obtained from Boolean circuits by using
Tseitin’s translation. In addition to the proof complexity results, we show that
the method we introduce is sound and complete, and discuss how and why
the method relates to the Davis–Putnam method.

The main results presented in this work have been published and pre-
sented in an international forum [17].

1.3 Outline for the Rest of the Work

The rest of this work is organised as follows.

• Chapter 2: As preliminaries the concepts of propositional satisfiabil-
ity, proof complexity, and polynomial simulation, and the resolution
principle are introduced.

• Chapter 3: Boolean circuits and the related NP–complete Boolean cir-
cuit satisfiability problem are introduced. Sets of clauses are associated
with Boolean circuits of specific kind.

1 INTRODUCTION 3

• Chapter 4: A tableau method for Boolean circuit satisfiability check-
ing called BC is introduced. The polynomial simulatability among
variations of BC is discussed in the light of Boolean circuits generated
from sets of clauses. The BC method and its variations are shown to be
complete and sound proof systems for Boolean circuits. Additionally,
the notion of resolution–boundedness is introduced, and BC and its
variations are shown to have this property.

• Chapter 5: Preliminaries for the main results of the work are presented,
i.e., certain circuit constructs are introduced.

• Chapter 6: The main results of the work are presented. Negative poly-
nomial simulation results are shown to hold for each pair of the con-
sidered variations of the BC method. Furthermore, the relevance of
the results is discussed in the light of the Davis–Putnam method.

• Chapter 7: This chapter sums up the content of the work. Related
questions for further work are given.

4 1 INTRODUCTION

2 PRELIMINARIES

As preliminaries the concepts of propositional satisfiability, proof complexity,
and polynomial simulation, and the resolution principle are introduced.

2.1 Propositional Logic

First we introduce the language of propositional logic. Our definitions fol-
lows those of [27]. We use the following notation.

• ¬ stands for “not”(negation).

• ∨ stands for “or” (disjunction).

• ∧ stands for “and” (conjunction).

The alphabet of propositional logic consists of the symbols

(i) ¬, ∨, ∧ (connectives)1,

(ii) (,) (parentheses), and

(iii) a, a1, a2, . . . , b, b1, b2, . . . (Boolean variables).

Next we define what we mean by propositions, or propositional formulae.

Definition 2.1 (Propositions) The set of propositions consists of exactly the
following.

(i) Boolean variables are propositions.

(ii) If α and β are propositions, then ¬α, (α ∨ β), and (α ∧ β) are propo-
sitions.

Generally, the shorthand (α1∨· · ·∨αk) is used for (· · · ((α1∨α2)∨α3) · · ·∨
αk), and similarly for ∧. Moreover, if the outermost symbols in a formula are
both parentheses, they are usually left out.

Next we define the semantics. The semantics is based on assigning truth
values (true and false) to propositions. Let V be a finite set of Boolean
variables. A truth assignment over V is a function τ : V → {true, false}.
A truth assignment τ is a satisfying truth assignment for a variable v if and
only if τ(v) = true. A truth assignment over V is extended to arbitrary
proposition over V as follows.

• τ(¬α) = true if and only if τ(α) = false.

• τ((α ∨ β)) = true if and only if τ(α) = true or τ(β) = true.

• τ((α ∧ β)) = true if and only if τ(α) = true and τ(β) = true.

1Usually, the connectives → (implication) and ↔ (equivalence) are introduced, but they
are generally not needed: α → β is equivalent to ¬α ∨ β, while α ↔ β is equivalent to
(¬α ∨ β) ∧ (α ∨ ¬β).

2 PRELIMINARIES 5

If τ(α) = true for some assignment τ , then the proposition α is satisfiable,
and τ is a satisfying truth assignment for α. Otherwise, α is unsatisfiable. If
τ(α) = true for any τ , then α is valid.

For convenience we define some additional concepts. A literal is a Boolean
variable v or its negation, ¬v. A clause over V is a disjunction of literals
∨

i∈{1,...,n} li. The length of this clause is n. A clause of length one is a unit

clause. A set of clauses ϕ = {C1, . . . , Ck} is satisfiable if and only if there
is a truth assignment that satisfies each Ci, 1 ≤ i ≤ k. Otherwise it is un-
satisfiable. Thus ϕ coincides with the conjunctive normal form (CNF) for
propositional formulae [27], i.e.

∧

i∈{1,...,k} Ci. Notably, any propositional

formula can be transformed in polynomial time (see e.g. [29]) into a CNF
formula (a set of clauses) that preserves the satisfiability of the original one.

Example 2.1 Let

UNSATa,b
def
= {a ∨ b, a ∨ ¬b,¬a ∨ b,¬a ∨ ¬b}

be a set of clauses over the Boolean variables {a, b}. We have that UNSATa,b

is unsatisfiable. If we remove any clause from UNSATa,b, we get a satisfiable
set of clauses. The one and only satisfying truth assignment of UNSATa,b \
{a ∨ b} is {a → false, b → false}. Seen as a propositional formula in
CNF, UNSATa,b is (a ∨ b) ∧ (a ∨ ¬b) ∧ (¬a ∨ b) ∧ (¬a ∨ ¬b).

2.2 The Satisfiability Problem and NP-Completeness

The propositional satisfiability problem, SAT, is defined as follows.

Definition 2.2 (SAT)

Instance: A set of clauses ϕ.

Problem: Is ϕ satisfiable?

The propositional satisfiability problem is an archetypical NP-complete
problem [28]. Informally, the acronym NP stands for the class of decision
problems2 for which it holds that the solution to any instance of the problem
can be verified in polynomial time. A problem P ∈ NP is said to be NP-
complete, if for any problem P ′ ∈ NP there is a polynomial time algorithm
which, given an instance I ′ of P ′, outputs an instance of P to which the
answer is “yes” if and only if the answer to I ′ is “yes”. In this sense, NP-
complete problems are the hardest problems in the class NP.

2.3 Propositional Proof Complexity and Simulation

A propositional proof is a certificate – seen as an instance of some general
format for presenting proofs – for the validity of a proposition, or, equivalently,
for the unsatisfiability of the negation of the proposition. A propositional
proof system (see e.g. [2]) is then a polynomial–time computable predicate
T such that for all propositions α it holds that α is unsatisfiable if and only if

2A decision problem is a problem to which the answer is either “yes” or “no”.

6 2 PRELIMINARIES

there is a proof P for α such that T (α, P). If such a P exists, it is a T -proof
for α.

We use the notion of p-simulation [7] to study the relative efficiency of
proof systems. Let T be a proof system. The proof complexity (or complexity
in short) of a proposition α in T is the minimum of |P |, where P is a T -proof
for α and |P | the size3 of P . For any two proof systems T and T ′, we say that
T p-simulates T ′, denoted by T � T ′, if there is a polynomial p(n) such that,
for any α, if there is T ′-proof for α of size n, then there is a T -proof for α of
size at most p(n). The relation � is transitive. If T � T ′ holds but T ′ � T
does not, we write T � T ′. If neither T � T ′ nor T ′ � T holds, we write
T 6≡ T ′.

We denote by �χ the restricted form of p-simulation, in which T �χ T ′

holds if if there is a polynomial p(n) such that, for any x ∈ χ, if there is
T ′-proof for x of size n, then there is a T -proof for x of size at most p(n). If
both T �χ T ′ and T ′ �χ T hold, we write T ≡χ T ′.

2.4 Resolution

We now present a proof system called resolution [27]. In resolution, we see
clauses as sets of literals, e.g., the clause a ∨ b ∨ ¬c ∨ b is seen as the set
{a, b,¬c}. Let ϕ be a set of clauses (seen as sets of literals), and assume that
ϕ is unsatisfiable. A resolution refutation is a proof for the unsatisfiability
of ϕ. It consists of a sequence of clauses R = (C1, . . . Ct), where Ct is the
empty set ∅, and each Ck, 1 ≤ k < t, is either in ϕ or is derived from two
clauses Ci and Cj, where 1 ≤ i 6= j < k, by applying the resolution rule

C ∪ {x}
C ′ ∪ {¬x}

C ∪ C ′

,

where neither C nor C ′ contains the literals x or ¬x. In other words, the
resolution rule states that the clause Ck = C ∪ C ′ can be inferred from
clauses Ci = C ∪ {x} and Cj = C ′ ∪ {¬x}. Applying the resolution rule on
the clauses C ∪ {x} and C ′ ∪ {¬x} as above we say that we resolve on (the
literal) x, while C ∪ C ′ is called the resolvent.

A resolution tree refutation for ϕ is a resolution refutation which can be
presented as a labelled binary tree with the following properties [27].

(i) The root of the tree is the empty clause.

(ii) The leaves of the tree are labelled with clauses in ϕ.

(iii) If any non-leaf node n is labelled with clause C and its immediate
successors n1, n2 are labelled with C1, C2, respectively, then C is a re-
solvent of C1 and C2.

Notably, one can always read a resolution refutation from a refutation tree
resolution by simply constructing a sequence by taking the nodes in the tree
in left–to–right, bottom–up order.

3Defining the size of a proof depends highly on the type of the proof system considered.

2 PRELIMINARIES 7

Example 2.2 A resolution refutation for UNSATa,b is

({a, b}, {a,¬b}, {a}, {¬a, b}, {¬a,¬b}, {¬a}, ∅).

A resolution tree refutation for UNSATa,b is shown in Figure 1.

∅

{a}

kkkkkkkkkkkkkkkkkkk
{¬a}

SSSSSSSSSSSSSSSSSSS

{a, b}

xxxxxxxx
{a,¬b}

HHHHHHHHH

{¬a, b}

ttttttttt
{¬a,¬b}

KKKKKKKKKK

Figure 1: A resolution tree refutation for the set of clauses UNSATa,b.

In order to have a measure on the complexity of proofs in resolution, we
define the size of a resolution refutation as follows.

Definition 2.3 The size of a resolution refutation R = (C1, . . . Ct) is t.

Example 2.3 The size of the resolution refutation in Example 2.2 is 7.

Definition 2.4 The size of a resolution tree refutation is the number of nodes
in the tree.

Example 2.4 The size of the resolution tree refutation in Figure 1 is 7.

8 2 PRELIMINARIES

3 BOOLEAN CIRCUITS

Boolean circuits and the related NP–complete Boolean circuit satisfiability
problem are introduced. Sets of clauses are associated with Boolean circuits
of specific kind.

3.1 Definition

Informally, a Boolean circuit (see e.g. [28]) is an acyclic directed graph in
which the nodes are called gates. The gates can be divided into three cate-
gories4:

• output gates with incoming edges but no outgoing edges,

• intermediate gates with both incoming and outgoing edges, and

• input gates with outgoing edges but no incoming edges.

A Boolean function is associated with each output and intermediate gate.
Formally, we present a Boolean circuit C with the set of gates V as a set of

equations of the form v = f(v1, . . . , vk), where v, v1, . . . , vk ∈ V and f is a
Boolean function. It is required that in the set of equations, each v ∈ V has
at most one equation and that the equations are non-recursive.

For a Boolean circuit C, we denote the set of gates appearing in C by V (C).
The edge relation for a Boolean circuit C is defined as E(C) = {〈v, v ′〉 | v′ =
f(. . . , v, . . .) ∈ C}.

Example 3.1 Graphically, the Boolean circuit

{v = and(e, f, g, h),

e = or(a, b),

f = or(b, c),

g = or(a, d),

h = or(c, d),

c = not(a),

d = not(b)}

is shown in Figure 2. In this circuit, a and b are input gates, c, d, e, f, g and
h intermediate gates, and v is an output gate.

A truth assignment for a Boolean circuit C is a function τ : V (C) →
{true, false}. Assignment τ is consistent if τ(v) = f(τ(v1), . . . , τ(vk))
holds for each equation v = f(v1, . . . , vk) in C. A constrained Boolean cir-
cuit 〈C, c+, c−〉 is a Boolean circuit C with the restrictions that the gates in
c+ ⊆ V (C) are true and those in c− ⊆ V (C) are false. If there is a consis-
tent truth assignment that respects the constraints of a constrained Boolean

4We do not consider circuits in which there are trivial gates with no edges (neither in-
coming nor outgoing).

3 BOOLEAN CIRCUITS 9

or or or

and

or

not not

ba
c d

fe g h

v

Figure 2: A Boolean circuit.

circuit, it is a satisfying truth assignment for the circuit, and the circuit is
satisfiable. Otherwise the circuit is unsatisfiable.

Here, we are interested in CIRCUIT SAT, the satisfaction problem for
constrained Boolean circuits, a problem closely related to SAT.

Definition 3.1 (CIRCUIT SAT)

Instance: A constrained Boolean circuit 〈C, c+, c−〉.

Problem: Is 〈C, c+, c−〉 satisfiable?

The CIRCUIT SAT problem is obviously NP-complete. Notice that any un-
constrained circuit is trivially satisfiable, having 2n satisfying truth assign-
ments, where n is the number of input gates in the circuit.

In the following we consider the class of Boolean circuits in which the
following three types of Boolean functions are allowed.

• not(v) = true if and only if v is false,

• or(v1, . . . , vk) = true if and only if at least one vi, 1 ≤ i ≤ k, k ≥ 2,
is true, and

• and(v1, . . . , vk) = true if and only if all vi, 1 ≤ i ≤ k, k ≥ 2, are
true.

Notice that it is straightforward to extend this class with additional Boolean
functions such as xor and equivalence.

As a simple example of why Boolean circuits are a compact representation,
consider the following.

Example 3.2 Consider the Boolean circuit shown in Figure 3. An equiv-
alent propositional formula, in which only such variables occur that corre-
spond to the inputs in the circuit, can be constructed recursively top–down.
For instance, the formula corresponding to gate zn is vn+1 ∨zn

wn+1, and for
gate vn the corresponding formula is xn ∧vn

(vn+1 ∨zn
wn+1). The resulting

formula, corresponding to gate v1, is of the form

10 3 BOOLEAN CIRCUITS

(x1∧v1
((· · ·

︸ ︷︷ ︸

x2∧v2
((···)∨z2

(···))

)∨z1
(· · ·
︸ ︷︷ ︸

((···)∨z2
(···))∧w2

y2

)))∨v (((· · ·)∨z1
(· · ·))∧w1

y1).

In the formula the variables vn+1 and wn+1 both appear a number of times
exponential to n. In the circuit, however, gates vn+1 and wn+1 appear only
once.

or

and and

orxn

x1
z 1 y1

xn

vn wn

vn+1

and and

or

yn

v

v1 w1

z n

wn+1

Figure 3: An example of why Boolean circuits are a compact representation.

3.2 Representing Sets of Clauses as Boolean Circuits

To relate a set of clauses with a Boolean circuit, we need a way to system-
atically generate a Boolean circuit from a given set of clauses. We do this
by defining the canonical Boolean circuit representation C(ϕ) for a set of
clauses ϕ as follows. Let ϕ = {C1, . . . , Ck}, where each Ci = {l1i

, . . . lmi
, l1i

,
. . . , lni

}, and each lji
is a positive literal and lji

a negative literal. Now

C(ϕ) = {v = and(o1, . . . , ok}

∪ {oi = or(al1i
, . . . , almi

, bl1i
, . . . , blni

}

∪ {blji
= not(alji

)}.

By the canonicity of C(ϕ) of a set of clauses ϕ, one can obviously reconstruct
ϕ from C(ϕ).

Example 3.3 Recall the set of clauses UNSATa,b from Example 2.1. The
canonical Boolean circuit representation C(UNSATa,b) is shown in Figure
2.

3 BOOLEAN CIRCUITS 11

Given a set of clauses ϕ, we denote by C>(ϕ) the circuit C(ϕ) with the
constraint that the output gate v of C(ϕ) is true, i.e.,

C>(ϕ) = 〈C(ϕ), {v}, ∅〉.

The connection between ϕ and C>(ϕ) is stated in the following proposition.

Proposition 3.1 For any set of clauses ϕ, the set ϕ is satisfiable if and only if
C>(ϕ) is satisfiable.

12 3 BOOLEAN CIRCUITS

4 A TABLEAU METHOD

A tableau method for Boolean circuit satisfiability checking called BC is
introduced. The polynomial simulatability among variations of BC is dis-
cussed in the light of Boolean circuits generated from sets of clauses. The BC

method and its variations are shown to be complete and sound proof systems
for Boolean circuits. Additionally, the notion of resolution–boundedness is
introduced and BC and its variations are shown to have this property.

4.1 The BC Method

We concentrate on a tableau method for Boolean circuit satisfiability check-
ing we call BC. The BC method consists of the rules shown in Figure 4. It
is a simplified version of the method introduced in [20].5 6

Given a constrained Boolean circuit 〈C, c+, c−〉, a BC-tableau for it is a
binary tree such that the root of the tree consists of the equations in C and the
constraints; for each gate v ∈ c+ a Tv entry is added while for each v ∈ c−

a Fv entry is added. The other nodes in the tree are entries of the form Tv
or Fv, where v ∈ V (C). The entries are generated by applying the rules in
Figure 4 as in the standard tableau method [8].

We say that a branch B in a tableau has been extended to branch B ′,
if B′ consists of B to the leaf of which a sequence of entries generated by
applying the rules (b)–(h) have been appended. By applying the explicit cut
rule on a gate v in branch B, the branch is extended into two branches B ′

and B′′, where B′ (B′′) consists of B to the leaf of which the entry Tv (Fv) is
appended. A tableau T ′ is an immediate extension of the tableau T if T ′ is T
with the addition that one branch of T has been extended by applying some
rule in the tableau method once. For each v ∈ V (C), we say that the entry
Tv (Fv) can be deduced in the branch if the entry Tv (Fv) can be generated
by applying rules (b)–(h) only.

A branch in the tableau is contradictory if it contains both Fv and Tv
entries for a gate v ∈ V (C). Otherwise, the branch is open. A branch is
complete if it is contradictory, or if there is a Fv or a Tv entry for each
v ∈ V (C) in the branch and the branch is closed under the rules (b)–(h). A
tableau is finished if all the branches of the tableau are complete. A tableau
is closed if all of its branches are contradictory. A closed BC-tableau for a
constrained circuit is called a BC-refutation for the circuit.

Example 4.1 For the circuit shown in Figure 2 with the constraint that the
output gate v is true, a BC-refutation is shown in Figure 5.

4.2 Variations of BC

We study variations of BC in which we restrict the application of the explicit
cut rule to certain types of gates. Let 〈C, c+, c−〉 be a constrained Boolean
circuit. The considered variations of BC are the following.

5The method introduced in [20] has been implemented, see [19].
6In the method introduced in [20] rules e.g. for xor and equivalence are additionally

provided.

4 A TABLEAU METHOD 13

v ∈ V
Tv Fv

(a) The explicit cut rule

v = not(v1)
Fv1

Tv

v = not(v1)
Tv1

Fv

v = not(v1)
Fv
Tv1

v = not(v1)
Tv
Fv1

(b) “Up” rules for not (c) “Down” rules for not

v = or(v1, . . . , vk)
Fv1, . . . ,Fvk

Fv

v = or(v1, . . . , vk)
Tvi, i ∈ {1, . . . , k}

Tv

v = or(v1, . . . , vk)
Fv

Fv1, . . . ,Fvk

(d) “Up” rules for or (e) “Down” rule for or

v = and(v1, . . . , vk)
Tv1, . . . ,Tvk

Tv

v = and(v1, . . . , vk)
Fvi, i ∈ {1, . . . , k}

Fv

v = and(v1, . . . , vk)
Tv

Tv1, . . . ,Tvk

(f) “Up” rules for and (g) “Down” rule for and

v = or(v1, . . . , vk)
Fv1, . . . ,Fvj−1,Fvj+1, . . .Fvk

Tv
Tvj

v = and(v1, . . . , vk)
Tv1, . . . ,Tvj−1,Tvj+1, . . .Tvk

Fv
Fvj

(h) “Last undetermined child” rules for or and and

Figure 4: Tableau method BC for Boolean circuits.

• BCi: Application of explicit cut is restricted to input gates (we call
such cuts input cuts).

• BCtd: Application of explicit cut is restricted to output gates and those
gates v for which there is a Tv′ or a Fv′ entry in the branch and
〈v, v′〉 ∈ E(C) (top-down cuts).

• BCbu: Application of explicit cut is restricted to input cuts and gates v
for which there is a Tv′ or a Fv′ entry in the branch and 〈v′, v〉 ∈ E(C)
(bottom-up cuts).

• BCi+td: Application of explicit cut is restricted to input and top-down
cuts.

• BCbu+td: Application of explicit cut is restricted to bottom-up and top-
down cuts.

14 4 A TABLEAU METHOD

1. v = and(e, f, g, h)
2. e = or(a, b)
3. f = or(b, c)
4. g = or(a, d)
5. h = or(c, d)
6. c = not(a)
7. d = not(b)
8. Tv
9. Te (1, 8)
10. Tf (1, 8)
11. Tg (1, 8)
12. Th (1, 8)

13. Ta (Cut)
15. Fc (6, 13)
16. Tb (3, 10, 15)
17. Fd (7, 16)
18. Fh (5, 15, 17)
19. × (12, 18)

14. Fa (Cut)
20. Tb (2, 9, 14)
21. Td (4, 11, 14)
22. Fd (7, 20)
23. × (21, 22)

Figure 5: A BC-refutation for C>(UNSATa,b).

4.3 Completeness and Soundness

Completeness and soundness [32] are two essential properties of proof sys-
tems. In the light of the proof systems considered in this work, by complete-
ness we mean that there is a closed tableau for any unsatisfiable circuit. This
is equivalent (by contraposition) to the fact that a complete open tableau for
a circuit implies that the circuit is satisfiable. By soundness we mean that
the existence of a closed tableau for a given circuit implies that the circuit is
unsatisfiable. We now give proofs of the fact that the BC method and all its
considered variations are complete and sound proof systems for constrained
Boolean circuits.

Theorem 4.1 The proof system that consists of the explicit cut rule restricted
to input gates and the “up” rules for not, or, and and is complete for con-
strained Boolean circuits.

Proof of Theorem 4.1. First we argue that, given any constrained circuit,
we can generate a finished tableau with the given rules. Generally, we can
apply the cut rule consecutively in every branch on each of the input gates.
By doing so we have exactly either the entry Tg or Fg for each input gate
g in every branch, and every branch is distinct. Thus in any branch we can
then deduce an entry for all gates every immediate child of which is an input
gate by applying the appropriate “up” rule. Proceeding recursively, we can
deduce an entry for every gate in every branch. After this, each branch is
obviously closed under the “up” rules. Notably, each branch is thus complete
as no new entries can be deduced with the rules (b)–(h).

4 A TABLEAU METHOD 15

Now we argue that given a finished tableau with an open branch, the cir-
cuit in the root of the tableau must be satisfiable. In any complete branch we
have an entry for each gate. If a complete branch is open, then it holds that
we have exactly one of the entries Tg and Fg in the branch for each gate g.
From the branch we construct a truth assignment τ for the circuit as follows.
For each gate g with the entry Tg (Fg) in the branch we assign τ(g) = true

(τ(g) = false). Now take an arbitrary equation v = f(v1, . . . , vk) in
the circuit. One of the “up” rules was applied to deduce an entry for v
from entries for v1, . . . , vk. Thus by the construction of τ the branch con-
tains entries for the truth values τ(v1), . . . , τ(vk), τ(v), and we have that
τ(v) = f(τ(v1), . . . , τ(vk)) must hold. Thus τ(v) = f(τ(v1), . . . , τ(vk))
must hold for any equation in the circuit, and hence τ must be a satisfying
assignment. Therefore the circuit is satisfiable. By contraposition, the given
proof system is complete. �

Furthermore, notice that with the top–down restricted cut rule we are able to
apply the cut rule to input gates in any circuit by first systematically applying
the cut rule on the gates in the circuit in a top–down fashion. As all the
considered variations of the BC method contain the “up” rules for not, or,
and and, we have the following corollary.

Corollary 4.1 BCi, BCtd, BCi+td, BCbu, BCbu+td, and BC are complete
proof systems for constrained Boolean circuits.

We now address the soundness of the BC method. Some definition are
needed in the proof of the following theorem. Let us call an entry Tg (Fg)
consistent under the truth assignment τ if τ(g) = true (τ(g) = false).
A branch B is consistent under τ if all entries of the type Tg and Fg are
consistent under τ and, furthermore, τ is consistent for the circuit in the root
of the tableau (i.e., τ(v) = f(τ(v1), . . . , τ(vk)) for each v = f(v1, . . . , vk)
in the circuit). Tableau T is consistent under τ if at least one branch in
T is consistent under τ . Particularly, we note that a closed tableau is not
consistent under any truth assignment.

Theorem 4.2 BC is a sound proof system for constrained Boolean circuits.

Proof of Theorem 4.2. We argue that if a tableau T ′ is an immediate
extension of the tableau T , then T ′ must be consistent under every truth
assignment under which T is consistent. Now if T is consistent under a truth
assignment τ , it must contain at least one branch B that is consistent under
τ . Tableau T ′ was obtained from T by appending one or more entries to the
leaf of some branch B ′ of T . If B′ is distinct from B, then B is still a branch
of T ′. As B is consistent under τ it must hold that T ′ is also consistent under
τ . On the other hand, assume that B ′ is identical to B, i.e., that B was the
branch that was extended in T to obtain T ′. There are the following cases to
consider.

• If B was extended by applying the explicit cut rule on the gate v, then
B was extended to two branches B1, B2. The branch B1 is B extended

16 4 A TABLEAU METHOD

with Tv and B2 is B extended with Fv. For any consistent truth assign-
ment τ it must hold that either Tv or Fv is consistent under τ . Thus if
B is consistent under τ , then either B1 or B2 is also consistent under
τ .

• If B was extended by applying one of the “up” rules for not on v =
not(v1), then there are two cases to consider.

(i) If B was extended with Tv to obtain B1, we must have Fv1 in B.
But as B is consistent under τ , v is restricted to have the opposite
truth value to v1 under τ , and thus B1 must also be consistent
under τ .

(ii) If B was extended with Fv to obtain B1, we must have Tv1 in B.
But as B is consistent under τ , v is restricted to have the opposite
truth value to v1 under τ , and thus B1 must also be consistent
under τ .

• If B was extended by applying one of the “down” rules for not, the
situation is similar to the one in which we have applied one of the “up”
rules for not; the reader is invited to confirm these.

• If B was extended by applying one of the “up” rules for or on v =
or(v1, . . . vk), then there are two cases to consider.

(i) If B was extended with Fv to obtain B1, we must have Fvi for
every 1 ≤ i ≤ k in B. But as B is consistent under τ , v is
restricted to be true if at least one of the vi’s is true under τ , and
thus B1 must also be consistent under τ ;

(ii) If B was extended with Tv to obtain B1, we must have Tvi for
some 1 ≤ i ≤ k in B. But as B is consistent under τ , v is
restricted to be true if at least one of the vi’s is true under τ , and
thus B1 must also be consistent under τ .

The reader is invited to confirm that the situation is similar for the “up”
rules for and.

• If B was extended by applying the “down” rule for or on a gate v =
or(v1, . . . , vk), then B was extended with Fvi for each 1 ≤ i ≤ k to
obtain B1, and we must have Fv in B. But as B is consistent under τ ,
all the vi’s are restricted to false if v is false under τ , and thus B1

must also be consistent under τ .

Similarly for the “down” rule for and; the reader is invited to confirm
this.

• If B was extended by applying the “last undetermined child” rule for
or on v = or(v1, . . . , vk), then B was extended with Tvk to obtain B1,
and we must have Tv and Fvi for each 1 ≤ i < k in B. But as B is
consistent under τ , v is restricted to true if at least one of the vi’s is
true under τ , and thus B1 must also be consistent under τ .

Again, the reader is invited to confirm that the situation is similar for
the “last undetermined child” rule for and.

4 A TABLEAU METHOD 17

This shows that any immediate extension of a given tableau consistent under
a given truth assignment is also consistent under the given truth assignment.
Thus inductively we have that for any tableau T , if the root of the tableau –
including the constraint entries – is consistent under a given truth assignment
τ , then T is also consistent under τ . For any closed tableau T we must have
that T is not consistent under any truth assignment τ , and hence the root of
T is not consistent under τ . Thus τ cannot be a satisfying truth assignment
for the constrained Boolean circuit in the root of the tableau. Therefore the
BC method is sound. �

Directly by the restricted nature of the considered variations of the BC method
we have the following corollary.

Corollary 4.2 BCbu+td, BCbu, BCi+td, BCi, and BCtd are sound proof
systems for constrained Boolean circuits.

4.4 Relations Between Variations of BC

For analysing the complexity of BC-refutations we need the notion of the
size of a BC-refutation. We define it as follows.

Definition 4.1 The size of a BC-refutation is the number of nodes in the
closed tableau.

Example 4.2 The size of the BC-refutation shown in Figure 5 is 14.

The concepts of refutation and the size of a refutation in the restricted varia-
tions of BC are the same as for BC.

An obvious ordering of BC and its restricted variations based on the p-
simulation relation, resulting from the restricted nature of the variations, is
shown in Figure 6.

BCbu

� �
BC � BCbu+td BCi

� �
BCi+td

�
BCtd

Figure 6: An obvious ordering of BC and its variations based on the p-
simulation relation.

It turns out that all the considered variations of the BC method are equiv-
alent under the p–simulation relation under the set of canonical Boolean
circuit representations of all sets of clauses. For the following, let Φ be the
family of all sets of clauses, and C>(Φ) = {C>(ϕ) | ϕ ∈ Φ}.

Theorem 4.3 BC ≡C>(Φ) BCi.

18 4 A TABLEAU METHOD

Proof of Theorem 4.3. First notice that for any set of clauses ϕ, using the
“down” rule for and we can deduce Tg for all or gates g in C>(ϕ). Thus
we can assume that there is a minimal–size refutation for C>(ϕ) in which
the and rule is applied to deduce the entries concerning the or gates that are
needed to achieve the closed tableau.

As we have the entry Tv for the output gate v in the branch, it makes
no sense to apply the cut rule on v. Otherwise, we would generate in one
branch Fv, thus closing the branch, and in the other Tv, which we already
had in the branch. The same reasoning applies for the or gates.

Now consider applying the cut rule on a not gate g = not(g ′). In the
branch with Tg (Fg) we can directly deduce Fg ′ (Tg′). Thus this is equiv-
alent to having applied the cut rule on g′ and then deducing an entry for g.
Thus we can limit the application of the cut rule to input gates. This shows
BCi �C>(Φ) BC. BC �C>(Φ) BCi holds trivially. �

By further noticing that for any circuit in the family C>(Φ) input cuts can be
p–simulated with top–down cuts by first applying the “down” rules for and

on the output gate and then applying the cut rule on the input gate (after
possible applying the “down” rule for not in between), we have the following
corollary.

Corollary 4.3 BC ≡C>(Φ) X for all X ∈ {BCi,BCtd,BCi+td,BCbu}.

4.5 Resolution–Boundedness

To compare the proof complexity of resolution and tableau methods for
Boolean circuits, we use the notion of resolution–boundedness, which is de-
fined as follows.

Definition 4.2 (Resolution–boundedness) A tableau method T for constrain-
ed Boolean circuits is resolution–bounded if there is a polynomial p(n) such
that, for any set of clauses ϕ, if there is a T -refutation for C>(ϕ) of size n,
then there is a resolution refutation for ϕ of size p(n).

We now show that the BC method is resolution–bounded.

Theorem 4.4 BC is resolution–bounded.

Proof of Theorem 4.4. Let ϕ be an unsatisfiable set of clauses. Following
the lines of the proof of Theorem 4.3, we assume to have a Tg entry for each
or gate g in C>(ϕ) in all branches in any BC–refutation for C>(ϕ), and that
the cut rule is applied on input gates only.

From the BC–refutation we form a cut tree. A cut tree is a binary tree in
which the edges from a particular parent to its children are labelled with Tg
and Fg, where g is some input gate, i.e., there are entries for input gates only.
A cut tree is formed by examining the refutation tableau top–down starting
with single node in the tree.

• If the cut rule has next been applied on an input gate g in the tableau,
then we insert children to the current node in the tree, labelling the

4 A TABLEAU METHOD 19

edges to the children with Tg and Fg, respectively. The effect of the
cut rule is hence copied as such into the cut tree, and the branch with
Tg (Fg) in the cut tree will correspond to the branch in the tableau
with Tg (Fg).

• If the Tg (Fg) entry has been deduced by applying the “last undeter-
mined child” rule for or, then there are two possibilities.

– If the entry is for an input gate, then we insert children to the
current node in the tree, labelling the edges to the children with
Tg and Fg, respectively. The child node into which the edge
labelled with Tg (Fg) points to will correspond to the current
branch in the tableau, while the other child node will be a leaf
node in the cut tree.

– If the entry is for a not gate g = not(g′), then we insert children
to the current node in the tree, labelling the edges to the chil-
dren with Fg′ and Tg′, respectively. The child node into which
the edge labelled with Fg′ (Tg′) points to will correspond to the
current branch in the tableau, while the other child node will be
a leaf node in the cut tree.

• All other entries in the tableau are disregarded forming the cut tree.

As an example, a cut tree corresponding to the BC–refutation in Figure
5 is shown in Figure 7.

•
Ta

����
��

��
��

Fa

��
::

::
::

::

•
Fb

����
��

��
��

Tb

��

•

Tb

��

Fb

��
::

::
::

::

• • •

Tb
����

��
��

��
Fb

��
::

::
::

::
•

• •

Figure 7: A cut tree corresponding to the BC-refutation shown in Figure 5.

The idea is that each application of the rules (b)–(h), in which a partic-
ular entry E on a gate g has been deduced, can be seen as a sequence of
first applying the cut rule on g, and then closing the branch with the com-
plementary entry of E by deducing E. This can be done because if we can
deduce Tg (Fg), then Fg (Tg) will lead to contradiction.

For the following, let xg denote the variable corresponding to the input
gate g so that Tg (Fg) corresponds to xg (¬xg). Notice that applying the
rules for not in BC correspond simply to negating the corresponding literal
in ϕ. We can thus directly read the clause xv1

∨· · ·∨xvm
∨¬xv′

1
∨· · ·∨¬xv′n

that corresponds to v from each equation v = or(v1, . . . , vm, v1, . . . , vn) in
C>(ϕ), where each vi, 1 ≤ i ≤ m, is an input gate and each vi, 1 ≤ i ≤ n,
is a not gate of the form vi = not(v′

i).

20 4 A TABLEAU METHOD

From a cut tree we can generate a corresponding resolution tree refuta-
tion in a straightforward manner. We know that each branch in the BC–
refutation is contradictory. Thus we must have labels on the edges in each
branch of the cut tree that falsify some or gate v = or(v1, . . . , vk), i.e., assign-
ing the truth values corresponding to these entries to v = or(v1, . . . , vk) does
not satisfy the equation having the entry Tv in the branch. Now we associate
the clause corresponding to a falsified or gate in each branch with the leaf of
the branch.

Resolution steps are taken as follows. Starting bottom–up from the leaf
nodes, we examine which input gate g appears in the labels on the edges
going to the parent node.

• If the variable xg appears in both of the clauses associated with the
clauses associated with the two leaf nodes, then we apply the resolution
rule on these clauses resolving on xg. The resolvent is then associated
with the parent node.

• If xg does not appear in both of the clauses associated with the two leaf
nodes, then we associate with the parent node the clause in which xg

does not appear. If xg does not appear in either one of the clauses, then
the clause is selected arbitrarily among the two.

The process above is then repeated in a bottom–up fashion to all the nodes
in the tree.

On each resolution step, xg, the variable corresponding to the gate that
appears in the labels on the edges going to the parent, does not appear in the
resolvent. Thus the resolvent associated with the root of the cut tree will be
empty. As an example, the resolution tree refutation corresponding to the
cut tree in Figure 7, and thus to the BC–refutation in Figure 5, is shown in
Figure 1.

For each entry in the original BC–refutation T we make at most one res-
olution step. Thus the resulting resolution tree refutation for ϕ is, in the
worst–case, of linear size w.r.t. the size of T . �

Again, by the restricted nature of the variants of the BC method, we have the
following corollary.

Corollary 4.4 BCi, BCtd, BCi+td, BCbu, and BCbu+td are resolution–
bounded.

4 A TABLEAU METHOD 21

5 CIRCUIT GADGETS

Preliminaries for the main results of the work are presented, i.e., certain cir-
cuit constructs are introduced.

5.1 Pigeon-Hole Principle and the PHPn+1
n Gadget

An example of a propositional formula with high proof complexity in many
proof systems is the pigeon-hole principle PHPm

n [18]. The pigeon-hole prin-
ciple states that there is no injective mapping from a finite m-element set into
a finite n-element set if m > n (that is, m pigeons cannot sit in less than m
holes so that every pigeon has its own hole). In the following we consider the
case m = n + 1.

Definition 5.1 (PHPn+1
n)

PHPn+1
n

def
=

⋃

1≤i≤n+1

{Pi} ∪
⋃

1≤i6=i′≤n+1,
1≤j≤n

{Hj
i,i′},

where the clauses Pi and Hj

i,i′ are defined as

Pi
def
=

∨n

j=1 xi,j and

Hj

i,i′
def
= ¬xi,j ∨ ¬xi′,j,

and each xi,j is a Boolean variable with the following interpretation:

xi,j = true if and only if the ith pigeon sits in the jth hole.

The Pi clauses state that each pigeon has to sit in some hole, while clauses
Hj

i,i′ state that no two pigeons can sit in the same hole. The union of all the

clauses Pi and Hj

i,i′ is obviously (by the pigeon-hole principle) unsatisfiable.
In this encoding the number of connectives is polynomially bounded w.r.t.
the number of Boolean variables.

The canonical Boolean circuit representation of PHPn+1
n is graphically

represented as shown in Figure 8(a). In Figure 8(b) a part of the circuit is
shown in detail. We call C(PHPn+1

n) the PHPn+1
n gadget. Notice that as

PHPn+1
n is unsatisfiable, so is C>(PHPn+1

n).
Formally the PHPn+1

n gadget is the set of equations

C(PHPn+1
n) = {v = and(p1, . . . , pn+1, h

1
1,2, . . . , h

n
n+1,n)}

∪ {pi = or(xi,1, . . . , xi,n) | 1 ≤ i ≤ n + 1}

∪ {hj

i,i′ = or(li,j, li′,j) | 1 ≤ i 6= i′ ≤ n + 1, 1 ≤ j ≤ n}

∪ {li,j = not(xi,j) | 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n},

where h1
1,2, . . . , h

n
n+1,n stands for all hj

i,i′ , where 1 ≤ i 6= i′ ≤ n + 1 and
1 ≤ j ≤ n.

For resolution the following theorem was first proven by Haken in 1985
[16].

22 5 CIRCUIT GADGETS

x n+1,n

v

x1,1

and

PHP

(a)

and

or or

xi,jxi’,j

i’,jl

i,i’
j

i

notnot

ph

i,jl

v

(b)

Figure 8: (a) The PHPn+1
n gadget graphically, (b) a part of the PHPn+1

n gadget
in detail.

Theorem 5.1 The proof complexity of PHPn+1
n is exponential w.r.t. n for

resolution.

As BC and the variations we consider are resolution–bounded by Theorem
4.4 and Corollary 4.4, we have the following corollary.

Corollary 5.1 The proof complexity of C>(PHPn+1
n) is exponential w.r.t. n

for BCi, BCtd, BCi+td, BCbu, BCbu+td, and BC.

5.2 The TD Gadget

The structure of the TDn gadget is shown in Figure 9(a). In the following we
present the TDn gadget graphically as shown in Figure 9(b). Formally the
TDn gadget is the set of equations

TDn = {v = or(v1, w1)}

∪ {vi = and(xi, zi) | 1 ≤ i ≤ n}

∪ {wi = and(yi, zi) | 1 ≤ i ≤ n}

∪ {zi = or(vi+1, wi+1) | 1 ≤ i ≤ n}.

The following lemma on the TDn gadget will be useful in the proofs of
our main results.

Lemma 5.1 It is impossible to generate a polynomial size tableau with re-
spect to n for TDn with gate v constrained to true in BCtd in which there is
an entry for the gate zn in every branch of the tableau.

Proof of Lemma 5.1. The entry Tv implies Tv1 or Tw1, but we cannot
deduce one or the other. Thus we must apply the cut rule on either v1 or
w1 in BCtd. Assume that we cut on v1 (cutting on w1 is symmetric). Now
consider the branch in which we have Fv1. Due to v = or(v1, w1) we must

5 CIRCUIT GADGETS 23

or

and and

orxn

x1
z 1 y1

xn

vn wn

vn+1

and and

or

 1

yn

n

v

v1 w1

z n

wn+1

T

T

(a)

v

v

TD

or

n+1 wn+1
(b)

Figure 9: (a) The structure of the TDn gadget, (b) the TDn gadget graphi-
cally.

have Tw1. Then from w1 = and(y1, z1) we deduce Ty1 and Tz1 in the
branch. In the branch where we have Tv1 using the “down” rule for and

we deduce Tx1 and Tz1. Nothing else can be deduced. Inductively on i,
in order to have an entry for the gate zi in every branch of the tableau, the
tableau must contain at least 2i branches, all of which remain open. This
is because we must for each i apply the cut rule on either vi or wi. This is
demonstrated in Figure 10. �

Tv
Tv1 (Cut)

Tz1

Tv2 (Cut)
Tz2

...

Fv2 (Cut)
Tw2

Tz2
...

Fv1 (Cut)
Tw1

Tz1

Tv2 (Cut)
Tz2

...

Fv2 (Cut)
Tw2

Tz2
...

Figure 10: Why BCtd-refutations corcerning the TDn gadget are large.

5.3 The UNSAT Gadget

Recall the set of clauses UNSATa,b that appeared in Example 2.1. The
structure of C(UNSATa,b) is shown in Figure 2. Graphically we present

24 5 CIRCUIT GADGETS

C(UNSATa,b) as shown in Figure 11. We call C(UNSATa,b) the UNSATa,b

gadget. The formal definition of C(UNSATa,b) appears in Example 2.1.

v and

UNSAT

a b

Figure 11: The UNSATa,b gadget graphically.

5.4 The XOR Gadget

The Boolean xor function

xor(x, y) = (x ∧ ¬y) ∨ (¬x ∧ y)

evaluates to true if and only if exactly one of x, y is true. Based on the
xor function we can construct a Boolean circuit, as shown in Figure 12, for
which it holds that the output gate a evaluates to true if and only if xor(x, y)
evaluates to true. When we use this circuit construct as a part of a circuit,
we represent it graphically as an “xor gate” ⊕.

or

andand

not not

a

yx

cb

d e

Figure 12: The Boolean function xor as a Boolean circuit.

Notice that we can deduce an entry for any one of a, x, y if we have entries
for the other two in the branch. Furthermore, if we do not have entries for
any of b, c, d, e, we can not deduce an entry for any one of a, x, y if we do not
have entries for the other two in the branch. If we apply the cut rule on x, we
can deduce exactly the entries Fc, Td in the branch with Fx, and Fd, Fb in
the branch with Tx. Especially, with bottom–up cuts we can then apply the
cut in both of these branches on gate a. For gate y the situation is symmetric.
Moreover, applying the cut rule on both x and y is equivalent to applying
bottom–up cut on x and then on c in both branches, in the sense that we can
then deduce an entry in all of these branches for a. Again, the situation for
y, applying the cut then on b, is symmetric. This means that with bottom–up
cuts we can forget about the inner structure of the circuit, always applying
the cut rule on gates x, y only.

5 CIRCUIT GADGETS 25

With top–down cuts, by applying the cut rule on gate a we can then de-
duce exactly the entries Fb, Fc in the branch with Fa. If we then apply the
cut rule on x or y in both branches, we can deduce entries for the rest of the
gates in all of these branches. On the other hand, in the branch with Ta we
can deduce nothing. If we then apply the cut rule on b or c in both branches,
we can deduce entries for the rest of the gates in all of the branches. In this
case, in the following we will say that we apply the cut on x or y when ac-
tually we simulate this by applying the cut rule on b or c after which entries
for x an y can be deduced. This lets us forget about the inner structure of ⊕,
although it exists.

Using the “xor gate” we construct a circuit as shown in Figure 13(a). This
construct, the XORn gadget, has n layers Xi, 1 ≤ i ≤ n, of xor gates, as
shown in the figure. In the following, we present the XORn gadget as shown
in Figure 13(b).

+

a2,1

a1,1
X1

X2

+

an,n+1 an,3 an,2 an,1

+

++

a12

a2,2

Xn

a0,1

+a2,3

(a)

an,1an,n+1

XOR

+
a0,1

(b)

Figure 13: (a) The structure of the XORn gadget, (b) the XORn gadget graph-
ically.

Formally, the XORn gadget is the set of equations

XORn = {ai,j = or(bi,j, ci,j) | 0 ≤ i < n, 1 ≤ j ≤ i + 1}

∪ {bi,j = and(di,j, ai+1,j) | 0 ≤ i < n, 1 ≤ j ≤ i + 1}

∪ {ci,j = and(ei,j, ai+1,i+2) | 0 ≤ i < n}

∪ {di,j = not(ai+1,i+2) | 0 ≤ i < n}

∪ {ei,j = not(ai+1,j) | 0 ≤ i < n, 1 ≤ j ≤ i + 1}

The number of gates in the gadget is polynomial with respect to n, namely
Θ(n2).7

7For a given n, we have 5 ·
∑

n+1
i=1 i = 5(n+1)(n+2)

2 gates, giving Θ(n2).

26 5 CIRCUIT GADGETS

The following two lemmas on the XORn gadget will be useful in the proofs
of our main results.

Lemma 5.2 It is impossible to generate a polynomial size tableau with re-
spect to n for XORn in BCbu in which there is an entry for the output gate
a0,1 in every branch of the tableau.

Proof of Lemma 5.2. After applying the cut rule on a single an,j we cannot
yet deduce entries for any other ai,j′ . Thus we can only either apply the cut
rule

(a) on one of the other gates on level n, or

(a) on any of the gates on level n− 1 that is the parent of an,j on which we
applied the cut rule.

Consider case (a). Assume that we first applied the cut rule on some an,j,
where 1 ≤ j ≤ n. If we then apply the cut rule on an,n+1, we can deduce
an entry for an−1,j, but not for any other ai,j′. If we first applied the cut rule
on an,n+1, we then apply the cut rule on some an,j, and can similarly deduce
an entry only for an−1,j . Either way, in case (i) we can deduce exactly one
entry for a single gate on level n − 1, and have a similar situation on level
n − 1 to the one we were in on level n before applying the second cut. Most
noticeably, no branch closes. Inductively, “climbing up” the circuit bottom–
up from level n to level 1 we thus end up with a tableau with exponential
number of entries w.r.t. n.

For case (b), by applying the cut rule on a particular parent an−1,i of an,j,
we can deduce an entry for the other child of an−1,i, say an,k , but not for any
other ai′,j′ . It must hold that either k = n + 1 or j = n + 1. By applying the
cut rule on any other an,l, we can deduce an−1,l, but not for any other ai′,j′,
and are in a similar situation on level n − 1 to that we described in case (a)
on level n. Moreover, we have to apply the cut rule on all gates on level n
before we can deduce entries for all gates on level n − 1.

Combining the ideas from cases (a) and (b), we notice that having entries
for ai,j and ai,j′ , the only other gates ai′,j′′ for which we can at most deduce
entries are (i) ai−1,j (if j ′ = i + 1), and, given that we have also an entry for
ai+1,i+2, (ii) ai+1,j and ai+1,j′.

We will thus in any case have to apply the cut rule a number of times
linear to n and end up with a tableau with exponential number of entries
w.r.t. n before reaching level 1. �

Lemma 5.3 Given that the output gate a0,1 of XORn is constrained to true,
it is impossible to generate a polynomial size tableau with respect to n for
XORn in BCtd in which there is an entry for some gate an,i, 1 ≤ i ≤ n + 1
in every branch of the tableau.

Proof of Lemma 5.3. By Ta0,1 we may apply the cut rule on either a1,1

or a1,2. If we apply the cut rule on a1,1, in the branch with Ta1,1 we can
deduce Fa1,2, and in the branch with Fa1,1 we can deduce Ta1,2, but no
entries for any other ai,l. By a symmetric argument, we can deduce Ta1,1 in

5 CIRCUIT GADGETS 27

one branch and Fa1,1 in the other if we apply the cut rule on a1,2. In both
cases, we double the number of open branches. Now we may apply the cut
rule to any of the gates on level 2 of the XOR gadget. By a similar argument,
after applying the cut rule on one of the three gates, we can deduce an entry
for the other two gates in each branch. Still, none of the branches close.
Inductively, on level i we always double the number of open branches. �

28 5 CIRCUIT GADGETS

6 MAIN RESULTS

The main results of the work are presented. Negative polynomial simulation
results are shown to hold for each pair of the considered variations of the BC

method. A road map to the results presented in the first part of this chapter
is shown below. Furthermore, the relevance of the results is discussed in the
light of the Davis–Putnam method.

BCbu
6.5

�
6.1�

BC
6.6
� BCbu+td BCi

6.4�
6.2

�
BCi+td

6.3�
BCtd

6.1 BCbu vs BCi

We now show that BCi cannot p–simulate BCbu. The proof utilises the
UNSAT and PHPn+1

n gadgets and the resolution–boundedness of the varia-
tions of the BC method.

Theorem 6.1 BCbu � BCi.

Proof of Theorem 6.1. Consider the family of circuits of the type shown in
Figure 14 with the constraint that the output gate v is true. Any circuit in
the family is obviously unsatisfiable.

n+1PHPn
n+1PHPn

v

and and

UNSATa,b
ba

and

Figure 14: Circuit for Theorems 6.1 and 6.2.

For an arbitrary n, for BCbu we can construct a constant size refutation
as follows. First, deduce Te, Tf , Tg, Th from Tv. Then apply (say, in the
PHPn+1

n gadget on the left) the cut rule first on one of the input gates xi,j ,
and deduce an entry for li,j. After this, apply the cut rule on hj

i,i′ in both of
the induced branches. Now we have induced four branches in total, having
in each branch a constant number of entries, and can apply the cut rule on
a in each branch. After having an entry on a, each branch can be closed in a
constant number of steps similarly to the refutation shown in Figure 5. The
generated closed tableau will by the above be of constant size.

6 MAIN RESULTS 29

Notice that to generate a refutation we need to reach the UNSAT gadget,
i.e., it is impossible to generate a contradiction in all the branches of a tableau
without having an entry for some of the gates in the UNSAT gadget in the
tableau.

Now consider BCi. From Tv we can deduce Te, Tf , Tg, and Th, but
nothing else. As PHPn+1

n is unsatisfiable, it is impossible to deduce Ta or
Tb with “up” rules as a and b are and gates. Thus we can only have Fa and
Fb entries in any branch. Now assume that there is a BCi-refutation of poly-
nomial size w.r.t. n for this circuit. A closed tableau can only be achieved
after deducing an entry for gate a or gate b, as we have no constraints on the
PHPn+1

n parts of the circuit. Thus we must have either Fa or Fb in every
branch. But if we have Fa or Fb in every branch, then we could construct a
BCi-refutation of polynomial size w.r.t. n for C>(PHPn+1

n). This is in con-
tradiction with Corollary 5.1. Thus all BCi-refutations will be of exponential
size w.r.t. n. �

6.2 BCi+td vs BCi

We now proceed to show that BCi cannot p–simulate BCi+td. In the proof,
we re-use the ideas used in the proof of Theorem 6.1.

Theorem 6.2 BCi+td � BCi.

Proof of Theorem 6.2. Consider again the family of circuits of the type
shown in Figure 14 with the constraint that the output gate v is true. We
have that any circuit in the family is unsatisfiable.

For BCi+td we can construct a constant size refutation by first deducing
Te, then applying the cut rule on gate a, and then closing each branch sim-
ilarly to the refutation shown in Figure 5. For BCi, all BCi-refutations will
be of exponential size w.r.t. n as argued in the proof of Theorem 6.1. �

6.3 BCi+td vs BCtd

Next we show that BCtd cannot p–simulate BCi+td. The proof of the follow-
ing theorem is based on a circuit constructed from two UNSAT gadgets and
a TDn gadget.

Theorem 6.3 BCi+td � BCtd.

Proof of Theorem 6.3. Consider the family of circuits of the type shown in
Figure 15 with the constraint that the output gate v is true.

Any circuit in this family is obviously unsatisfiable. For BCi+td we can
construct a refutation of linear size w.r.t. n as follows. First apply consec-
utively the cut rule on gates a1, b1, a2, b2 in each branch. This induces 16
branches, a constant number. We then have an entry for each of a1, b1, a2, b2

in every branch. Now we can deduce an entry for vn+1 and wn+1 in each
branch. As C>(UNSATa,b) is unsatisfiable, we can only deduce Fvn+1 and
Fwn+1. This can clearly be done in a constant number of steps. From the
entries Fvn+1, Fwn+1 we can then deduce Fzn, and then Fvn, Fwn. Pro-
ceeding recursively, we can thus deduce Fv in every branch with a linear
number of steps w.r.t. n.

30 6 MAIN RESULTS

a ,b2 2a ,b

v

and and w

UNSAT
1 1

UNSAT

TDn

n+1vn+1

or

Figure 15: Circuit for Theorem 6.3.

Notice that to generate a refutation we need to reach the UNSAT gadgets,
as in the proof of Theorem 6.1. But by Lemma 5.1, before reaching the gate
zn from top–down, we already must have generated a tableau with exponen-
tially many entries w.r.t. n. Every BCtd-refutation is thus of exponential size
w.r.t. n for this family of circuits. �

6.4 BCbu+td vs BCi+td

In this subsection we show that BCi+td cannot p–simulate BCbu+td. Using
the ideas in the proof of Theorem 6.1, we construct a circuit from three
circuits similar to the one used in the proofs of Theorems 6.1 and 6.2, an
XORn gadget, and an expander sub-circuit that connects the former four.
The expander circuit is an example of a simple nontrivial circuit in which
deduction can be propagated through the circuit in a straightforward fashion.
It is applied here so that trivial simplification of the circuit is not possible.
Lemma 5.3 is also applied.

Theorem 6.4 BCbu+td � BCi+td.

Proof of Theorem 6.4. Consider the family of circuits of the type shown in
Figure 16 with the constraint that the output gate v is true.

Any circuit in the family is unsatisfiable. For BCbu+td we can construct
a refutation of polynomial size w.r.t. n as follows. First apply the bottom–up
strategy introduced in the proof of Theorem 6.1 to generate entries for the
and gates a1, a2, a3, b1, b2, b3 in every branch. As in the proof of Theorem 6.1,
this can be done having a constant number of entries in the tableau. Then
it is straightforward to deduce entries for v1, v2, v3 in each branch. Further-
more, as C>(UNSATa,b) is unsatisfiable, we must then have Fv1,Fv2,Fv3

in every branch. Now in an arbitrary branch, it is straightforward to deduce
the entries Fan,j for all 1 ≤ j ≤ n + 1, generating only a number of entries
in the order of n2. Continuing on, generating only a number of entries in
the order of n2, deducing recursively Fai−1,j from Fai,j and Fai,i+1 we can
at last deduce Fv. As we have in total a constant number of branches and
in each branch a polynomial number of entries w.r.t. n, we clearly have a
BCbu+td-refutation of polynomial size w.r.t. n.

Again, to generate a refutation we need to reach the UNSAT gadgets.
With input cuts, this results in a refutation of exponential size w.r.t. n, as
argued in the proof of Theorem 6.1. By Lemma 5.3, any top-down approach
will also result in a refutation of exponential size w.r.t. n. �

6 MAIN RESULTS 31

an,n+1
an,1

+
XOR

n

and

PHP

and

PHP

and

PHP

and

PHP

and

PHP

and

PHP

v2v1 v3

a1 a2 a3b1 b2 b3

or or or or

or or andor

or andor

and

and

and

and

and and and

v

UNSAT UNSAT UNSAT

Figure 16: Circuit for Theorem 6.4.

6.5 BCbu+td vs BCbu

Next we show that BCbu cannot p–simulate BCbu+td. In addition to ideas
in used in the proof of Theorem 6.2, we use a circuit constructed from a pair
of XORn gadgets and an UNSAT gadget. We also apply Lemma 5.2.

Theorem 6.5 BCbu+td � BCbu.

Proof of Theorem 6.5. Consider the family of circuits of the type shown in
Figure 17 with the constraint that the output gate v is true. As C>(UNSATa,b)
is unsatisfiable, any circuit in this family is also unsatisfiable.

andv

UNSATa,b

+ + ba

n nXOR XOR

Figure 17: Circuit for Theorem 6.5.

As already described in the proof of Theorem 6.2, for BCbu+td we can
construct a constant size refutation top–down by first deducing Te, then

32 6 MAIN RESULTS

applying the cut rule on gate a, and closing each branch similarly to the
refutation shown in Figure 5.

It is impossible to generate a refutation without reaching the UNSAT gad-
gets, as in the previous proofs in which we had an UNSAT gadget as a part
of the circuit. By Lemma 5.2, in order to reach the UNSAT gadget, we must
generate a tableau with exponential number of branches w.r.t. n. Thus any
BCbu-refutation for any circuit in this family must be of exponential size
w.r.t. n. �

6.6 BC vs BCbu+td

Now we proceed by showing that BCbu+td cannot p–simulate BC. The
proof uses n + 1 UNSAT gadgets and 2n + 3 XORn gadgets, and applies
Lemmas 5.2 and 5.3.

Theorem 6.6 BC � BCbu+td.

Proof of Theorem 6.6. Consider the family of circuits of the type shown in
Figure 18 with the constraint that the output gate v is true.

and

+

bn+1 a1 b1++n+1a
UNSAT

1a 1b

XOR n XOR n

and

XORn

v

an,1an,n+1

+
UNSAT ba n+1n+1

XORn

+
XORn

Figure 18: Circuit for Theorem 6.6.

For BC we can construct a refutation of polynomial size w.r.t. n as follows.
First apply the cut rule on an,1. In the branch in which we have Tan,1, apply
the cut rule on a1. Similarly to the refutation in Figure 5, we can close both
the branch in which we have Ta1 and the one in which we have Fa1. In
the branch in which we have Fan,1, recursively on i, cut first on an,i and
then in the branch in which we have Tan,i, cut on ai and again close both
of the induced branches. This idea is shown in Figure 19. As the refutation
in Figure 5 is of constant size, we end up with a tableau of polynomial size
w.r.t. n in which there is a single open branch with the entries Fan,i for all
1 ≤ i ≤ n + 1.
After this, generating only number of entries in the order of n2, deducing
recursively Fai−1,j from Fai,j and Fai,i+1 we can at last deduce Fv, thus
generating a BC-refutation of polynomial size w.r.t. n.

6 MAIN RESULTS 33

•
Tan,1

tthhhhhhhhhhhhhhhhhhhhhh

Fan,1

��

UNSATa1,b1 •
Tan,2

tthhhhhhhhhhhhhhhhhhhhhh

Fan,2

��

UNSATa2,b2 •

��

•
Tan,n+1

tthhhhhhhhhhhhhhhhhhhhhh

Fan,n+1

��

UNSATan+1,bn+1 {Fan−1,j | 1 ≤ j ≤ n}

��

{Fan−2,j | 1 ≤ j ≤ n − 1}

��

{Fa1,1,Fa1,2}

��

Fv

Figure 19: How to generate a polynomial size BC-refutation for the circuit
shown in Figure 18.

Again, to generate a refutation we need to reach the UNSAT gadgets. By
Lemma 5.2, any bottom–up approach will result in a refutation of exponen-
tial size w.r.t. n. By Lemma 5.3, this applies also for any top–down approach.
Thus any BCbu+td-refutation will be of exponential size w.r.t. n for any cir-
cuit in this family. �

6.7 BCi vs BCtd

We now turn to show that BCi and BCtd are incomparable under the p–
simulation relation. The proof draws heavily on the proofs of Theorems 6.1
and 6.3.

Theorem 6.7 BCi 6≡ BCtd.

Proof of Theorem 6.7. Consider again the family of circuits shown in
Figure 14. In the proof of Theorem 6.1 it is shown that all BCi-refutations
for any circuit in this family are of exponential size w.r.t. n. For an idea of
how to generate a BCtd-refutation of constant size we again refer the reader
to the refutation shown in Figure 5.

On the other hand, consider the family of circuits shown in Figure 15. It
is shown in the proof of Theorem 6.3 that all BCtd-refutations for any circuit
in this family are of exponential size w.r.t. n, while in the same proof it is
described how to construct a linear size refutation for an arbitrary circuit in
the family applying the cut rule only on input gates. �

34 6 MAIN RESULTS

6.8 BCbu vs BCtd

Using ideas from the proofs of Theorems 6.5 and 6.7, in this subsection we
show that BCbu and BCtd are incomparable under the p–simulation rela-
tion.

Theorem 6.8 BCbu 6≡ BCtd.

Proof of Theorem 6.8. As explained in the proof of Theorem 6.7, for an
arbitrary circuit in the family of circuits shown in Figure 15, there is a refuta-
tion of linear size w.r.t. n in which the cut rule is applied only on input gates
of the circuit, while all BCtd-refutations for the circuit are of exponential
size w.r.t. n.

In the proof of Theorem 6.5 the family of circuits shown in Figure 17 is
introduced. For this family it holds that applying the cut rule in a top–down
fashion there is a refutation of constant size for an arbitrary circuit in the
family, while by applying the cut rule in bottom–up fashion only will always
result in a exponential size refutation w.r.t. n. �

6.9 BCbu vs BCi+td

As the last one of the main theorems of this work, we argue that BCbu and
BCi+td are incomparable under the p–simulation relation.

Theorem 6.9 BCbu 6≡ BCi+td.

Proof of Theorem 6.9. It is shown in the proof of Theorem 6.5 that every
BCbu-refutation for an arbitrary member of the family of circuits shown in
Figure 17 is of exponential size w.r.t. n. For BCi+td we can construct a
constant size refutation for these circuits similarly to the refutation described
in the proof of Theorem 6.2.

On the other hand, now consider the family of circuits shown in Figure 20
with the constraint that the output gate v is true. Notice that such a circuit
consists of a TDn gadget from the input gates of which hang two sub-circuits
equivalent to the circuit in Figure 14. Combining Lemma 5.1 and the rea-
soning presented in the proof of Theorem 6.1, we have that every BCi+td-
refutation for an arbitrary circuit in this family is of exponential size w.r.t. n,
as it is impossible to reach the UNSAT gadgets both top–down and bottom–
up without generating an exponential number of entries in the tableau.

For BCbu, we can generate a refutation of linear size w.r.t. n as follows.
It is discussed in the proof of Theorem 6.1 how one can apply the cut on
gate a in the circuit in Figure 14. What we can do here is to cut through
the PHPn+1

n circuits similarly as in the proof of Theorem 6.1. Then we can
apply the cut rule on each gate a1, b1, a2, b2 in each branch. After this, it is
straightforward to deduce an entry for gates vn+1 and wn+1 in every branch.
Due to the unsatisfiability of C>(UNSATa,b), with this bottom–up approach
it is only possible to deduce Fvn+1,Fwn+1. At this point we note that as
the UNSAT gadget with PHPn+1

n gadgets hanging from the input gates has
a constant number of gates, we have so far obviously generated a tableau
with only constant number of entries. Having Fvn+1,Fwn+1 in each branch,

6 MAIN RESULTS 35

and

+

++ +a21a

and

v

wn+1

+
n PHPn+1

n n
n+1

PHPn+1
PHPPHP n+1

n

TDn

n+1v

b1 b2

UNSATUNSAT

Figure 20: Circuit for Theorem 6.9.

it is possible to deduce Fv by generating only a linear number of entries
w.r.t. n, as explained in the proof of Theorem 6.3. Thus we can generate a
BCbu-refutation of linear size w.r.t. n for any member of the family of circuits
considered. �

6.10 Corollaries

Combining Theorems 6.1 – 6.9, by the transitivity of �, the resulting order-
ing of BC and its restricted variations based on the p–simulation relation is
shown in Figure 21.

BCbu

� �
BC � BCbu+td 6≡ BCi

� �
BCi+td 6≡

�
BCtd

Figure 21: Summary of the ordering of BC and its restricted variations based
on the p–simulation relation. The case BCbu 6≡ BCtd is omitted from the
picture for clarity.

We have thus shown that no two variations of the BC method are equal using
proof complexity as the measure. Notice that the results obviously hold for
extended classes of Boolean circuits if the set of rules involving and, or, and
not gates remains unchanged in the tableau method.

6.11 Relevance to the Davis–Putnam Method

Given an arbitrary constrained Boolean circuit C = 〈C, c+, c−〉, one can
translate C into a propositional formula in CNF of linear–size w.r.t. the size
of the circuit that is satisfiable if and only if C is. The standard way of doing
the translation is often referred to as Tseitin’s translation, first discussed in
[33]. This translation introduces a new variable vg for each gate g ∈ C and

36 6 MAIN RESULTS

captures the functional dependencies in C by clauses, the output being thus
in CNF. More precisely,

• each gate g ∈ c+ (c−) is translated into the unit clause {vg} ({¬vg}),

• each g = not(g1) ∈ C is translated into the set of clauses

{{vg ∨ vg1
}, {¬vg ∨ ¬vg1

}},

• each g = or(g1, . . . gk) ∈ C is translated into the set of clauses

{{vg1
∨ · · · ∨ vgk

∨ ¬vg}} ∪
⋃

i∈{1,...,k}

{{vg ∨ ¬vgi
}},

and

• each g = and(g1, . . . gk) ∈ C is translated into the set of clauses

{{¬vg1
∨ · · · ∨ ¬vgk

∨ vg}} ∪
⋃

i∈{1,...,k}

{{¬vg ∨ vgi
}}.

The CNF formula output by the translation is the union of the sets of clauses
above. With gates with only finite fan–in, i.e., gates with only finitely many
direct children, the CNF is obviously of linear size in the number of gates,
constrained gates, and edges in C.

It turns out that the main results of this work apply to the Davis–Putnam
method (DPLL) [12, 11] in the case that the input is translated into CNF
using Tseitin’s translation. This is due to the fact that the proof complexity of
an arbitrary Boolean circuit C for BC is always within a polynomial w.r.t. the
proof complexity of the CNF formula that results from Tseitin’s translation
from C for DPLL.

We assume that the reader is familiar with the basic DPLL method. A
DPLL–refutation can be abstractly seen as a tableau in which the entries
are sets of clauses. There are two rules in the DPLL method which can be
applied to generate tableau entries.

(i) Splitting rule, which splits ϕ into two sets, ϕ′ = ϕ ∪ {{v}} and ϕ′′ =
ϕ∪{{¬v}}, where v is some variable that appears in ϕ. Now obviously
ϕ is satisfiable if and only if ϕ′ or ϕ′′ is.

(ii) Unit propagation, which, given that there is a unit clause {v} ∈ ϕ,
propagating on {v} transforms each clause of the form {¬v∨v1∨· · ·∨
vk} into {v1∨· · ·∨vk}, and removes all clauses that contain v from ϕ.

A branch in a tableau is contradictory if there are both of the unit clauses
{a} and {¬a} in the branch for some variable a. Rest of the terminology
concerning DPLL–tableaux is synonymous in an obvious way with that of
BC–tableaux.

For the following, let ϕ be a set of clauses that is obtained from a Boolean
circuit using Tseitin’s translation. The idea here is to show that DPLL for

6 MAIN RESULTS 37

ϕ can p–simulate BC for the original circuit, and vice versa. In fact, any
DPLL–refutation can be interpreted as a BC–refutation, and vice versa.
Especially, we argue that unit clauses in a DPLL–refutation generated by
applying the two rules above correspond exactly to non–root entries of the
corresponding BC–refutation.

Obviously, the splitting rule is equivalent to the cut rule in BC; adding
the unit clause {vg} ({¬vg}), is equivalent to extending a branch with Tg
(Fg) by applying the cut rule (and deducing Tg ′ by applying the ”up” rule
for not on g′ = not(g)), and vice versa.

Clearly, having a unit clause {vg} ({¬vg}) amounts to having Tg (Fg) in
the branch in BC. Deducing a unit clause {vg} by unit propagation from a
clause {vg ∨ vg1

∨ · · · ∨ vgk
} requires propagating on each of the unit clauses

{¬vgi
}, where 1 ≤ i ≤ k. Thus to deduce a new unit clause we need to have

all {¬vgi
}’s in ϕ. Next we argue that unit clauses that can be generated by ap-

plying unit propagation on ϕ correspond one–to–one to the non–root entries
generated by applying the rules (b)–(h) in a corresponding BC–refutation
for the original circuit. Consider the different gate types in Boolean circuits.

• g = not(g′): This is translated into {{g ∨ g′}, {¬g ∨ ¬g′}}.

– If we have {g} ∈ ϕ, then unit propagation removes the clause
{g∨g′} and transforms {¬g∨¬g′} into {¬g′}. This is equivalent
to deducing Fg′ from Tg by applying the “down” rule for not in
BC.

– The other cases {¬g} ∈ ϕ, {g′} ∈ ϕ, and {¬g′} ∈ ϕ are very
similar, and thus left for the reader to confirm.

• g = or(g1, . . . , gk): This is translated into

{{vg1
∨ · · · ∨ vgk

∨ ¬vg}, {vg ∨ ¬vg1
}, . . . , {vg ∨ ¬vgk

}}.

– If we have {vgi
} ∈ ϕ for some i, then unit propagation removes

the clause {vg1
∨ · · · ∨ vgk

∨ ¬vg}, and transforms {vg ∨ ¬vgi
}

into {vg}. Now unit propagation on {vg} removes all the rest
{vg ∨ ¬vgj

}, j 6= i. This is equivalent to deducing Tg from Tgi

by applying the “up” rule for or in BC.

– If we have {¬vg} ∈ ϕ, then unit propagation removes the clause
{vg1

∨· · ·∨vgk
∨¬vg}, and transforms each {vg∨¬vgi

} into {¬vgi
}.

This is equivalent to deducing Fg from all Fgi, 1 ≤ i ≤ k, by
applying the “up” rule for or in BC.

– If we have {vg} ∈ ϕ, then unit propagation removes all {vg ∨
¬vgi

} and transforms {vg1
∨· · ·∨vgk

∨¬vg} into {vg1
∨· · ·∨vgk

}.
Then to deduce {vgi

} for some i we still need to have {¬vgj
} ∈ ϕ

for all j 6= i. Thus deducing {vgi
} is equivalent to deducing Tgi

from Tvg and all Fvgj
using the “last undetermined child” rule

for or in BC.

– If we have {¬vgi
} ∈ ϕ for some i, then unit propagation removes

the clause {vg ∨¬vgi
} and transforms {vg1

∨ · · ·∨ vgk
∨¬vg} into

{vg1
∨ · · · ∨ vgi−1

∨ vgi+1
∨ · · · ∨ vgk

∨ ¬vg}. Then to deduce

38 6 MAIN RESULTS

(i) {vgj
} for some j 6= i we still need to have {vg} and {¬vgl

} ∈
ϕ for all l 6= j. Thus deducing {vgj

} is equivalent to deduc-
ing Tgj from Tvg and all Fvgl

using the “last undetermined
child” rule for or in BC.

(ii) {vg} we still need to have {vgj
} for some j 6= i, which is

equivalent to deducing Tg from Tgj by applying the “up”
rule for or in BC.

(iii) {¬vgj
} we still need to have {¬vg}, which is equivalent to

deducing Fgj from Fg by applying the “down” rule for or in
BC.

(iv) {¬vg} we still need to have {vgj
} for all j 6= i, which is

equivalent to deducing Fg from all Fvl, 1 ≤ l ≤ k, using the
“up” rule for or in BC.

• g = and(g1, . . . , gk): This is translated into

{¬vg1
∨ · · · ∨ ¬vgk

∨ vg}, {¬vg ∨ vg1
}, . . . , {¬vg ∨ vgk

}.

The deduction here is, in a sense, the dual of the one presented for the
or gates, and thus rather similar to the discussion above. This is left for
the reader to confirm.

Thus unit propagation is equivalent to the set of rules consisting of the rules
(b)–(h) in BC.

6 MAIN RESULTS 39

7 CONCLUSION

This work addresses the question of how restrictions on the use of the cut rule
effect the proof complexity in Boolean circuit satisfiability checking based on
tableaux. The tableau method in question consists of a complete and sound
subset of the rules in the method introduced in [20].

The results show that restricting the application of the cut rule in any
of the natural locality based ways considered (input cuts, top–down cuts,
bottom–up cuts, input and top–down cuts) increases the proof complexity ex-
ponentially. Moreover, there are exponential differences between the proof
complexity of all the restricted methods. The proofs rely on the resolution–
boundedness of the methods and on properties of certain circuit gadgets such
as a Boolean circuit representation of the well–known pigeon–hole principle.

The introduced tableau method can be seen as a generalisation of the
Davis–Putnam method for CNF formulas obtained from Boolean circuits
using Tseitin’s translation. Thus the results show that locality based cut re-
strictions – such as splitting on the input gates only – have a worst–case ex-
ponential effect on the sizes of proofs in Davis–Putnam based satisfiability
checkers, contradicting the common belief based on empirical results (see
e.g. [31, 14]).

7.1 Further Work

We now present some further directions of research based on this work.

• Empiric correspondence. Can empiric correspondence be shown to
backup the theoretical results, i.e., could we see the difference in re-
stricting the application of the cut / splitting rule in e.g. state–of–the–
art satisfiability solvers?

In some satisfiability checkers such as ���������	� [26] one can restrict
the case splittings to a given static subset of variables. But in a more
general view, the question of how to integrate different locality–based
cut restrictions acting on a dynamically selected subset of variables into
existing solvers in not a trivial one.

• Cut heuristics. The question of empiric correspondence leads thus to
the problem of developing efficient cut heuristics, i.e., general meth-
ods for choosing gates on which the cut rule is applied. Development
of efficient cut heuristics is a nontrivial task; the total number of gates
in a circuit can be enormous compared to the number of input gates,
so we should be able to select a small subset of the gates to which to
apply the cut in the circuit. This problem has two sides.

1. How to determine on which gates we do not need to apply the cut
rule. A trivial example of this is that having x = not(y) implies
that it is not necessary to apply the cut on both x and y. The ques-
tion remains, are there general rules on what gates should be in-
cluded in this set. The graphical view of Boolean circuit suggests
e.g. that some kind of graph–analytic methods could be applied
in identifying gates that should be in this set. For example, in the

40 7 CONCLUSION

main proofs of this work we considered circuits in which certain
bottleneck gates are visible.

2. How to select the gate on which the cut rule is applied next. Hav-
ing a subset of gates for candidates on which to apply the cut rule,
how to dynamically choose one gate of these on which the cut is
applied next in order to gain maximally from the cut?

• Further deduction / pruning rules. What happen to the proof com-
plexity when different deduction / pruning rules such as one–step looka-
head, equivalence reasoning, or cone–of–influence (see e.g. [20]) are
introduced?

• Learning. We should be able to learn the reasons for contradictions
during the satisfiability search, producing efficient further constraints
to guide the search. The question is: do the main results of this work
apply between the restricted variants of BC if different learning schemes
(see e.g. [34, 26, 25, 1, 13]) are introduced?

Acknowledgements

This report is a reprint of my Master’s thesis, with typos corrected only. I
am greatly indebted to Professor Ilkka Niemelä and Doctor Tommi A. Junt-
tila, my thesis supervisor and instructor, respectively. Without their knowl-
edge, patience, and inspiration this work would not be as such. In addition I
thank Emilia Oikarinen for numerous valuable comment on the work. The
financial support of Academy of Finland under the project Applications of
Rule–Based Constraint Programming (#53695) is gratefully acknowledged.

7 CONCLUSION 41

BIBLIOGRAPHY

[1] Roberto J. Bayardo and Robert C. Schrag. Using CSP look-back tech-
niques to solve real-world SAT instances. In Proceedings of the Four-
teenth National Conference on Artificial Intelligence (AAAI’97), pages
203–208, Providence, Rhode Island, 1997.

[2] Paul Beame and Toniann Pitassi. Propositional proof complexity: past,
present, and future. Bulletin of the European Association for Theoreti-
cal Computer Science, 65:66–89, June 1998.

[3] Armin Biere and Wolfgang Kunz. SAT and ATPG: Boolean engines for
formal hardware verification. In Proceedings of 20th IEEE/ACM In-
ternational Conference on Computer Aided Design (ICCAD’02), San
Jose CA, USA, November 2002. IEEE Press, 2002.

[4] Per Bjesse, Tim Leonard, and Abdel Mokkedem. Finding bugs in
an Alpha microprocessor using satisfiability solvers. In Proceedings
of the 13th International Conference of Computer-Aided Verification,
volume 2102 of Lecture Notes in Computer Science, pages 454–464.
Springer, 2001.

[5] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu.
Bounded model checking using satisfiability solving. Formal Methods
in System Design, 19(1):7–34, July 2001.

[6] Stephen A. Cook. The complexity of theorem-proving procedures. In
Conference record of third annual ACM Symposium on Theory of
Computing: papers presented at the symposium, Shaker Heights, Ohio,
May 3–5, 1971, pages 151–158, New York, NY, USA, 1971. ACM Press.

[7] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of
propositional proof systems. Journal of Symbolic Logic, 44(1):36–50,
1979.

[8] Marcello D’Agostino, Dov M. Gabbay, Reiner Hähnle, and Joachim
Posegga, editors. Handbook of Tableau Methods. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1999.

[9] Marcello D’Agostino and Marco Mondadori. The taming of the cut:
Classical refutations with analytic cut. Journal of Logic and Computa-
tion, 4(3):285–319, 1994.

[10] Evgeny Dantsin, Andreas Goerdt, Edward A. Hirsch, Ravi Kannan,
Jon Kleinberg, Christos Papadimitriou, Prabhakar Raghavan, and Uwe
Schöning. A deterministic (2− 2/(k + 1))n algorithm for k-SAT based
on local search. Theoretical Computer Science, 289(1):69–83, Octo-
ber 2002.

[11] Martin Davis, George Logemann, and Donald Loveland. A machine
program for theorem proving. Communications of the ACM, 5(7):394–
397, July 1962.

42 BIBLIOGRAPHY

[12] Martin Davis and Hilary Putnam. A computing procedure for quantifi-
cation theory. Journal of the ACM, 7(3):201–215, July 1960.

[13] Jon W. Freeman. Improvements to Propositional Satisfiability Search
Algorithms. PhD thesis, University of Pennsylvania, 1995.

[14] Enrico Giunchiglia, Alessandro Massarotto, and Roberto Sebastiani.
Act, and the rest will follow: Exploiting determinism in planning as
satisfiability. In Proceedings of the 15th National Conference on Arti-
ficial Intelligence (AAAI-98) and of the 10th Conference on Innovative
Applications of Artificial Intelligence (IAAI-98), pages 948–953. AAAI
Press, July 26–30 1998.

[15] Jun Gu, Paul W. Purdom, John Franco, and Benjamin W. Wah. Algo-
rithms for the satisfiability (SAT) problem: a survey. In Dingzhu Du,
Jun Gu, and Panos M. Pardalos, editors, Satisfiability Problem: Theory
and Applications, volume 35 of DIMACS: Series in Discrete Mathe-
matics and Theoretical Computer Science, pages 19–152. American
Mathematical Society, 1997.

[16] Armin Haken. The intractability of resolution. Theoretical Computer
Science, 39(2–3):297–308, 1985.

[17] Matti Järvisalo, Tommi A. Junttila, and Ilkka Niemelä. Unrestricted vs
restricted cut in a tableau method for Boolean circuits. AI&M 15–2004,
8th International Symposium on Artificial Intelligence and Mathemat-
ics, Fort Lauderdale, Florida, USA, January 4–6 2004. Proceedings
available at �������������
	�������
	���	���������	������������
����� � � �"!����"!#� �$� �"%�&"� .

[18] Stasys Jukna. Extremal Combinatorics: with Applications in Computer
Science. Springer-Verlag, Heidelberg, Germany, 2001.

[19] Tommi A. Junttila. BCSat 0.3 – a satisfiability checker for
Boolean circuits. Computer program, 2001. Available at
���������'���
(�(�()�*������ �����)� ��!���+�� ����(��	���� .

[20] Tommi A. Junttila and Ilkka Niemelä. Towards an efficient tableau
method for Boolean circuit satisfiability checking. In John Lloyd,
Veronica Dahl, Ulrich Furbach, Manfred Kerber, Kung-Kiu Lau,
Catuscia Palamidessi, Luís Moniz Pereira, Yehoshua Sagiv, and Peter J.
Stuckey, editors, Computational Logic – CL 2000; First International
Conference, volume 1861 of Lecture Notes in Artificial Intelligence,
pages 553–567, London, UK, 2000. Springer-Verlag.

[21] Henry Kautz and Bart Selman. Planning as satisfiability. In Proceedings
of the 10th European Conference on Artificial Intelligence, pages 359
– 363, 1992.

[22] Henry Kautz and Bart Selman. Pushing the envelope: Planning, propo-
sitional logic, and stochastic search. In Proceedings of the 13th National
Conference on Artificial Intelligence, pages 1194–1201, Portland, Ore-
gon, July 1996.

BIBLIOGRAPHY 43

[23] Tracy Larrabee. Test pattern generation using Boolean satisfiability.
IEEE Transactions on Computer-Aided Design, 11(1):6–22, January
1992.

[24] Chu Min Li and Anbulagan. Heuristics based on unit propagation for
satisfiability problems. In Proceedings of the 15th International Joint
Conference on Artificial Intelligence, pages 366–371, Nagoya, Japan,
August 23–29 1997.

[25] João P. Marques-Silva and Karem A. Sakallah. GRASP: a new search al-
gorithm for satisfiability. In Proceedings of the 1996 IEEE/ACM Inter-
national Conference on Computer-aided Design, pages 220–227, 1997.

[26] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: Engineering an efficient SAT solver. In
Proceedings of the 38th Design Automation Conference, pages 530–
535. ACM, 2001.

[27] Anil Nerode and Richard A. Shore. Logic for Applications. Springer–
Verlag, New York, Washington, USA, 2nd edition, 1997.

[28] Christos H. Papadimitriou. Computational Complexity. Addison-
Wesley, Reading, Massachusetts, USA, 1994.

[29] David A. Plaisted and Steven A. Greenbaum. A structure–preserving
clause form translation. Journal of Symbolic Computation, 2:193–304,
1986.

[30] Bart Selman, Henry Kautz, and Bram Cohen. Local search strategies
for satisfiability testing. In D. S. Johnson and M. A. Trick, editors, Sec-
ond DIMACS implementation challenge : cliques, coloring and satis-
fiability, volume 26 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 521–532. American Mathemati-
cal Society, 1996.

[31] Ofer Shtrichman. Tuning SAT checkers for Bounded Model Checking.
In E. Allen Emerson and A. Prasad Sistla, editors, Computer Aided
Verification – CAV 2000; 12th International Conference, volume 1855
of Lecture Notes in Computer Science, pages 480–494, Chicago, IL,
USA, 2000. Springer-Verlag.

[32] Raymond M. Smullyan. First–Order Logic. Springer–Verlag, Heidel-
berg, Germany, 1968.

[33] Grigori S. Tseitin. On the complexity of derivation in propositional cal-
culus. In J. Siekmann and G. Wrightson, editors, Automation of Rea-
soning 2: Classical Papers on Computational Logic 1967-1970, pages
466–483. Springer, Heidelberg, Germany, 1983.

[34] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad
Malik. Efficient conflict driven learning in boolean satisfiability solver.
In Proceedings of the International Conference on Computer Aided
Design (ICCAD), pages 279–285, Los Alamitos, CA, November 4–8
2001. IEEE Computer Society.

44 BIBLIOGRAPHY

[35] Lintao Zhang and Sharad Malik. The quest for efficient Boolean sat-
isfiability solvers. In Andrei Voronkov, editor, Automated Deduction –
CADE-18, volume 2392 of Lecture Notes in Computer Science, pages
295–313. Springer-Verlag, July 27-30 2002.

BIBLIOGRAPHY 45

HELSINKI UNIVERSITY OF TECHNOLOGY LABORATORY FOR THEORETICAL COMPUTER SCIENCE

RESEARCH REPORTS

HUT-TCS-A77 Satu Virtanen

Properties of Nonuniform Random Graph Models. May 2003.

HUT-TCS-A78 Petteri Kaski

A Census of Steiner Triple Systems and Some Related Combinatorial Objects. June 2003.

HUT-TCS-A79 Heikki Tauriainen

Nested Emptiness Search for Generalized Büchi Automata. July 2003.

HUT-TCS-A80 Tommi Junttila

On the Symmetry Reduction Method for Petri Nets and Similar Formalisms.

September 2003.

HUT-TCS-A81 Marko Mäkelä

Efficient Computer-Aided Verification of Parallel and Distributed Software Systems.

November 2003.

HUT-TCS-A82 Tomi Janhunen

Translatability and Intranslatability Results for Certain Classes of Logic Programs.

November 2003.

HUT-TCS-A83 Heikki Tauriainen

On Translating Linear Temporal Logic into Alternating and Nondeterministic Automata.

December 2003.

HUT-TCS-A84 Johan Wallén

On the Differential and Linear Properties of Addition. December 2003.

HUT-TCS-A85 Emilia Oikarinen

Testing the Equivalence of Disjunctive Logic Programs. December 2003.

HUT-TCS-A86 Tommi Syrjänen

Logic Programming with Cardinality Constraints. December 2003.

HUT-TCS-A87 Harri Haanpää, Patric R. J. Östergård

Sets in Abelian Groups with Distinct Sums of Pairs. February 2004.

HUT-TCS-A88 Harri Haanpää

Minimum Sum and Difference Covers of Abelian Groups. February 2004.

HUT-TCS-A89 Harri Haanpää

Constructing Certain Combinatorial Structures by Computational Methods. February 2004.

HUT-TCS-A90 Matti Järvisalo

Proof Complexity of Cut-Based Tableaux for Boolean Circuit Satisfiability Checking.

March 2004.

ISBN 951-22-7020-X

ISSN 1457-7615

