Overview and Analysis of the SAT Challenge 2012 Solver Competition

Adrian Balint®!, Anton Belov2, Matti Jirvisalo®>*, Carsten Sinzd*

¢Institute of Theoretical Computer Science, Ulm University, Germany. Email: adrian.balint@uni-ulm.de
bComplex and Adaptive Systems Laboratory University College Dublin, Ireland. Email: \anton.belov@ucd. ie
CHIIT & Department of Computer Science, University of Helsinki, Finland. Email: matti. jarvisalo@cs.helsinki.fi
dInstitute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Germany. Email: carsten.sinz@kit .edu

Abstract

Programs for the Boolean satisfiability problem (SAT), i.e., SAT solvers, are nowadays used as core decision proce-
dures for a wide range of combinatorial problems. Advances in SAT solving during the last 10-15 years have been
spurred by yearly solver competitions. In this article, we report on the main SAT solver competition held in 2012, SAT
Challenge 2012. Besides providing an overview of how SAT Challenge 2012 was organized, we present an in-depth
analysis of key aspects of the results obtained during the competition.

Keywords: Boolean satisfiability, SAT solvers, competitions, solver ranking, empirical analysis

1. Introduction

The problem of Boolean satisfiability (or propositional satisfiability, SAT) is that of determining whether a given
propositional logic formula has a solution, or in other words, is satisfiable [1]. SAT is the canonical NP-complete
problem [2]—and among the most fundamental ones in computer science. In addition to its theoretical importance,
SAT has become a central declarative approach to formulating and solving combinatorial problems, due to major ad-
vances in robust implementations of SAT solvers. Modern SAT solvers are now routinely used in a vast number of
different Al and industrial applications, of which hardware and software verification [3 4} 5] and planning [6} [7] are
classical examples. Besides using SAT solvers “directly” to solve a given problem, they are also—often iteratively—
employed as core NP-solvers within procedures for more complex decision or optimization problems such as Satisfi-
ability Modulo Theories (SMT) [, 9} [10], Quantified Boolean Formulas (QBF) [[11} [12], Answer Set Programming
(ASP) [13} 114} [15} [16], Maximum Satisfiability (MaxSAT) [[17, |18} |19} 20], and Minimal Unsatisfiable Subformula
(MUS) extraction [21} 22} 23] 24], as well as various SAT-based counterexample-guided abstraction refinement (CE-
GAR) approaches [25] 26| [11}, 112} 27, 28,129,130} 131} 32]] to solving problems within and beyond NP.

The SAT solver competitions (see [33]] for an overview, and [34} 35/ 136,37, 138]] for individual competition reports)
organized during the last 10-15 years have progressed SAT solver technology by providing incentives for pushing
the efficiency of SAT solvers further. SAT Challenge 2012 (SC 2012, in short), the main SAT solver competition
held in 2012, was organized as a satellite event to the 15th International Conference on Theory and Applications of
Satisfiability Testing (SAT 2012, Trento, Italy) and stands in the tradition of the SAT Competitionf] [33]] held yearly
from 2002 to 2005 and biannually starting from 2007, and the SAT-Races held in 2006, 2008, and 201(ﬂ This article

*Corresponding author. Phone: +358 50 3199 248, Fax: +358 9 1915 1120.

! Author supported by the Deutsche Forschungsgemeinschaft under grant SCHO 302/9-1

2 Author supported by Science Foundation of Ireland, PI grant BEACON (09/IN.1/12618).

3 Author supported by Academy of Finland under grants 132812, 251170 COIN Centre of Excellence in Computational Inference Research,
276412, and 284591.

4 Author supported in part by the “Concept for the Future” of Karlsruhe Institute of Technology within the framework of the German Excellence
Initiative.

5See/http://www.satcompetition.orgl

6See nttp://fmv.jku.at/sat-race-2006 (SAT-Race 2006), http://baldur.iti.uka.de/sat-race-2008 (SAT-Race
2008), and http://baldur.iti.uka.de/sat-race-2010|(SAT-Race 2010), respectively.

Preprint submitted to Artificial Intelligence January 20, 2015

adrian.balint@uni-ulm.de
anton.belov@ucd.ie
matti.jarvisalo@cs.helsinki.fi
carsten.sinz@kit.edu
http://www.satcompetition.org
http://fmv.jku.at/sat-race-2006
http://baldur.iti.uka.de/sat-race-2008
http://baldur.iti.uka.de/sat-race-2010

provides an overview of SC 2012. It summarizes the rules and organization, and gives a detailed analysis of the results.
This article does not give algorithmic or implementation details of the partipating solvers. Readers interested in these
details are referred to [39]], which includes short descriptions written by the solver developers as part of their SC 2012
submission, as well as descriptions of benchmark instances submitted to SC 2012. General information about SC 2012
is available through the competition websiteﬂ

The rest of this article is organized as follows. We start with an overview of organizational issues of SC 2012,
including descriptions of the competition rules, tracks, ranking scheme, and the computing environment used for
running the competition (Section [2). We then turn to describing in detail the competition benchmark selection and
generation process used for the different benchmark categories (Section[3). We also provide a review of the benchmark
selection methods used for various related (constraint solving) competitions. This is followed by statistics on the
participating solvers and their authors (Section [), and a brief overview of the results of SC 2012 in terms of solver
rankings (Section [5). An in-depth analysis of the results of the competition is then presented (Section [6). Before
we conclude, we briefly outline some lessons learned and suggestions for improvements of future SAT competitions
(Section[7),

1.1. The Boolean Satisfiability Problem in Short

For each Boolean variable z, there are two literals, x and —~x. A clause is a disjunction of literals; a formula in
conjunctive normal form (CNF) is a conjunction of clauses. A truth assignment « is a function from Boolean variables
to {0,1}. A clause C is satisfied by « if a(x) = 1 for some literal z € C, or a(z) = 0 for some literal -~z € C. A
CNF formula F' is satisfiable if there is an assignment that satisfies all clauses in F’, and unsatisfiable otherwise. The
NP-complete Boolean satisfiability (SAT) problem asks whether a given CNF formula F' is satisfiable.

CNF provides the standard input language for most off-the-shelf SAT solvers available today. The DIMACS input
format [35], specified in 1996 as a textual representation for formulas in CNF, is now widely used and was adopted
by the SAT solver competitions from the beginning. Naturally, any propositional formula can be represented in CNF
using a standard linear-size encoding [40] or one of the more intricate CNF encodings developed later (see, e.g., [41]).

2. Overview of SAT Challenge 2012

2.1. Organization

The main organizers of SC 2012 were Adrian Balint (Ulm University, Germany), Anton Belov (University College
Dublin, Ireland), Matti Jarvisalo (University of Helsinki, Finland), and Carsten Sinz (Karlsruhe Institute of Technol-
ogy, Germany). Important technical assistance related to the execution of the competition was provided by the SC 2012
Technical Assistants, Daniel Diepold (Ulm University, Germany) and Simon Gerber (Ulm University, Germany).

Open calls for participation (for both solver and benchmark submissions) were issued and advertised on various
mailing lists. Researchers from both academia and industry were openly invited to submit their solvers—in either
source code or binary format—to SAT Challenge 2012. We did not make submission of source code mandatory, as we
also wanted to attract solvers from industrial participants, for whom disclosing the source code was not feasible. This
followed the tradition of previous SAT-Races, but was different from the previous SAT Competitions that required
open source solver submissions.

2.2. Participation and Evaluation

An entrant to the SAT Challenge 2012 was a SAT solver submitted in either source code or as a binary. In order
to obtain reproducible results, the submitters were asked to refrain from using non-deterministic program constructs
to the extent possible. Solvers making stochastic decisions during execution were required to provide a command-line
option for random seed initialization.

The input and output format requirements were the same as those used for the SAT Competitions and SAT-Races
in previous years, specified, e.g., in the 2011 SAT Competition rules, Sections 4.1 and 5. 1—5.2 Solvers were required

"http://baldur.iti.kit.edu/SAT-Challenge-2012
Shttp://www.satcompetition.org/2011/rules.pdf

http://baldur.iti.kit.edu/SAT-Challenge-2012
http://www.satcompetition.org/2011/rules.pdf

to provide a satisfying truth assignment for satisfiable instances. Any solver that either claimed that an unsatisfiable
instance is satisfiable, or produced a truth assignment that does not satisfy a satisfiable instance, was deemed incorrect
and was hence disqualified.

Solvers were assessed based on the number of instances solved within the runtime limit. If several solvers solved
the same number of instances, as a secondary criterion, the cumulated runtime (CPU time for sequential solvers,
wall-clock time for parallel solvers) of all solved instances was used to rank the solvers.

The organization committee reserved the right to restrict participation of a solver to certain tracks, to allow only a
limited number of solvers submitted by the same person, and to submit their own systems or other systems of interest
to the competition. Systems submitted by one of the organizers were not considered in the official ranking and were
not eligible to win awards.

2.3. Benchmark Categories and Competition Tracks

All competition entrants had to solve a set of benchmark instances in DIMACS CNF format drawn from a larger
pool of instances. This pool included benchmarks from previous SAT Competitions and SAT-Races, as well as addi-
tional instances, both submitted in response to the call for benchmarks and benchmarks generated by the organizers.
The exact benchmark set was not disclosed in advance. The instances from the benchmark pool used in SC 2012
were manually categorized beforehand into three different categories: application, hard combinatorial, and random;
Sections [3]and [7.4] provide more details on the benchmark selection and categorization.

The following competition tracks, characterized by the type of benchmarks used in the tracks, were organized.

Three main tracks for sequential solvers:
 Application SAT+UNSAT: problem encodings (both satisfiable and unsatisfiable) from real-world applications.

* Hard Combinatorial SAT+UNSAT: hard combinatorial problems (both satisfiable and unsatisfiable) to challenge
current SAT solving algorithms (similar to the previous SAT Competitions’ category “crafted”).

* Random SAT: satisfiable k-SAT instances generated uniformly at random for different clause lengths k.
Two special tracks:

* One track for Parallel Solvers: In this track, the same problem instances as in the Application Main Track were
used. However, solvers could use up to eight computing cores.

* One track for Sequential Portfolio Solvers: A portfolio solver is a solver that combines different (sequential)
SAT algorithms. It may have, e.g., run multiple solvers in a time-slicing manner on a given SAT instance, or
selected one solver out of a set of given ones (e.g., determined by a machine-learning approach based on some
metric) to tackle the problem. In this track, one third of the benchmarks was selected from the application,
one third from the hard combinatorial, and one third from the random category. Within each category (except
Random SAT), a mixture of satisfiable and unsatisfiable instances was used.

This collection of tracks was the end-result of an attempt to find a balance between the very large number of
tracks (pure SAT, pure UNSAT, SAT+UNSAT for each of the categories, Application, Crafted, and Random; and
instantiation-specific special tracks) organized in the SAT Competitions, and the strict application orientation of the
SAT-Races (only “industrial” Application SAT+UNSAT). Unsatisfiable instances were ruled out from the SC 2012
Random Track based on the observation that there has been little progress as well as very few solvers; the dominating
solver on Random UNSAT in the SAT Competitions has repeatedly been the lookahead solver March [42]]. The 2009
SAT competition and the 2010 SAT-Race had benchmark category specific special tracks for parallel solvers, while
the 2011 SAT Competition included a wall-clock based timeout (in addition to CPU-time based), intuitively favouring
parallel solvers. While the SC 2012 special track for parallel solvers similarly employed a wall-clock based timeout,
the benchmarks in the track were evenly selected from the three main tracks. The SC 2012 special track for sequential
portfolio solvers was the first of its kind.

2.4. Computing environment

Evaluation of solvers was performed on identical nodes of the bwGrid cluster [43]] of State of Baden-Wiirttemberg,
Germany. Each cluster node had the following specification:

e Hardware: Two 4-core Intel Xeon E5440 processors (2.83 GHz with 12 MB L2 cache per CPU), 16-GB RAM.

* Software: Scientific Linux OS, kernel 2.6.18, glibc 2.5, GCC 4.1.2, javac 1.6.0, 32-bit and 64-bit executables
supported.

In the three Main Tracks and the Sequential Portfolio Solvers Track, a solver could use one core of one CPU and
6 GB of main memory. Two solvers were executed in parallel on each computing node (i.e., one solver per physical
CPU). A runtime limit of 900 seconds CPU time was enforced per solver and benchmark instance, with the help of
the runsolver tool [44] also used in previous competitions. In the Parallel Solvers Track, all eight cores and 12 GB
of main memory were available. Only one solver was executed on each cluster node. A runtime limit of 900 seconds
wall-clock time was enforced. A total of 2.2 CPU years were used to run SC 2012—not counting the testing of solvers
and the filtering of instances beforehand, which also used around the same amount of computing resources.

2.5. EDACC: Experiment Design and Administration for Computer Clusters

The EDACC system [43 |46] was utilized for organizing SC 2012@ EDACC is a distributed computing system
similar to the BOINC project [47]. It was inspired by the SatEx system [48]] used in earlier SAT Competitions. EDACC
consists of a central database (DB), a graphical user interface, a computation client, and a web front-end. All data,
including solvers and their parameters, instances, and solver output, was stored in the DB. The computation client is
responsible for the execution of experiments (running the solvers on the instances). The graphical user interface was
used by the organizers to create the tracks and monitor the experiments. The web front-end was used for providing an
automated submission and testing platform for the submitters. A submitted solver was automatically tested on a small
representative set of instances and the results were automatically reported to the submitter. The participants could
then analyze the results of their solver and submit a bug-fixed version of their solver when necessary. After running
the competition, the participants could analyze their results within the web front-end that provides a wide range of
statistical and graphical analysis possibilities, including:

 generation of box plots and cactus plots@] (for comparing the results of multiple solvers), scatter plots (for
pair-wise comparisons of solvers), and runtime matrix plots (for analyzing the variance of solver performances);

» comparison of distributions (Kolmogorow-Smirnow test, Wilcoxon rank sum test);
* distribution and kernel density estimation;

* probabilistic domination comparison of two solvers;

» computation of rankings using different ranking schemes; and

* SOTA (state-of-the-art-contributor) and VBS (virtual best solver) analysis (for definitions of SOTA and VBS,
see Sections [3.1.1]and respectively).

EDACC offers all major functionalities to organize algorithmic competitions and is freely available onlineEr] under an
MIT license.

9 All results of SC 2012 can be accessed at http: //www.satcompetition.org/edacc/SATChallenge2012/experiments,

10Cactus plots have been traditionally used for presenting results of solver runtime comparisons in SAT and related solver competitions as well
as often in research papers focusing on SAT solving techniques. A cactus plot gives the number of solved instances (y-axis) as a function of a
per-instance timeout, and are closely related to runtime CDF's that give the percentage of instances solved as a function of a per-instance timeout.
Hence cactus plots directly communicate the absolute number of instances solved within different runtime timeout values, while runtime CDF give
the number of instances solved relative to the size of the benchmark instance set used.

HUhttps://github.com/edacc

http://www.satcompetition.org/edacc/SATChallenge2012/experiments
https://github.com/edacc

3. Benchmark Selection and Generation

In this section we first briefly survey and analyze the benchmark selection methods used in solver competitions
related to SC 2012. We then outline the selection (for Application and Hard Combinatorial tracks) and generation (for
Random tracks) processes for benchmarks used in SC 2012, and describe the benchmark set selected for SC 2012.

3.1. Review of Benchmark Selection Methods

In the following, we will review bechmark selection methods applied in four related constraint solver competi-
tion series: the CADE ATP System Competitions (CASC) [4911—_2'], the SAT Competitions [33113 the SMT Competi-
tions [50 and the ASP Competitions [S1,152} 53 A common theme among the selection processes is a (sometimes
implicit) two-stage selection: in the first stage the benchmarks are ranked according to their perceived difficulty; in
the second stage the benchmarks are selected based on some combination of their rank and other properties, such as
whether or not the benchmark is new (i.e., not used in previous competitions).

3.1.1. CADE ATP System Competitions (CASC)

The Automated Theorem Prover (ATP) Competitions are perhaps the longest continuously running series of system
competitions in our field. The first competition close to the current form was held at the CADE-13 conference in 1996.
The design of the competition is presented in [54]]. The paper also contains the original methodology for the ranking of
the benchmarks (and the solvers). The methodology has been slightly modified with the introduction of the concepts
of system ranking by subsumption and the state-of-the-art (SOTA) system [49]. The benchmark selection methodology
used in the most recent competition, CASC-J6, follows [49], and overviewed here next.

The benchmark problems for the competition are taken from the TPTP Problem Librar which is an online
repository of problem instances used for evaluation of theorem provers in the ATP community, and which is split into
thematic categories. The library is “frozen” prior to the start of the competition. The ATP systems submitted for
the competition itself, are used to rank the benchmarks. The difficulty of benchmarks is determined by the ability of
so-called SOTA contributors to solve them. Let B = {by,...,b,} be the set (pool) of available benchmarks, and let
S = {s1,..., sk} be the set of solvers submitted to the competition. For a solver s; € S, let B; C B denote the set
of benchmarks solved by s; within a timeout. Solver s; is said to subsume solver s; if B; D B;. Furthermore, s; is
a SOTA contributor if no other solver subsumes it (i.e., there is no j with B; C Bj). In other words, given that the
sets B;, 1 <1 < k, form a partially ordered set (poset, ordered by set inclusion), SOTA contributors are the maximal
elements in the poset. The SOTA problem rating r; for a benchmark b; is then

_ number of SOTA contributors that failed on b;

r, =

number of SOTA contributors

The benchmarks are rated within their corresponding categories. In case the number of SOTA contributors is less than
a certain threshold (3), the non-SOTA contributors that solve the most problems are used. The benchmarks with SOTA
rating of O are referred to as easy, those with a rating strictly between 0 and 1 are difficult, and those with rating 1
are unsolved. For CASC-J6, the problems with a rating in the interval [0.21, 0.99] were selected [55]]. Note that this
implies that the unsolved benchmarks are not used in the competition.

3.1.2. SAT Competitions

The benchmark selection process used in SAT Competitions is presented in detail on the SAT Competition 2009
websiteE] Similar to SMT-COMP (discussed later), the benchmarks for the application and the crafted categories are
rated based on the performance of the top three solvers from the previous competition. In the 2011 competition, the

12CASC-23 (2011) is athttp: //www.cs.miami.edu/~tptp/CASC/23/

13S AT Competition 2011 is atlhttp: //www.satcompetition.org/2011/

4SMT-COMP 2011 is at http: //www. smtcomp.org/2011/

15 ASP Competition 2011 is at https: //www.mat .unical.it/aspcomp2011/FrontPage
http://www.cs.miami.edu/~tptp/
Thttp://www.satcompetition.org/2009/BenchmarksSelection.html

http://www.cs.miami.edu/~tptp/CASC/23/
http://www.satcompetition.org/2011/
http://www.smtcomp.org/2011/
https://www.mat.unical.it/aspcomp2011/FrontPage
http://www.cs.miami.edu/~tptp/
http://www.satcompetition.org/2009/BenchmarksSelection.html

benchmarks were rated using “SAT 2009 reference solvers” [56]. A benchmark is rated as (7) easy, if it is solved
within 30 seconds by all solvers; (i7) hard, if its not solved by any solver within the timeout value of the first phase
of the competition (1200 sec); (ii¢) medium, in all other cases. The competition benchmark sets are then selected
given the following constraints. Rating distribution: 10% easy, 40% medium, 50% hard; new vs existing (i.e., used in
previous competitions): 45% existing, 55% new; source distribution: not more than 10% from the same source.

The instances in the random category of SAT Competition 2011 were taken from (uniform random) k-CNF distri-
butions for k = 3,5, 7, i.e., for each clause, k variables were drawn uniformly at random from the set of all variables,
and each variable drawn was negated with probability 1/2. The medium instances were taken very close to the clause-
variable phase transition ratio [57,158] to ensure approximately 50 % of UNSAT instances; the large instances were
taken slightly below the phase transition. The medium instances where classified into SAT and UNKNOWN (prob-
ably UNSAT) using the SLS solver gnovelty+ [59] — the instances that are solved within the timeout are classified
as SAT. Note, however, that the organizers indicate that in most cases the instances were solved “within seconds”.
The proportion of SAT/UNKNOWN instances among the medium instances of the final benchmark set is 50/50. The
satisfiability status of the large instances was presumed to be SAT, due to their clause density below the threshold (cf.
Section . The final set of benchmarks consisted of approximately 2/3 of medium and 1/3 of large benchmarks.

3.1.3. SMT Competitions

The benchmark rating system used in the recent SMT Competition (SMT-COMP 2012) is described in [60]]. The
rating system differs from the previously discussed systems in two aspects: () the solvers that “finished in good
standing” in the previous year’s competition (SMT-COMP 2011) were used rather than the solvers submitted to the
2012 competitio and (i7) the solving time is taken into account. The problem rating is given by r = %,
where A is the average time over all solvers, in minutes, to solve the problem. 30 is the timeout value used in the
2011 competition. If a solver fails to solve the problem within the timeout, its solving time is taken to be 30 minutes.
Thus, according to [[60], the rating system recognizes the fact that problems that require more time by more solvers
are more difficult. The logarithm is used to mark a larger change in difficulty at smaller time values than at larger
ones, and the square is used to “flatten the curve slightly at the end”. Given the problem rating, the benchmarks
for the competition are then selected by choosing the same number of problems uniformly at random from each of
the five intervals [0, 1], (1,2], (2, 3], (3,4], (4,5]. For each of the subdivisions of benchmarks (i.e., for the different
theories), 5% of benchmarks are chosen from the random category, 10% from crafted, and the rest from the industrial
applications category.

3.1.4. ASP Solver Competitions

All ASP competitions to date appear to be using the benchmark selection process proposed for the first competition,
held in 2007. The process is outlined in Section 4 of [51]]. After fixing a set of five solvers for evaluating benchmark
hardness (details for the set of solvers used in SC 2012 are provided in Section a benchmark is considered
suitable if at least one solver is capable of solving it within the timeout (600 seconds), and at most three solvers
can solve it within 1 second. The set of benchmarks used for ranking the solvers in the competition is constructed
by choosing random benchmarks from the pool of available benchmarks, until the desired number (100 overall) of
suitable benchmarks is obtained. Similarly to CASC, the benchmarks are ranked using the solvers submitted to the
competition.

3.2. Analysis of Benchmark Ranking and Selection Methods

It is well-known that the hardness of satisfiable random k-SAT instances close to the phase transition point in-
creases as the number of variables is increased. However, for the heterogenous sets of application and hard combi-
natorial instances, instance size does not correlate well with the hardness of the instances. Hence empirical testing
is required in order to rate the practical hardness of such instances. In the ASP and CASC competitions, the solvers
submitted to the competition are used to rate the benchmarks, so rating/selection is done a posteriori. For SAT com-
petitions, including SC 2012, such an a posteriori rating is not computationally feasible due to the large number of

18The definition of “good standing” is not given, but it seems that in some cases there’s a large number of such solvers (above: five).

participating solvers. So both SAT and SMT competitions revert to the evaluation of hardness using some, typically
few, best-performers from previous years. As we demonstrate later, a problem that might arise in this setting is that
the selected benchmark set can be (strongly) biased towards a particular solver. So the selection must be done care-
fully, taking this potential bias into account. However, we do want to point out that, as further discussed in Section
eliminating such bias is not entirely unproblematic.

In the SOTA problem rating system used in CASC, the difficulty of any particular problem is proportional to the
number of SOTA contributors that fail to solve it. This allows to reduce the influence of weak systems, since the
fact that many weak (i.e., non-SOTA) systems fail to solve the problem does not necessarily mean that the problem
is difficult. The SMT-COMP rating system also takes into account the time used by the solvers. However, given that
all problems with solving times in the range (0.5 - timeout, timeout] (i.e., including the unsolved problems) get the
rating of (4, 5], no more than 20% of difficult benchmarks (with very few unsolved ones) get into the selected problem
set. As aresult, in SMT-COMP 201 1[115], for example, the top solver in many cases managed to solve all, or close to all,
of the selected benchmarks. The rating system used in previous SAT Competitions also takes into account the solving
time, though in a less refined manner than SMT-COMP. However, the difficulty of benchmarks is judged using three
solvers only, chosen from the top performing solvers in the competition of the previous year. Additionally, it appears
that the number of hard benchmarks in SAT Competitions is too large, especially for the crafted category. Table [I]
shows the percentages of the benchmarks solved by the virtual best solver (VBS) and the top-3 solvers in each of
the categories in the 2009 and 2011 SAT Competitions. For each benchmark instance, the running time of the virtual
best solver (VBS) is defined as the running time of the fastest solver out of all solvers participating in a competition.
For example, the fact that the VBS solved 77% of benchmarks in the 2011 SAT Competition crafted category implies
that almost Y4 of the benchmark set was not solved by any participating solver. Given the fact that the solver ranking
system used in the competition is based on the number of instances solved by at least one solver (i.e., solution-count
ranking), ¥4 of the experiments in this category were a posteriori redundant in terms of determining the final result.

Another important factor influencing benchmark rating in competitions are resource limitations, such as CPU time
and memory. For competitions that can afford rating of the benchmarks using the competing systems (e.g., CASC
and ASP Competition) the resource limits used in the competition itself is an obvious choice. However, when the
systems used to rate benchmarks are chosen from the top performers of the previous competition (as in the SAT and
SMT Competitions), the choice becomes less clear: how does one account for the possible, and expected, progress of
the systems since the previous competition? Applying the resource limits of the competition itself might result in a
benchmark set that is too “easy”.

Clearly, one of the objectives of the benchmark selection process is to create a heterogeneous set of benchmarks.
While for the Random track this objective can be achieved by varying the parameters of the instance generator, for
the Application and the Hard Combinatorial tracks this issue is quite challenging. A typical approach, taken for
example in CASC and SAT Competitions, is to limit the proportion of benchmarks that come from a single submitter.
Previous SAT competitions enforced a limit of 10% on the fraction of benchmarks contributed by one submitter. CASC
competitions use an undocumented algorithm to determine a “fair” proportion, thus making the somewhat arbitrary
10% limit more refined [61]. However, a benchmark submitter can contribute multiple benchmark sets that often
differ significantly in structure and in the application context — this makes the author-based grouping of benchmarks
somewhat limited. A possible way to address this problem is to group the benchmarks into manually-defined “buckets”
that cluster benchmarks according to a specific application domain (see Table 2] for an example of such clustering). In
[62], the authors propose to cluster the benchmarks according to their feature-vectors, such as those used by portfolio-
based solvers (cf. [63]) to determine which solver to run on a particular benchmark. This approach, however, also
has drawbacks: for one, it presumes that the feature vectors capture the structure correctly. In addition, it to some
extent complicates certain analysis tasks, such as finding a solver that performs best in a specific application domain.
A possible solution to this is to combine the “bucket’-based method with feature vectors—this is a topic for further
research.

Ynttp://www.smtexec.org/exec/?jobs=856

http://www.smtexec.org/exec/?jobs=856

Table 1: Percentage of instances solved by the top-3 solvers and the virtual best solver (VBS) of the 2009 and 2011 SAT Competitions.
SAT Competition 2011 SAT Competition 2009

Category VBS Ist 2nd 3rd | VBS Ist 2nd 3rd
Application | 86% T72% T70% 69% | 718% 10% T0% 67%
Crafted 77% 54% 52% 51% | 67% 56% 55% 53%
Random 82% 68% 64% 63% | 89% T1% 62% 58%

3.3. SAT Challenge 2012 Benchmark Selection

The benchmark selection process is noticeably influenced by the solution-count ranking scheme used. Under this
scheme, a central requirement is that the selected set of benchmarks should contain as few as possible benchmarks that
would not be solved by any submitted solver. At the same time, the set should contain as few as possible benchmarks
that would be solved by all—including the weakest—submitted solvers. In order to level out the playing field for
competitors who do not have the resources to tune their solvers on all benchmark sets used in the previous competitions,
an additional requirement is that the selected set should contain as many benchmarks as possible that were not used in
previous SAT Competitions—we refer to these benchmarks as unused from now on. Finally, the selected set should
not contain a dominating number of benchmarks from one source (domain, benchmark submitter).

The benchmarks for the Application and the Hard Combinatorial tracks were drawn from a pool containing bench-
marks that were either (¢) used in the past five competitive SAT events (SAT Competitions 2007, 2009, 2011 and SAT
Races 2008, 2010); (i7) submitted to these five events but not used (unused benchmarks); or (ii¢) new benchmarks
submitted to SC 2012 (the descriptions for these benchmarks can be found in [39]). As elaborated in Section[7.4] the
categorization of benchmarks into the Application vs. the Hard Combinatorial category is far from straightforward,
and might need to be revised in the future competitions. For SAT Challenge 2012 we used a traditional categorization,
following the previous SAT competitions. As with the previous SAT competitions, the benchmarks for the Random
track were generated from scratch. We used a new generation and filtering procedure described in Section[3.3.3]

The empirical hardness of the benchmarks (used to rate the benchmarks for the Application and Hard Combina-
torial tracks, and to filter the generated benchmarks in the Random track) was evaluated using a selection of well-
performing SAT solvers from the 2011 SAT Competition. Our first attempt to select the state-of-the-art (SOTA)
contributors [49], as in the CASC and ASP competitions, from the second phase of the 2011 SAT Competition failed
due to the fact that all solvers from the second phase turned out to be SOTA contributors. Driven by the restrictions on
computational resources, we ultimately selected five SAT solvers among the best performing solvers from the Applica-
tion, the Crafted and the Random tracks of the 2011 SAT competition. Among the best performing solvers, preference
was given to solvers that solved the highest number of benchmarks uniquely. We also tried to diversify the original
code-bases of the solvers (so that, for example, not all solvers were based on Minisat). Clearly, this is not an ideal
solution. However, we did not arrive at a better one within the resourcesavailable at the time The selected solvers for
each track are listed in the subsequent sections.

The hardness of the benchmarks was evaluated using the same cluster on which the actual solver evaluation was
run. The rating of a benchmark within the Application and Hard Combinatorial categories was defined as follows:

easy — benchmarks that were solved by all 5 solvers in under 90 seconds. These benchmarks are extremely unlikely
to contribute to the (solution-count) ranking of SAT solvers in SC 2012, as all reasonably efficient solvers are
expected to solve these instances within the 900-second timeout.

medium — benchmarks not in easy that were solved by all 5 solvers in under 900 seconds. Though these bench-
marks are expected to be solved by the best-performing solvers, they can help to rank the weaker solvers.

too-hard — benchmarks that were not solved by any of the 5 solvers within 2700 seconds (3 times the timeout).
Most of these benchmarks are expected to be unsolved by all competing solvers. Inclusion of (many of) such
benchmarks was infeasible due to limited computational resources.

hard — the remaining benchmarks, i.e., the benchmarks not in easy or medium that were solved by at least one
solver within 2700 seconds. These are expected to be the most useful for ranking the best-performing solvers.

Table 2: Statistics on the 600 Application benchmarks selected for SC 2012.

Rating Count || Satisfiability Status | Count || Used/Unused | Count
easy 57 SAT 264 used 289
medium 246 UNSAT 333 unused 311
hard 291 UNKNOWN 3
too-hard 6

Source Count | Contributor (new benchmarks)

2D strip packing 10

Bioinformatics 28

Diagnosis 59

FPGA routing 2

Hardware verification: BMC 11

Hardware verification: BMC, IBM benchmarks 60

Hardware verification: CEC 20

Hardware verification: pipelined machines (P. Manolios) 60

Hardware verification: pipelined machines (M. Velev) 54

Planning 46

Scheduling®! 9 Peter Grossmann

Software verification: bit verification 60

Software verification: BMC 14

Termination 33

Crypto: AES* 11 Matthew Gwynne

Crypto: DES 10

Crypto: MDS 14

Crypto: SHA 10

Crypto: VMPC 13

Miscellaneous/unknown 76

This rating of the benchmarks is similar to the one used in the 2009 and 2011 SAT Competition except that by
singling out and disregarding the benchmarks that would almost certainly not be solved by any submitted solver (these
are the t oo—hard benchmarks), we aimed at increasing the effectiveness of the selected sets for ranking the solvers.

Once the hardness of the benchmarks in the pool was established, 600 benchmarks were selected from the pool.
During the selection we attempted to keep the 50-50 ratio between the medium and hard benchmarks, and, at the
same time, to make sure that no benchmarks from the same source were over-represented (> 10% of the selected set).
Benchmarks from the sources that were over-represented in the pool were selected by uniform random sampling from
each over-represented source, taking into account the benchmark hardness. Due to the shortage of available bench-
marks, this latter requirement forced us to select about 10% easy as well as a number of too-hard benchmarks.
The details for each selected set differ, and are provided in the following sections. Section provides additional
details for the generation and filtering of Random benchmarks.

3.3.1. Application Benchmarks

The five SAT solvers used to evaluate the hardness of the application instances were CryptoMiniSat (ver. Strange-
Night2-st), Lingeling (ver. 587f), glucose (ver. 2), QuteRSat (ver. 2011-05-12), RestartSAT (ver. B95). All solvers
were obtained from the SAT Competition 2011 Websiter] The set of application benchmarks was drawn from a pool
of 5472 instances. Some statistics on the set of the 600 selected instances are presented in Table[2]

Onttp://www.satcompetition.org/2009/BenchmarksSelection.html
2lncludes new benchmarks submitted to SC 2012. Detailed descriptions of the benchmarks are provided in [39].
2http://www.satcompetition.org/2011

http://www.satcompetition.org/2009/BenchmarksSelection.html
http://www.satcompetition.org/2011

Table 3: Statistics on the 600 Hard Combinatorial benchmarks selected for SC 2012.

Rating Count || Satisfiability Status | Count || Used/Unused | Count
easy 52 SAT 368 used 284
medium 39 UNSAT 226 unused 316
hard 503 UNKNOWN 6
too-hard 6

Source Count | Contributor (new benchmarks)

Automata synchronization 8

Edge matching 32

Ensemble computation? 12 Janne H. Korhonen

Factoring 43

Fixed-shape forced satisfiable 29 Anton Belov

Games: Battleship 28

Games: Hidoku? 3 Norbert Manthey

Parity games 26

Pebbling games 13

Horn backdoor detection via vertex cover’ 59 Marco Gario

MOD circuits 35

Parity (MDP) 7

Quasigroup 40

Ramsey cube 8

rbsat 53

sgen?’ 47 Ivor Spence

Social golfer problem 2

Sub-graph isomorphism 46

Van der Waerden numbers 41

XOR chains 2

Miscellaneous 66

Overall, we achieved a fairly balanced mix between medium and hard benchmarks, SAT and UNSAT bench-
marks, and a reasonable distribution among the various sources. The proportion of previously used benchmarks was
quite high. While undesirable, as explained in the beginning of Section [3.3] this was unavoidable due to the small
number of new benchmark submissions.

3.3.2. Hard Combinatorial Benchmarks

The five SAT solvers used to evaluate the hardness of the application instances were clasp_2.0 (ver. R4092-
crafted), SArTagnan (ver. 2011-05-15), MPhaseSAT (ver. 2011-02-15), sattime (ver. 2011-03-02), Sparrow UBC
(ver. SATCompl1). Note that we added the SLS-based solver Sparrow UBC to the set — this is due to the fact
that some of the benchmarks in the Hard Combinatorial category are “random-like”. However, since this solver is
incomplete, it was not considered for determining the hardness of UNSAT instances. All solvers were obtained from
the SAT Competition 2011 website. The set of hard combinatorial benchmarks was drawn from a pool of 1743
instances. Table 3] presents some statistics on the set of the 600 selected instances.

Note that while the selected benchmarks are balanced well among various sources, the proportion of hard bench-
marks is very high. This is due to the fact that, among the 1743 benchmarks in the pool, there are only 39 instances of
medium difficulty. Approximately Y5 of the pool consists of easy instances, %5 of hard, and Y5 of too-hard. Thus, the
selected set is more difficult for the solvers in SC 2012 than the set of Application instances. The imbalance between
SAT and UNSAT instances is explained by the fact that a large proportion of the hard instances were satisfiable, and
we were forced to take almost all hard benchmarks from the pool.

10

3.3.3. Random SAT Benchmarks

The benchmark set for the Random SAT track contains 600 instances, generated according to the uniform random
k-SAT model. The instances were divided into five major classes: k-SAT for & = 3,4,5,6,7. Each class contains
ten subclasses with varying clauses-to-variables ratios and numbers of variables. Each subclass contains 12 instances.
In the following we assume that n denotes the number of variables in a k-SAT formula, m is the number of clauses,
and o = 7% is the clause density. The satisfiability status of a random k-SAT instance is not known a priori, although
for each k there is a threshold value oy, for the clause density such that all instances generated with an a@ < ay, are
with high probability satisfiable, and all instances generated with an @ > o, are with high probability unsatisfiable (as
m,n tend to infinity). Instances generated at the threshold ratios or near them are the most challenging for complete
and local search methods [57,158]. For large n, the best approximations of the threshold ratios are given in [64]] and
listed in Table 4]

Table 4: Threshold values «y, for different k
K| 3 | 4 | 5 | 6 | 7
ay, | 4267 | 9.931 | 21.117 | 43.37 | 87.79

Previous SAT Competitions also used the uniform random generation model (with a small exception: the 2 + p
instances [65] used in 2007). Note that only k-SAT instances for k = 3, 5,7 were used in these competitions, and for
each k only two different ratios were considered (one also containing unsatisfiable instances). For further background,
we refer to [66] for details on the random instances used in the 2005 SAT Competition.

For SC 2012, we generated k-SAT instances for k = 3,4,5,6,7. Starting from these values, we applied the
following generation model: For each k, two extreme points (a, ng) and (g, Tt), With e < g and nye > ng,
were fixed:

* ny: the largest number of variables a formula generated at the threshold oy was allowed to have (such that the
top three best solvers for the random category in SAT Competition 2011 were still able to solve these problems
in 2700 seconds).

* «y: the largest clauses-to-variables ratio for the number of variables n,; (again based on our estimate of the
behavior of best known solvers).

The values of the extreme points used in SC 2012 are presented in Table[5] For each k, ten combinations of (a,n)
were chosen on the line between (o, ng) and (o, npe), giving a total of 50 combinations (for the full listing, see
[Appendix_A). The intuition behind this generation scheme is twofold. First, we wanted to allow an analysis of the
influence of the clause-to-variable ratio on the performance of different solvers. On the other hand, we also wanted to
keep the difficulty of the instances at a certain level, which means that by lowering the clause-to-variable ratio we have
to increase the number of variables. In the previous competitions instances generated on the threshold ratio where
solved by all SLS solvers and had no influence on the ranking scheme.

For each chosen combination («, 1), we generated 100 instances, resulting in a total of 1000 instances per k-value,
and thus a total of 5000 instances.

We have opted to use a new generator because existent generators used in previous competitions did not meet
our quality criteria; especially (i) clauses produced should be unique, and (ii) the used random number generators
should pass several currently known randomness tests. Consequently, our new generator (freely available onlineFE])
uses the SHA1PRNG generator (part of the Sun Java implementation) that has passed all randomness tests considered
by L’Ecuyer and Simard in [67, p. 22].

To filter out the unsatisfiable instances within the generated set of 5000 instances, we used the best performing
solvers from the SAT Competition 2011 random track: Sparrow2011, sattime2011, EagleUP and adaptG2WSAT2011.
Additionally, we used survey propagation v 1.4 [68]], adaptiveWalkSAT [69], adaptive probSAT [69] and adapt-
novelty+ from UBCSAT [70]. Each solver was run only once on each instance using a cutoff of 2700 seconds (3

Bhttp://sourceforge.net/projects/ksatgenerator/

11

http://sourceforge.net/projects/ksatgenerator/

Table 5: The values of the extreme points (o, k) and (an¢, nnt) used to generate the random benchmarks.

‘ Qg Nk ‘ Qnt Nnt ‘
4267 2000 | 4.2 40000
9.931 800 9.0 10000
21.117 300 20 1600
43.37 200 40 400
87.79 100 85 200

~N Ok

times the SC 2012 timeout). If a instance was solved by at least one solver, it was declared satisfiable. Otherwise, the
satisfiability status of the instance was marked as UNKNOWN. From each of the 50 sets of instances generated for
each («a, n) combination, we randomly chose 12 instances that were determined satisfiable in the filtering phase. The
resulting set of a total of 600 instances constitutes the benchmark set used in the Random SAT Track.

3.4. Solver Bias in Benchmark Selection

We now discuss potential pitfalls of the SC 2012 benchmark selection process. Recall that the ranking of the
benchmarks in the benchmark pool was done using a small set of SAT solvers that were known to perform well in
the previous competitions. Once the benchmarks were ranked, a subset of benchmarks was selected, based on a set
of requirements, such as the distribution of hardness, satisfiability status, etc. Since the best-performing SAT solvers
were used for rating, the solvers might have been expected to perform somewhat similarly across the benchmark pool.
The number of instances in the pool solved by any two solvers used for ranking should be close. However, this might
not be the case across the set of selected benchmarks. As an extreme, consider the case where only two solvers A and
B are used for ranking of the benchmarks in the pool .S, and assume that the set of benchmarks S4 C S solved by A
and the set Sp C S solved by B are disjoint, and that [S4| = |Sg|. If the set S” C S of benchmarks selected for the
competition is drawn uniformly from .S, then we should expect that the number of instances in S’ solved by A and B
is similar. However, since S’ might be constructed under various additional constraints (such as satisfiability status,
old vs new, etc), it might be the case that S’ C S 4, and so the selected set is strongly biased towards solver A.

To our knowledge, such solver bias in the selected benchmarks has not been brought to light in the existing
literature and has not been investigated in prior competitions. However, this issue has the potential to significantly
affect the competition’s results. In SAT Challenge 2012, the problem surfaced during the analysis of the results of
the Application SAT+UNSAT track (see Table [6] for the preview), where the 2011 reference solver lingeling (SAT

Table 6: Preview of the original results of the Application SAT+UNSAT track on the full benchmark set (detailed results are in Sec. [3) compared
with the results on subset of benchmarks corrected for solver selection bias. The subset consists of 500 benchmarks. Rank changes with respect to
the original results are boldfaced. Reference solvers are missing the rank numbers and are typeset in italics.

Rank | Solver #solved | % solved || Adj. rank | Adj. #solved | Adj. %solved
1|SATzilla2012 APP 531 88.5 1 434 86.8
2| SATzilla2012 ALL 515 85.8 2 421 84.2
3| Industrial SAT Solver 499 83.2 3 417 83.4
- |lingeling (SAT Comp. 2011 Bronze) 488 81.3 - 389 77.8
4 |interactSAT 480 80.0 5 401 82.0
5| glucose 475 79.2 4 405 81.0
6| SINN 472 78.7 6 395 79.0
7|ZENN 468 78.0 7 393 78.6
8 | Lingeling 467 77.8 8 392 78.4
9 |linge_dyphase 458 76.3 15 377 75.4
10| simpsat 453 75.5 10 387 77.4
11| glue_dyphase 452 75.3 9 391 78.2
- | glueminisat (SAT Comp. 2011 Silver) 452 75.3 - 378 75.6
| -[glucose (SAT Comp. 2011 Gold) [451] 75.2]| - 392] 78.4

12

Comp. 2011 Bronze) showed an unexpectedly high performance on the benchmark set selected for the competition.
The fact that this solver was one of the five solvers used for the ranking of the benchmarks suggested a possible bias
towards the reference solvers. Further analysis of the evaluation data confirmed our hypothesis. To evaluate the impact
of the bias on the competition results, we corrected the bias by removing 100 benchmarks from the selected set, so
that the performance of the five solvers used for ranking of the benchmarks was relatively even. The rankings were
then re-calculated using this corrected benchmark set — the results are presented in Table [6] Since the (original)
results of the competition have already been presented to the community, and since the selection bias did not affect
the rankings of the winners, we have opted to keep the results on the original set. However, as demonstrated in
Table [] the effect of the bias was close to being dramatic: the 4th and the 5th ranked solvers switched their positions
(although, since one of these two solvers (glucose) is single-engine, and the other one (interactSAT) a multi-engine,
this would not have changed the final standings). The solver linge_dyphase dropped from the 9th place to 15th,
with the solver glue_dyphase, previously ranked 11th, taking its place. Also, notice that on the corrected set the
comparative performance of the reference solver lingeling (SAT Comp. 2011 Bronze) is just above the 10th ranked
competition solver, as opposed to being 4th.

4. Entrants

In total, 65 solvers were submitted to SC 2012 by 55 authors from 27 research groups with 12 different countries
of affiliation. Eight solvers had to be disqualified due to erroneous results they produced; thus 57 solvers participated
in SC ZOIZFEI The number of authors per country of origin is provided in Table Apart from five solver submissions
with co-authors from IBM Research, all solver authors had academic affiliations.

Table 7: Number of authors per country of affiliation.
Country Number of authors

France 12
Germany

USA

Japan

Canada
Australia

China

Taiwan

The Netherlands
Austria

Finland

Israel

—
()

—| = =N BN W W | OV O

The number of solver submissions to each competition track is provided in Table[8] A clear majority of the solvers
were submitted as pre-compiled binaries; only three solvers were submitted in source-code. Notice, however, that this
number does not tell the true number of open-source solvers participating in SC 2012. Most of the winning solvers are
publicly available after the competition.

After the submission deadline, we categorized the solver submissions into three different types of approaches
based solely on the solver descriptions provided by the authors (i.e., without taking additional input from the solver
submitters into account):

* Single-engine solvers: An implementation of a White-boxﬁ] solver consisting of a single main algorithmic ap-

24The disqualified solvers are not considered further in this paper, i.e., they have been removed from all figures, tables, etc. related to the results
of SC 2012.

Z5Here “white-box” refers to the fact that the inner components of logic should be available for inspection by the person submitting the solver.
Submitting the binary of a solver implemented by another individual, for example, would not fit into this category.

13

Table 8: Number of solvers submitted to each competition track.

| Track | Number of entrants
Application SAT+UNSAT 33
Hard Combinatorial SAT+UNSAT 37
Random SAT 11
Parallel 23
Sequential Portfolio 4

proach (e.g., conflict-driven clause learning [[71} [72, [73], [74} [75]], lookahead [76]], stochastic local search [77]).
We note that preprocessors are not considered individual algorithms, and are allowed in this category as well.

e Interacting multi-engine approaches: An implementation that combines multiple different solver implementa-
tions / different types of algorithms in an interleaving fashion, possibly (but not necessarily) with information
exchange between the different executed solvers.

e Portfolio approaches: Based on a predefined set of solver implementations. For each input, execute one or more
solvers in a black-box fashion. Solver selection may be based e.g. on pre-trained machine learning models.

We acknowledge that this categorization is somewhat rough, and only one possible way of categorizing the solver
submissions; this issue is discussed further in Section [7.5}

5. Overview of Results

This section provides the solver rankings of SAT Challenge 2012, highlighting the best-performing solvers that
were awarded, as well as a discussion of the detailed results of each track. Full rankings are provided in[Appendix B]
The complete results can be found onling%

5.1. Awarded Solvers

For each competition track and solver category, the best-performing solvers, with a listing of their developers and
the main algorithmic approach applied by the solvers, were:

Main Track: Application SAT+UNSAT

Best Single-Engine Solver in the Application Track: glucose [[/8]]
Authors: Gilles Audemard and Laurent Simon.
Type of algorithm: Conflict-driven clause learning (CDCL), based on Minisat [73].

Best Interacting Multi-Engine Approach in the Application Track: Industrial Satisfiability Solver (ISS)
Authors: Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann.

Type of algorithm: Hybridization of systematic (mostly CDCL-based) and local search solvers, using meta-
restarts and interleaved preprocessing.

Best Portfolio Approach in the Application Track: SATzilla 2012 APP

Authors: Lin Xu, Frank Hutter, Jonathan Shen, Holger H. Hoos, and Kevin Leyton-Brown.

Type of algorithm: Portfolio including a large range of both systematic and local search solvers. Solver selection
based on pre-trained cost-sensitive classification models [63]].

Main Track: Hard Combinatorial SAT+UNSAT

Best Single-Engine Solver in the Hard Combinatorial Track: clasp-crafted [15]
Authors: Benjamin Kaufmann, Torsten Schaub, and Marius Schneider.
Type of algorithm: CDCL, native implementation.

2nttp://www.satcompetition.org/edacc/SATChallenge2012/

14

http://www.satcompetition.org/edacc/SATChallenge2012/

Best Interacting Multi-Engine Approach in the Hard Combinatorial Track: interactSAT _c

Author: Jingchao Chen.

Type of algorithm: Hybridization of systematic (CDCL solver clasp, lookahead solver March) and local search
(sparrow2011) solvers.

Best Portfolio Approach in the Hard Combinatorial Track: SATzilla 2012 COMB

Authors: Lin Xu, Frank Hutter, Jonathan Shen, Holger H. Hoos, and Kevin Leyton-Brown.

Type of algorithm: Portfolio including a large range of both systematic and local search solvers. Solver selection
based on pre-trained cost-sensitive classification models.

Main Track: Random SAT

Best Solver in the Sequential Random SAT Track: CCASat
Authors: Shaowei Cai, Chuan Luo, and Kaile Su.
Type of algorithm: Local search, employing “configuration checking with aspiration” (CCA) [79].

Parallel Track: Application SAT+UNSAT

Best Solver in the Parallel Track: pfolioUZK

Authors: Andreas Wotzlaw, Alexander van der Grinten, Ewald Speckenmeyer, and Stefan Porschen.

Type of algorithm: Portfolio including a range of both systematic and local search solvers, inspired by the pp-
folio portfolio. Simple solver selection, based on a combination of “uniformity-based selection” (depending on
whether all clauses of a formula have exactly the same length) and a static solver configuration setup, allocating
one solver to each available CPU core.

Sequential Portfolio Track

Best Solver in the Sequential Portfolio Track: SATzilla 2012 ALL

Authors: Lin Xu, Frank Hutter, Jonathan Shen, Holger H. Hoos, and Kevin Leyton-Brown.

Type of algorithm: Portfolio including a large range of both systematic and local search solvers. Solver selection
based on pre-trained cost-sensitive classification models.

For more details on the algorithmic and implementation-level details of the individual solvers, we refer the reader
to the solver descriptions collection released as a technical report [39].

5.2. Detailed Results

Cactus plotrepresenting for each solver the number of instances that can be solved (x-axis) within a given
timeout (y-axis)—for each competition track, including for clarity only the Top-10 best performing solvers and the
reference solvers, are provided in Figures [[H5] Similarly, numerical data for the Top-10 solvers and the reference
solvers is provided in Tables [OHI3] and the full tables are provided in[Appendix B]

In the result tables, solvers are ordered by the number of solved instances, and ties are broken taking the cumulative
runtime into account. We also provide a second ranking (T-Rank), where only solvers of the same type (portfolio,
single-engine, etc.) are taken into consideration. Besides the number of solved instances (#solved), we also give the
percentage of solved instances (%solved), the cumulative runtime over all solved instances (time (cum.)), as well as
the median runtime over all solved instances (time (med.)).

5.2.1. Application SAT+UNSAT Track
The Application SAT+UNSAT Track was dominated by portfolio and multi-engine solvers. They took the first four
places (not taking the reference solver lingeling from SAT Competition 2011 into account). The winner, SATzilla2012

2TWe use cactus plots instead of the almost equivalent empirical cumulative distributions functions for better visualization. This is because the
prime information of interest, the number of solved instances, should be plotted on the axis that has most space (in our plots the x-axis). As
the difference in the number of solved instances is very small, we use a linear scale instead of a logarithmic scale. Note that EDACC offers the
possibility to also plot the cumulative distributions and also supports logarithmic scales.

15

APP, even comes close to the virtual best solver. This suggests that high variability and adaptability in solver heuristics
is extremely advantageous.

glucose was the best single-engine solver, exhibiting clearly improved performance over its 2011 version, now
solving 79.2% of the instances compared to only 75.2% in 2011. It is also interesting to observe that the median
runtime of the 2011 version of glucose is much lower than that of any other solver. The exact reason for this behavior
is unclear, and may be caused by a different adjustment of solver heuristics compared to previous versions (see [39,
p- 21]).

As reference solvers we have selected the best solvers from the 2011 SAT Competition, as well as additional
solvers of general interest (such as the well-known and popular solver minisat).

SATzilla2012 APP
SATzilla2012 ALL
Industrial SAT Solver
lingeling (SC11 Bronze)
interactSAT

glucose

SINN

ZENN

Lingeling

800

600

linge_dyphase
simpsat

CPU Time (s)

400 glueminisat (SC11 Silver)

glucose (SC11 Gold)
CryptoMiniSat (REF)
minisat (REF)

fresotetdddfry

200

0 100 200 300 400 500

number of solved instances

Figure 1: Cactus plot for the Application track. The total number of benchmarks in the track was 600.

5.2.2. Hard Combinatorial SAT+UNSAT Track

Similarly to the Application SAT+UNSAT Track, this track was dominated by portfolio and multi-engine solvers
(see Figure 2] on Page[T7] and Table 10| on Page[I8). The best single-engine solver, clasp-crafted, comes in only on
place seven, solving approximately 18% less instances than the best solver, SATzilla2012 COMB.

There is a quite considerable gap between the second and third best solver (over 12% in number of solved in-
stances), as well as between the first five and the following solvers (over 8% in number of solved instances). Perhaps
even more severe is the difference in median runtime between the first five and the sixth best solver, with a factor of
almost 3.5.

16

CPU Time (s)

Table 9: Results for Application SAT+UNSAT main track: Top-10 and reference solvers

Solver type |Rank|T-Rank |Solver #solved | %osolved | time (cum.) | time (med.)
vbs - - | Virtual Best Solver (VBS) 568 94.7 56528 30.3
portfolio 1 1|SATzilla2012 APP 531 88.5 85194 114.0
portfolio 2 2| SATzilla2012 ALL 515 85.8 86638 122.2
multi-engine 3 1| Industrial SAT Solver 499 83.2 93705 160.2
reference - - |lingeling (SAT Comp. 2011 Bronze) 488 81.3 84715 1353
multi-engine 4 2 |interactSAT 480 80.0 87676 152.5
single-engine 5 1 |glucose 475 79.2 71501 114.4
single-engine 6 2|SINN 472 78.7 86302 146.4
single-engine 7 3|ZENN 468 78.0 74019 124.7
single-engine 8 4 |Lingeling 467 77.8 91973 185.5
single-engine 9 5 |linge_dyphase 458 76.3 90192 204.4
single-engine 10 6 | simpsat 453 75.5 95737 222.0
reference - - | glueminisat (SAT Comp. 2011 Silver) 452 75.3 68818 145.7
‘reference ‘ —‘ - ‘ glucose (SAT Comp. 2011 Gold) ‘ 451 ‘ 75.2‘ 62424‘ 77.8‘
‘reference ‘ - - | CryptoMiniSat ‘ 442‘ 73.7‘ 95035‘ 240.6‘
|reference | - - | minisat | 399] 66.5| 65633 | 189.5]
—— SATzilla2012 COMB N
—A— SATzilla2012 ALL i
800 — —+— ppfolio2012 ‘i
interactSAT_c p:
—— pfolioUZK }.
—v— aspeed-crafted lj
600 —&— clasp—crafted ”
—*%— MPhaseSAT (SC11) (REF) &
——— claspfolio—crafted]
—¢— clasp (SC11 #1 Non-portfolio) (REF.)
—%— Lingeling
400 9 g CCcCeq
glucose (SC11 #3 Non-portfolio) (REF.)
—&— CryptoMiniSat (REF.)
—=— minisat (REF)
200
0 Y

300

100 200 400

number of solved instances

Figure 2: Cactus plot for the Hard Combinatorial track. The total number of benchmarks in the track was 600.

17

Table 10: Results for Hard Combinatorial SAT+UNSAT main track: Top-10 and reference solvers

Solver type |Rank |T-Rank |Solver #solved | %solved | time (cum.) | time (med.)
vbs - - | Virtual Best Solver (VBS) 529 88.2 24848 1.3
portfolio 1 1|SATzilla2012 COMB 476 79.3 38108 454
portfolio 2 2| SATzilla2012 ALL 473 78.8 41765 452
portfolio 3 3 | ppfolio2012 422 70.3 35784 50.5
multi-engine 4 1|interactSAT ¢ 417 69.5 40313 56.6
portfolio 5 4 | pfolioUZK 401 66.8 34187 71.7
portfolio 6 5| aspeed-crafted 370 61.7 49239 269.3
single-engine 7 1| clasp-crafted 367 61.2 49317 277.0
reference - -| MPhaseSAT (SAT Comp. 2011) 361 60.2 35006 172.6
portfolio 8 6 | claspfolio-crafted 352 58.7 42522 296.7
reference - -|clasp (SAT Comp. 2011 #1 Non-portfolio) 347 57.8 41038 322.2
single-engine 9 2| Lingeling 333 55.5 27313 291.0
multi-engine 10 2| CCCneq 329 54.8 36311 454.6
reference - -| glucose (SAT Comp. 2011 #3 Non-portfolio) 322 53.7 34546 5154
reference - - | CryptoMiniSat 307 51.2 32414 682.9
reference - - |lingeling 305 50.8 29095 801.4
reference - - | minisat 304 50.7 39055 843.9
reference - - |Sparrow2011 217 36.2 19972 900.0
reference - -|EagleUP (SAT Comp. 2011) 34 5.7 997 900.0

5.2.3. Random SAT Track
In the Random SAT Track, portfolio solvers also fared quite well, but were beaten by a new single-engine solver,
CCASat. The local-search solver CCASat employs configuration checking that originates from local search algo-
rithms for the Minimum Vertex Cover problem, and combines it with the aspiration mechanism from tabu search.
This new algorithm solves over 30% more instances in the competition than the second best solver. Compared to the
best solver of 2011, it solved almost 40% more instances. The median runtime of CCASat is also much lower than
that of the other solvers. The success of CCASat also impressively shows that improving core algorithms is of prime
importance, being even more successful than competing portfolios.

Table 11: Results for Random SAT main track

Solver type |Rank|T-Rank |Solver #solved | %solved | time (cum.) | time (med.)
vbs - - | Virtual Best Solver (VBS) 558 93.0 72841 39.2
single-engine 1 1| CCASat 423 70.5 76206 218.8
portfolio 2 1| SATzilla2012 RAND 321 53.5 80796 714.4
portfolio 3 2| SATzilla2012 ALL 306 51.0 83273 845.6
reference - |Sparrow2011 (SAT Comp. 2011 Gold) 303 50.5 76396 876.1
reference - - | EagleUP (SAT Comp. 2011 Bronze) 283 47.2 83787 900.0
single-engine 4 2| sattime2012 269 44.8 80345 900.0
portfolio 5 3| ppfolio2012 253 42.2 70903 900.0
reference - - | sattime2011 (SAT Comp. 2011 Silver) 236 39.3 67237 900.0
portfolio 6 4| pfolioUZK 230 383 55584 900.0
single-engine 7 3|ssa 150 25.0 35316 900.0
single-engine 8 4 | gNovelty+PCL 123 20.5 40240 900.0
single-engine 9 5|BossLS 103 17.2 18934 900.0
single-engine 10 6| sparrow2011-PCL 81 13.5 22788 900.0

5.2.4. Special Tracks
The SC 2012 special tracks were the Parallel Track Application SAT+UNSAT and the Sequential Portfolio Track.

18

CPU Time (s)

800

600

400

200

T

CCASat

SATzilla2012 Rand

SATzilla2012 ALL

Sparrow2011 (SC11 Gold) (REF)
EagleUP (SC11 Bronze) (REF.)
sattime2012

ppfolio2012

sattime2011 (SC11 Silver) (REF)
pfolioUZK

ssa

gNovelty+PCL

BossLS

sparrow2011-PCL

100

200

300

number of solved instances

400

500 600

Figure 3: Cactus plot for the Random SAT track. The total number of benchmarks in the track was 600.

In the Parallel Track, concurrent and parallel solving algorithms could make use of all eight cores of a cluster
node. Here, the runtimes are given as wall-clock times, which means that each solver had approximately eight times
the compute resources available compared to the (sequential) Application SAT+UNSAT Track.

One would expect that—by having more compute power available—the solvers are much stronger now and solve
more instances. However, this turned out not to be the case. The best performing solver in the Parallel Track,
pfolioUZK, solved exactly the same number of instances (531) as the best solver in the sequential Application
SAT+UNSAT Track, SATzilla2012 APP—although, the median wall-clock runtime of pfolioUZK is 65% lower than
that of SATzilla2012 APP.

pfolioUZK
PenelLoPe
ppfolio2012
Cellulose

6000

ppfolio
Sucrose
ParaCIRMIniSAT

4000 clasp

Glycogen
ZENN(fork
claspmt (REF.)

CPU Time (s)
SRR IS LR IR SR B AE

2000

0 ‘ T T T T
0 100 200 300 400 500

number of solved instances

Figure 4: Cactus plot for the Parallel Application track. The total number of benchmarks in the track was 600.

Comparing the sequential and parallel versions of pfolioUZK, the improvement by the additional CPU power
becomes more obvious. Whereas the sequential version of pfolioUZK ranked 16th in the sequential Application
SAT+UNSAT Track, solving 404 instances, the parallel version fared much better, solving 531 instances. The median
solving time also improved by a factor of five. This can be assumed to be close to the expected gain of 700% on the
instances solved by both versions of the solver.

Unfortunately, among the Top-10 solvers from the sequential Application SAT+UNSAT Track, only one (ZENN)
participated (in a slightly different version, ZENNfork) in the parallel track, which makes an assessment of the state-
of-the-art in parallel SAT solver technology harder. It is also quite surprising that the parallel version, ZENNfork,
solved only 3.5% more instances than the sequential ZENN solver.

The solver claspmt ranked 5Sth in the 2011 SAT Competition Application Track. clasp is the follow-up version of
claspmt of 2012, in which multi-threading support has been built in. clasp solved 35% more instances, which, for this
solver at least, shows the considerable progress made over one year.

20

Table 12: Results for Parallel Application track: Top-10 and reference solvers. The total number of benchmarks in the track was 600.

Solver type | Rank | Solver #solved | %solved | time (cum.) | time (median)
vbs - | Virtual Best Solver (VBS) 576 96.0 39670 19.6
parallel 1 | pfolioUZK 531 88.5 72390 69.1
parallel 2 | PeneLoPe 530 88.3 62967 54.4
parallel 3 | ppfolio2012 525 87.5 78833 91.4
parallel 4 | Cellulose 521 86.8 53705 42.0
parallel 5 | ppfolio 509 84.8 75400 91.3
parallel 6 | Sucrose 503 83.8 76120 80.7
parallel 7 | ParaCIRMiniSAT 496 82.7 63497 86.7
parallel 8 | clasp 490 81.7 62424 77.8
parallel 9 | Glycogen 489 81.5 76241 97.1
parallel 10 | ZENNfork 485 80.8 73808 89.1
reference - | claspmt 362 60.3 56435 352.3
Table 13: Results for Sequential Portfolio Track
Solver type | Rank | Solver #solved | %solved | time (cum.) | time (median)
vbs - | Virtual Best Solver (VBS) 484 80.7 64805 65.5
portfolio 1 | SATzilla2012 ALL 433 72.2 68033 139.9
portfolio 2 | ppfolio2012 370 61.7 65598 376.0
portfolio 3 | pfolioUZK 362 60.3 69485 391.6

In the Sequential Portfolio Track, one third of the competition benchmark instances came from each of the three
categories Application, Hard Combinatorial, and Random. Unfortunately, only three solvers participated in this
“mixed” track, even though we believe the track would have been rather interesting for showcasing the potential
of portfolio solvers as generic SAT solvers. SATzilla2012 ALL, which is optimized for such a mixed set of problem
instances, could outperform the other two solvers, solving 17% more instances than the second best solver ppfo-
lio2012. It is noteworthy that the generic mixed heuristics of SATzilla2012 ALL performed quite well also in the
tracks specialized on only one category of benchmarks, where it consistently ranked just one place behind the more
specialized versions of SATzilla2012, namely SATzilla2012 APP, SATzilla2012 COMB, and SATzilla2012 RAND.

@ 800 1 —— sATzilla2012 ALL
2 600 ppfolio2012
I:—> 200 | —+— pfolioUZK
o
O 200
0 100 200 300 400

number of solved instances

Figure 5: Cactus plot for the Sequential Portfolio track. The total number of benchmarks in the track was 600.

21

6. Analysis

In this section we provide a more detailed analysis of the results of SC 2012.

6.1. Impact of Ranking Schemes

The solution-count ranking scheme (SCR) used in SC 2012 ranks solvers according to the number of solved
instances. Ties are broken by the cumulative CPU time. The SCR scheme has been used in the SAT Competitions and
SAT-Race since 2009, replacing the purse-based ranking (PBR) [80] after a questionnaire about the preferred ranking
scheme was done by the organizers of the 2009 SAT Competition. In addition to being easy to understand, SCR defines
a transitive relation between solvers, i.e. the relative ranking of two solvers cannot be influenced by a third solver,
which is not true for PBR.

However, SCR clearly also has disadvantages. One is that the produced rankings can be highly dependent of the
enforced timeout. Another is that the runtime of the solvers plays only a marginal role within the ranking and is taken
into account only in case of ties in the number of instances solver: a solver S that solves n instances will lose against
a solver S’ that solves n + 1 instances independent of the average runtime of S and S’. Due to this, SCR has been
criticized in multiple papers [80,(81]]. One proposed alternative is the careful-ranking scheme (CR) [80] which is based
on pairwise comparisons of solvers inspired by statistical tests. However, the CR scheme does not define a transitive
relation. Another possibility is to rank solvers by their penalized average runtime (PAR) [82]. This idea gives a family
of PARz ranking schemes over different penalization factors x. Denoting the imposed timeout limit by ¢, the PARx
measure computes the average runtime by counting timeouts as having value x - ¢. The parameter x controls the
balance between the average runtime (over the successful runs) and the number of solved instances. Notice that SCR
is equivalent to PARz in the limit x — oo. Therefore, it is to be expected that the correlation between PARz and SCR
approaches 1 as x grows.

Here we study correlations between the rankings produced by the ranking schemes SCR, CR, and PARx for
z = 1,2,10 using the SC 2012 data. Two possible correlation coefficients of interest are Kendall’s 7 and Spearman’s
p coefficients. Whereas the former measures the relative number of the number of disagreements and agreements
between two rankings, the latter takes also into account the absolute differences in the disagreements. Intuitively, if
two ranking methods rank a solver very differently, Spearman’s p coefficient will be lower than Kendall’s 7. One
should note here that small differences between two rankings are not relevant as long as the big picture remains
unchanged, i.e, a solver ranked among the best-performing solvers by one scheme should not be ranked as one of the
worse/worst-performing solvers). Keeping this in mind, we use Spearman’s p correlation coefficient for our analysis.

The results are shown in Tables @ @, and @] for the Application, Hard Combinatorial, and Random SAT main
track data, respectively. The SCR scheme correlates well with the PARx rankings; this correlation increases with z,
as the higher the value of x, the more the unsuccessful runs are penalized. Even when runs are penalized with a factor
of 10 (PAR10), some solvers could compensate this penalization with overall short runtimes, ranking higher under
PAR10 than under SCR. The CR scheme (using noise of 5 seconds) correlates better with PAR10 and SCR than with
PAR1 and PAR2, which is to some extent surprising, as we would have expected that CR emphasizes more the average
runtime than the number of successful runs. We note to the interested reader that the EDACC SC 2012 web front-end
provides (under “Ranking”) all the aforementioned ranking methods (except PBR), allowing anyone to analyze further
the rankings of one’s interest.

Table 14: Spearman’s rank correlation coefficient p between the different ranking schemes on the Application Track data. The higher the value the
more correlated two ranking methods are.

p SCR CR PAR1 PAR2 PARIO
SCR 1.000 0917 0.967 0991 0.999

CR 1.000 0.900 00911 00918
PARI 1.000 0.953 0.968
PAR2 1.000 0.987
PAR10 1.000

22

Table 15: Spearman’s rank correlation coefficient p between the different ranking schemes on the Hard Combinatorial Track data.

p SCR CR PAR1 PAR2 PARIO
SCR | 1.000 0943 0992 0.999 1.000

CR 1.000 0.936 0.936 0.940
PAR1 1.000 0.990 0.991
PAR2 1.000 0.999
PAR10 1.000

Table 16: Spearman’s rank correlation coefficient p between the different ranking schemes on the Random SAT Track data.

p SCR CR PAR1 PAR2 PARIO
SCR 1.000 0968 0.990 0.993 1.000

CR 1.000 0946 0949 0.968
PARI1 1.000 0.998 0.990
PAR2 1.000 0.993

PAR10 1.000

Ranking the solvers from the different tracks according to the before mentioned ranking schemes would have
changed the ranking of the top three solvers only when using CR and in this case only slightly (i.e. a change of the
second or third solver would have occurred).

6.2. Stability of Rankings with Respect to the Timeout

The ranking of the solvers within each track also depends on the selected timeout, which in SC 2012 was 900
seconds. The EDACC web front end allows to simulate the ranking with lower timeouts. To measure the stability of
the ranking with respect to different timeouts, we have computed the ranking for timeouts of 450, 180 and 90 seconds,
which corresponds to 1/2, 1/5 and 1/10 of the original timeout. For each ranking we then computed the Spearman
correlation coefficient between the original ranking and the simulated ones with lower timeout; the results are shown
in Table

The rankings for the sequential tracks remain quite stable if we reduce the timeout to 450 seconds, implying that
we would have obtained almost the same results (rankings) by using only half of the resources in these tracks. Only
the sequential Application track would have produced a different 3rd ranking. However, for the parallel track, the
disagreement is already on the first ranked solver, suggesting that the results in this track are very sensitive to the
timeout value (see also Section[6.3). Using 180 seconds as the timeout resulted in considerably larger changes in the
rankings, especially for the Application tracks. These changes are even more pronounced when using only 90 seconds.
Interestingly, the ranking variations are very low for the Hard Combinatorial and Random tracks even when using only
1/10 of the original timeout.

Table 17: Spearman’s rank correlation coefficient p between the original ranking (established upon a timeout of 900 seconds) and the simulated
ranking when the timeout is 450, 180 and 90 seconds. The value in brackets represents the rank position of the first disagreement.

Track 450sec. 180sec. 90sec.

Application 0978 3) 0.871(3) 0.695(1)
Hard Combinatorial | 0.990 (7) 0.980(7) 0.948 (7)
Random 0.990 (7) 0.939(4) 0.919(3)
Application parallel | 0.962 (1) 0.899 (1) 0.828 (1)
Portfolio 1.000 (-) 1.000 (-) 0.700 (2)

23

Table 18: Descriptive statistics of the distribution of the sub-sample rankings of the top 15 solvers in each of the competition tracks, taken over
1000 sets of 300 (uniform, out of 600) randomly drawn benchmarks in each track. The left-most column shows the original ranking over the 600
benchmarks used in each of the tracks of the competition. Each of the subsequent groups of 3 columns corresponds to each of the competition
tracks. In each group, the mean, the standard deviation, and the median of the sub-sample ranks are shown. Columns for tracks with less than 15
solvers contain empty entries. Entries where the sum-sample ranking differ drastically from the original ranking are boldfaced.

Orig Application Hard Comb. Random App. Parallel Seq. Portfolio
Rank| Avg. Std. Med.| Avg. Std. Med.| Avg. Std. Med.| Avg. Std. Med.| Avg. Std. Med.
1| 1.00 0.03 1.0| 1.15 0.36 1.0| 1.00 0.00 1.0| 1.74 0.86 2.0/ 1.00 0.00 1.0
2| 2.00 0.08 20| 1.85 036 20| 2.08 0.28 20| 1.89 0.92 2.0| 2.14 034 2.0
3] 3.01 0.18 3.0 329 046 3.0 292 028 3.0| 3.06 0.93 3.0| 2.86 0.34 3.0
4| 476 1.15 40| 379 057 40| 432 0.58 40| 348 1.02 4.0
5| 532 1.26 50| 492 0.28 50| 5.14 0.71 50| 588 1.12 6.0
6| 625 1.27 6.0| 6.26 045 6.0| 556 0.64 6.0/ 6.03 1.19 6.0
71 712 1.36 70| 676 048 70| 698 0.14 70| 7.12 127 7.0
8] 7.38 1.63 8.0/ 8.00 0.28 8.0/ 802 0.13 80| 748 143 8.0
91 9.71 1.76 10.0f 991 124 9.0 9.07 0.32 9.0| 9.13 1.30 9.0
10| 11.20 191 11.0| 11.05 1.61 11.0| 993 0.32 10.0| 10.52 1.29 10.0
11 11.11 1.85 11.0| 11.24 1.62 11.0| 1098 0.13 11.0/ 1099 1.36 11.0
12| 11.41 1.48 12.0| 12.28 2.40 12.0 11.64 145 12.0
13| 11.60 1.71 12.0| 12.28 2.07 12.0 12.58 1.66 13.0
14| 13.12 1.15 14.0| 1572 224 16.0 1524 1.31 15.0
15| 15.01 0.19 15.0| 16.15 2.74 16.0 1536 1.44 15.0

6.3. Stability of Rankings with Respect to the Benchmarks Set

To evaluate the impact of the selected benchmark set on the solver rankings, we performed the following experi-
ment. For each track, we sub-sampled 300 out of 600 benchmarks uniformly at random, and ranked the participating
solvers on the resulting sample; we refer to the resulting ranking as sub-sample ranking. This procedure was repeated
1000 times. The descriptive statistics of the resulting distribution of the solver’s sub-sample rankings are presented
in Table[T8] With the exception of the Application Parallel track, the rankings of the top performing solvers are quite
stable: the median sub-sample rankings match the original rankings. However, in the Application Parallel track, the
sub-sample rankings of the top two solvers vary to a very large degree. Hence the solvers would likely have switched
ranks on a smaller set of benchmarks. A similar observation can be made for solvers ranked 9-14 in the Application
track, 10-15 in the Hard Combinatorial track, and even 5-6 in the Parallel track. Many of the solvers ranked below
15 (not shown in the table) are in a similar situation as well. The only track that is very stable with respect to the
selected set of benchmarks is the Random track. This is likely due to the fact that the random benchmark set is very
homogeneous in terms of structural properties of the instances.

Regarding categorization of benchmarks, we note that some benchmark instances have both Application and Hard
Combinatorial benchmarks characteristics. One notable example is the class of SAT encoded cryptographic prob-
lems, such as attacks against the block ciphers AES and DES. The computational hardness assumptions underlying
the construction of these ciphers might suggest categorizing the resulting benchmarks as Hard Combinatorial, while
the domain and the typically weak performance of the solvers in the Hard Combinatorial track on these instances
suggest their classification as Application benchmarks. To evaluate the potential impact of re-classification of these
benchmarks, we re-computed the rankings of the solvers in the Application track on the subset of the application
benchmarks that excludes the cryptographic instances. The results are presented in Table [[9] While the rankings of
the winners have not been affected, already the solvers on the 4th and Sth position swapped their places. The changes
in the rankings of lower-ranked solvers are even more dramatic with some solvers gaining or loosing up to three posi-
tions in the rankings. The results demonstrate that the issue of clear benchmark categorization has to be addressed in
future competitions.

6.4. How Similar are the Submitted Solvers

As a measure of similarity between solvers, we computed the Spearman rank correlation between the results of
all pairs of solvers. Rank correlation is better suited for analyzing the performance similarities of solvers than, e.g.,

24

Table 19: Comparison of the (original) rankings of the top 15 solvers in the Application SAT+UNSAT track on the full set of benchmarks with the
rankings of the solvers on the set without the 58 cryptographic instances. Rank changes with respect to the original results are highlighted with bold
typeface. Reference solvers are not listed.

Full set (600 instances) No crypto (542 instances)
Solver Rank | #solved | %solved || Rank | #solved | %solved
SATzilla2012 APP 1 531 88.0 1 475 87.0
SATzilla2012 ALL 2 515 85.0 2 464 85.0
Industrial SAT Solver 3 499 83.0 3 460 84.0
interactSAT 4 480 80.0 5 436 80.0
glucose 5 475 79.0 4 437 80.0
SINN 6 472 78.0 7 430 79.0
ZENN 7 468 78.0 8 427 78.0
Lingeling 8 467 77.0 6 435 80.0
linge_dyphase 9 458 76.0 11 420 77.0
simpsat 10 453 75.0 13 409 75.0
glue_dyphase 11 452 75.0 9 424 78.0
CCCneq 12 452 75.0 12 411 75.0
TENN 13 451 75.0 10 421 77.0
CCCeq 14 446 74.0 14 406 74.0
ppfolio2012 15 423 70.0 15 385 71.0

Pearson correlation that would only reveal possible linear correlations. The resulting correlation matrix is clustered
hierarchically (under average distance) and plotted as a heat mapEg] This kind of plot was also used in [83]] to analyze
the contribution of solvers within a portfolio solver.

Figures@-@]show the obtained hierarchical clusterings as dendrograms (top) and the correlation matrices (bottom).
In the correlation matrices, rows and columns correspond to solvers, and are ordered in such a way that “similar”
solvers are adjacent. Each entry in the correlation matrices gives the degree of correlation between two solvers. Instead
of numeric entries, a color code is used for displaying correlations: darker colors correspond to high correlations,
whereas lighter colors indicate a low degree of correlation. Below the matrix, the translation from color codes to
numerical values is shown, together with a histogram indicating the frequency with which each correlation value
occurs.

Application Track.. Figure[6]shows the correlation and clustering of the solvers from the Application track (excluding
disqualified solvers). The dendrogram as well as the correlation matrix show clearly that March behaves quite dif-
ferently from all the other solvers As March implements a lookahead DPLL algorithm, whereas all other solvers
are based on the CDCL approach, this is not very surprising. In contrast to March, the performance of CDCL solvers
seems to be very similar. In particular, there are several pairs of solvers with almost identical behavior:

« simpsat and CryptoMiniSat (the former has been implemented based on the latter);
» satUZK and satUZKs (the latter is a version of the former with added preprocessing); and
¢ glucose and glue_dyphase (the latter is a variant of the former with a slightly modified phase selection strategy).

The dendrogram also reveals three larger clusters of related solvers, where the first ranges from SINN to riss, the
second from caglue to satUZKs, and the third from pfolioUZK to simpsat. It can be assumed that solvers (excluding
the reference solvers) in the first cluster are either based on or incorporate very similar techniques to minisat, in the
second cluster similar to glucose, and in the third to the solvers lingeling or CryptoMiniSat.

Hard Combinatorial Track.. Figure [/| shows the results for the Hard Combinatorial track (excluding disqualified
solvers). The two classes of SLS and CDCL/DPLL solvers can be easily detected in the clustering (solvers CCASat

28We used the heatmap.2 package from the R statistical computing language.
29 A similar observation was made in [83]] in the context of evaluating solver contributions in the SATzilla 2011 portfolio solver.

25

SINN

ZENN

ppfolio2012

TENN

glueminisat (SC11)
glucose

minisat (ref.)
contrasat12
relback_m

riss

caglue

Glucose++

relback

glucose (SC11)
glue_dyphase
interactSAT
satUzK

satUZKs

pfolioUZK
SATzilla2012 APP
Industrial SAT Solver
Lingeling

lingeling (SC11)
CCCneq

CCcCeq
SATzilla2012 ALL
linge_dyphase
CryptoMiniSat (ref.)
simpsat

Clingeling
Sat4j
Flegel
march
.CE;-‘U’)‘@"‘.‘Q)—IUUAD‘-Q_!UJXI—GJA¥+G)U)EN’\.GJAZNZZ
S ST £ 388 8IF 322 s2aNNSEIdREZ22OZSELR2Z2z2z2
c 9 pH o 2 = c 09 o o <2 2 8L c oo g 2 $ 8 & 0o 0 W g Wwx
£ L o £ = & o O =) S 2% 8 a2 v B I S v = 3 5 N
=8 S99 002 ¢ N =7 8§ s §SL @ 8 o s s g 5 £ 2
= 9 ¢ 5 o O Ee 2o g g 3 = 5 2 5 o @ Z o
) R 2244 38 2 %3 3 ® £ ¢ @ 3
E o £ o 9 c o & o = g £ a =3
S o = D = = = 3 8 ° E z o
s £ N =) 8 N > 3 =
2= k& £ =g > 5
> o - R =
(@] g 5]
Color Key and Histogram
2 4
-
co |
=
3 4
OR 1
e T T
0.2 0.4 0.6 0.8 1

Value

Figure 6: Clustered correlation matrix of the results of the solvers from the Application Track. Dark areas correspond to high correlation, whereas
light areas correspond to low correlation between the solvers.

26

o e T e

SINN

ZENN

lingeling (ref.)

riss
aspeed-crafted
claspfolio—crafted
minisat (ref.)
contrasat12
relback_m

TENN

Sat4j

satuzK

satUZKs

caglue

glucose (SC11)
relback
clasp-crafted
clasp (SC11)
CryptoMiniSat (ref.)
CCCneq

CCCeq

Lingeling

simpsat
linge_dyphase
Clingeling

Flegel
MPhaseSAT (SC11)
ppfolio2012
pfolioUZK
SATzilla2012 COMB
SATzilla2012 ALL
interactSAT_c
march

CCASat
sparrow2011-PCL
gNovelty+PCL
Sparrow2011 (ref.)
sattime2012
sattime2011
BossLS

EagleUP (SC11)

SATzilla2012 ALL

SATzilla2012 COMB
riss

contrasat_lz
minisat (ref.)
lingeling (ref.)

march
claspfolio—crafted

interactSAT_c
Flegel

BossLS
sattime2011
sattime2012

Clingeling
linge_dyphase
caglue
satUzKs

Sat4j

TENN
relback_m
ZENN

SINN

Sparrow2011 (ref.)
simpsat

Lingeling
CCCeq
CCCneq

CryptoMiniSat (ref.)
relback

EagleUP (SC11)
gNovelty+PCL
sparrow2011-PCL
CCASat

pfolioUZK
ppfolio2012
MPhaseSAT (SC11)
clasp (SC11)
clasp—crafted
glucose (SC11)
satUzK
aspeed-crafted

Color Key and Histogram

Count
0 20 50

T T T
0 0.2 0.

0.6 0.8 1

4
Value

Figure 7: Clustered correlation matrix of the results of the solvers from the Hard Combinatorial Track. Dark areas correspond to high correlation,
whereas light areas correspond to low correlation between the solvers.

27

to EagleUp, and SINN to March, respectively). CDCL solvers are in the top-right part, and SLS solvers show
up on bottom-left. Between the SLS and the CDCL class we can also recognize the set of portfolio approaches,
ppfolio2012, pfolioUZK, SATzilla2012 COMB, and SATzilla ALL. Two other solvers, interactSAT_c and March,
are strongly correlated (interactSAT _c uses the lookahead solver March as a sub-solver). Also worth noting is that
all portfolio solvers are heavily using the MPhaseSAT solver from the 2011 SAT Competition added as a reference
solver. This is not surprising as MPhaseSAT had the largest unique solver contribution (the number of instances
solved only by MPhaseSAT) in the 2011 SAT Competition crafted category; this is also the case for the SC 2012
Hard Combinatorial track when disregarding the portfolio solvers. The MPhaseSAT solver [84]] uses a phase heuristic
inspired by lookahead solvers which is quite expensive to compute, but appears to provide a key to solving some of
the harder instances. The solver EagleUP behaves quite differently from the other SLS solvers, which may be due to
the incorporation of unit propagation, a feature that is missing from the other SLS solvers.

It is also interesting that the performance of the portfolio solvers (ppfolio2012 to interactSAT _c) is quite similar
to that of CDCL solvers in this track, although these portfolio solvers integrate both SLS and CDCL components.
This might indicate that constituent CDCL solvers dominate the behavior of such portfolios on hard combinatorial
problems.

SLS solvers have an important contribution in the Hard Combinatorial track, being able to solve some satisfiable
instances that the competing CDCL solver cannot solve. Analyzing the set of CDCL solvers together with only one
single SLS solver, sattime2012, reveals that sattime2012 has a unique solver contribution of 39 instances. The VBS
is using SLS solvers on 192 out of 516 instances.

Random. Figure [§] shows the correlation and clustering of the solvers from the Random SAT track. There is a rel-
atively large cluster around Sparrow2011, the winner of the Random SAT track of the 2011 SAT Competition. All
portfolio solvers (SATzilla2012 ALL to ppfolio2012) and also the non-portfolio solver CCASat are relatively highly
correlated with Sparrow2011, suggesting that the portfolio solvers often run Sparrow2011 or a solver exhibiting
similar performance as Sparrow2011. CCASat tries to mimic the behavior of Sparrow2011 using a technique called
configuration checking with aspiration (CCA). The portfolio solvers pfolioUZK and ppfolio are highly correlated,
which might be due to the fact that the former is based on the latter. The SLS solver BossLS behaves quite differently
from all other solvers. A reason for this might be the extensive preprocessing performed by this solver, including unit
propagation, failed literal detection, and asymmetric blocked clause elimination. In general, the degree of correlation
in the Random SAT track is much lower than in the Application and Hard Combinatorial track; the diversity of solving
approaches submitted was much higher for this track.

Parallel Application. Figure[9|shows the correlation and clustering of the solvers from the Application Parallel track.
Four major clusters can be detected here:

* the set of parallel portfolio solvers (pfolioUZK to ppfolio2012);

¢ the solver families CCC[n]eq (hybrid lookahead plus CDCL); and Plingeling/Treengeling (CDCL);
* the parallelized versions of glucose and minisat (Sucrose to Minifork); and

* the solvers claspmt, splitter, and CryptoMiniSat.

The approaches used by these solvers are quite different. The portfolio solvers use different base solvers running
in parallel with different strategies, with no or only minimal clause exchange. The solvers in the second class (CCC-
variants and descendants of lingeling) are based on search space splitting, use forms of learned clause exchange,
and, in the case of the cube-and-conquer solvers of the CCC family, combine a CDCL algorithm with a lookahead-
approach for determining how to split the search space. Parallel derivations of glucose use competition parallelism
(i.e., differently configured versions of a CDCL base solver running in parallel on the whole SAT instance) with forms
of clause exchange. The solvers ZENNfork and Minifork, based on minisat, perform search space splitting, but no
clause exchange. Solvers in the last group, consisting of claspmt, splitter and CryptoMiniSat, implement specialized
algorithms, e.g., iterative partitioning in case of splitter.

28

Sparrow2011 (SC11)

SATzilla2012 ALL

SATzilla2012 RAND

CCASat

pfolioUZK

ppfolio2012

sattime2012

EagleUP (SC11)

sattime2011 (SC11)

gNovelty+PCL

sparrow2011-PCL

BossLS
n — © — o for o~ N ~ = [a) - —~
2 g § © 3 9 g5 § 8§ & g 32 7
2 a o O O I I 2 < < < 9]
2 i ¥ > 5 ° N
S — > 12 12 2 o = 9 e P a
o =} 5 “ o £ o L2 O N o -
I s b = g = b= b p
<) o 3 < a IS L o
H Z I 2 @ 9 = I
<] =) < =4 z e H
g £ & i < s
o = = n =
a I (<,() g
@ [7)
Color Key and Histogram
N
-
=
S
3 A
O«
o 1M M | M P
0 0.2 0.6 0.8 1

0.4
Value

Figure 8: Clustered correlation matrix of the results of the solvers from the Random Track. Dark areas correspond to high correlation, whereas
light areas correspond to low correlation between the solvers.

29

A
T o]

pfolioUzK

ppfolio

clasp

ParaCIRMiniSAT

ppfolio2012

Plingeling

Treengeling

CCCneq

CCCeq

Sucrose

Glycogen

SATX10

Cellulose

PenelLoPe

ZENNfork

Minifork

claspmt (ref.)

splitter

CryptoMiniSat

§ g 0§ £ £ & % S 85 § g 8T o2 YK %o o%
a £ & & & T & X © ¢ ¢ £ £ = 5 ¢ & ¢ §
S % ¥ £ 2 3 2 & g8 5 8 8 & & & = ° & 2

i £ © o =2 @ £ 3 = o
g g Nog O o © 8§ = g =z s

©
> £ = [SHES)
= S 3
© G
[a 8
Color Key and Histogram
€97
e
]
Ouw + WM
o L

0.8
Value

Figure 9: Clustered correlation matrix of the results of the solvers from the Parallel Application Track. Dark areas correspond to high correlation,
whereas light areas correspond to low correlation between the solvers.

30

As with the Random SAT track, the degree of correlation in the Parallel Application track is much lower than
in the Application and Hard Combinatorial track. It is also interesting to observe that the top seven solvers cover
only two parallelization approaches, namely portfolio (pfolioUZK, ppfolio2012, ppfolio and ParaCIRMiniSAT) and
competition parallelism with clause exchange, using glucose as the base solver (PeneLoPe, Cellulose and Sucrose).

6.5. Minimum Solver Set(s)

Here we address the question What is a minimum set of solvers that would solve all instances solved by any solver
within a track? More formally, consider the set of solvers and the instances they have solved within the given timeout
as a collection of subsets S = {S7,52,S53,...,S5,}, where S; is the subset of instances that was solved by solver
Si. Let I = J;_; S; be the set of solved instances. Now we can formulate the question as a minimum set cover
problem, where the task is to find the minimum number of subsets .S; to cover the set I. Note that all solvers that
have a unique contribution will be part of the minimum solver set. Within the EDACC web front-end this problem is
solved by encoding the problem as Max-SAT and using a branch-and-bound Max-SAT solver (akmaxsat [85]) to find
all optimal solution. The unique solver contribution is also a measure of interest but is highly dependent on the set
of solvers used to compute it. When analyzing the results, one should keep in mind that the inclusion of derivatives
of a given solver in the set will reduce the unique solver contribution of this solver dramatically. In the following we
provide the minimum solver sets for some of the tracks, excluding reference, offtrack, and disqualified solvers.

Application track. In the Application track there are six minimal sets of solvers, each of size 7, that do not differ sig-
nificantly in terms of overall runtime (less than 5%). These sets consist of the solvers glucose, linge_dyphase, inter-
actSAT, Industrial SAT Solver, SATzilla2012 APP, together with one solver from the set { Glucose++, glue_dyphase},
and one from {CCCeq, CCCneq, Lingeling}. Observe that the minimal sets include a large number of multi-engine
solvers, as well as one portfolio solver. As these types of solvers include multiple solvers in their code-base, we also
computed the minimal set over the sequential single-engine solvers only. The result was a single set of size 9, con-
sisting of the solvers glucose, linge_dyphase, Glucose++, Lingeling, simpsat, TENN, contrasat12, riss, ZENN,
suggesting, perhaps, a good portfolio composition. Notice, however, that the number of instances solved by the
single-engine only solvers is 553 (vs. 562 for all). Interestingly, the solver linge_dyphase, ranked 9th overall in the
Application track, is included in all minimal sets.

Hard Combinatorial track. In this track, there is a single minimal set of solvers of size 7. This set consists of
the solvers gNovelty+PCL, linge_dyphase, claspfolio-crafted, interactSAT _c, caglue, SATzilla2012 COMB, and
Flegel. Three of the solvers are either portfolio or multi-engine, and are clearly important contributors to the set,
since the minimal set computed over sequential solvers only contains 11 solvers gNovelty+PCL, linge_dyphase,
sattime2011, BossLS, simpsat, sparrow2011-PCL, caglue, clasp-crafted, March, Lingeling, Sparrow2011, and
solves only 511 instances, instead of 527 solved by the minimum set over all types of solvers. Observe that over a
half of the minimum set sequential solvers are SLS solvers, i.e., these solvers show strong performance on some of the
satisfiable benchmark instance in the track.

Random track. All solvers had a unique solver contribution, thus being part of the minimum solver set. This is to
some extent surprising, especially in light of the relatively homogenous class of benchmarks. However, we were not
able to pinpoint a simple explanation for this behavior, which we in fact believe to be due to a combination of (i) the
intrinsically randomized search heuristics applied within the solvers (local search), (ii) the benchmark set being to
some extent more heterogeneous than (e.g., in the recent SAT Competitions before SC 2012, the random tracks did not
include instances for clause lengths & = 4, 6), and (iii) in combination with point (ii), some of the solvers appeared to
have been tuned to perform mainly on random instances generated using very similar parameter value combinations
as the ones used in the recent SAT Competitions, witnessed e.g. by not being able to perform well on instances with
even clause lengths. The fact that all solvers had a unique solver contribution explains also why portfolio approaches
can be so successful on this type of instances. An optimal portfolio (of only core solvers) which is equivalent to the
virtual best solver would solve 515 instances, which is almost 100 instances more than the best solver (423).

Summary. The minimum solver sets for the different main tracks differ in both the solver techniques used in the
solvers, as well as the size of the minimum solver sets. For the Application track, the minimum solver sets are
dominated by CDCL-based solvers, which is to be expected. We believe that the relatively small size of these minimum

31

Machine (16GB)
Socket P#0
L2 (6144KB) L2 (6144KB)
L1 (32KB) L1 (32KB) L1 (32KB) L1 (32KB)
Core P#0 Core P#1 Core P#2 Core P#3
PU P#0 PU P#2 PU P#3 PU P#4
Socket P#1
L2 (6144KB) L2 (6144KB)
L1 (32KB) L1 (32KB) L1 (32KB) L1 (32KB)
Core P#0 Core P#1 Core P#2 Core P#3
PU P#1 PU P#5 PU P#6 PU P#7

Figure 10: The CPU and cache architecture of the computing nodes of the bwGRID cluster used in SAT Challenge 2012.

solver sets may be due to the fact that the CDCL-based solvers are relatively similar to each other. Interestingly, local
search solvers do not contributeEG] to the minimum solvers sets, although approximately half of the benchmarks in the
track were satisfiable. This is in contrast with the Hard Combinatorial track, in which around half of the solvers within
the minimum solver sets implement local search, evidently heavily contributing to solving the satisfiable benchmarks.
This difference between the Application and Hard Combinatorial tracks may partly be explained by the fact that there
were less local search solver submissions to the Application track than to the Hard Combinatorial track (which may
suggest that there is currently less research effort put into improving local search techniques for application-type
instances than for hard combinatorial type of instances). However, we believe that one should not underestimate the
fact that local search solver offer a competitive approach to solving various types of satisfiable instances within the
Hard Combinatorial track benchmarks. Unsurprisingly, the Random SAT track is dominated by local search solvers,
and hence the minimum solver sets consist entirely of local search solver We believe that developing an improved
understanding of the fact that all solvers had a unique solver contribution in the Random track might prove to be fruitful
in light of developing new, perhaps more complex local search heuristics based on the SC 2012 solver submissions.

6.6. Impact of the Computing Environment

Before running the competition, we measured the variance in runtime when simultaneously running two ((2/8)
scenario), four ((4/8) scenario) or eight ((8/8) scenario) solvers on a node of the cluster used for the competition.
The computing nodes have two sockets, each with a quad-core CPU that, in turn, consists of two dual-core dies. Note
that, at least in principle, the (1/8) scenario is identical to the (2/8) scenario due to each node having two independent
sockets (we have also confirmed this experimentally). The topology of the CPUs is represented in Figure

The EDACC computation client is designed to perform a CPU architecture topology scan prior to starting the

30Note, however, that the SATzilla2012 portfolio includes a local search solver component.

31Note again, however, that the portfolio solvers might have used complete solvers.

3The CPU and cache topology of a machine can be displayed with the Istopo command provided within the hwloc package. See http:
//www.open-mpi.de/projects/hwloc/| for more details.

32

http://www.open-mpi.de/projects/hwloc/
http://www.open-mpi.de/projects/hwloc/

solvers (using Portable Hardware Locality ~wloc) in an attempt to minimize the number of resource (cache and mem-
ory) collisions. When we start two solvers per node on the system (see Figure [6.6), the client will guarantee to start
the solvers on disjunctive sockets (to avoid memory and cache collisions). If we would start four solvers on a node,
the client will start the solvers on cores that do not share L2 cache. While multi-core CPUs allow for running several
solver instantiations on a single CPU / computing node in parallel, this may have a non-deterministic effect on the
runtime behavior of the solvers. In the following, we provide results on experiments on the influence of the number
of solvers per node on the runtimes of both CDCL and SLS solvers. These experiments were run before the SC 2012
benclj%lnark selection. Based on the results, we decided to limit the number of simultaneous solver runs to two per
node

6.6.1. CDCL Solvers

CDCL solvers are relatively memory intensive when compared to other solving techniques, and when it comes to
cache sharing their performance is expected to drop. We evaluated two of the best performing CDCL solvers glucose
and lingeling (the binary versions submitted to the 2011 SAT Competition) on the SAT-Race 2010 instances by running
every solver on every instance five times. The multiple runs per instance are needed to measure the runtime variability
on the same instance. The memory limit was set to 3.5 GB for the (2/8) and (4/8) scenario and 2 GB for the (8/8)
scenario. The 2-GB limit resulted in a memory problem on 2 instances that were very large.

lingeling (2/8)
800 lingeling (4/8)

lingeling (8/8)

bt

glucose (2/8)
—— glucose (4/8)

600 4 | glucose (8/8)

CPU Time (s)

400 —

200 —

0 100 200 300

number of solved instances

Figure 11: Difference in performance between the execution conditions of the CDCL solvers lingeling and glucose when two (2/8) (green), four
(4/8) (blue) and eight (8/8) (red) solvers are executed per node.

Figure [TT] shows a cactus plot for the CDCL solvers executed under the three different scenarios. Table 2] lists
the detailed results. There is almost no difference between executing two or four solvers per node (the green and
blue curves). The variation in runtime per instance though is larger for glucose, whereas lingeling shows almost no
difference, which is probably due to better memory management. When using all eight cores, the performance of
both solvers drops significantly, likely due to sharing of the same L2 cache. In the (2/8) scenario we can see small
conglomeration blocks in the runtime curves, which represent the five runs we have performed per instances.

In the (4/8) scenario these conglomerations loosen up, and in the (8/8) scenario they are almost not identifiable.

33 An a posteriori analysis using SC 2012 solver and benchmarks was unfortunately not possible due to hardware updates to the computing cluster
used for SC 2012.

33

Table 20: Average coefficient of variation over all instances on the different execution scenarios.

| (2/8) (4/8) (8/8)
lingeling | 0.0035 0.0121 0.0373
glucose | 0.0045 0.0159 0.0463

Table 21: The ranking of the solvers lingeling and glucose when executed in the different scenarios.

Solver # of successful runs | total time (sec.) | median time (sec.)
1 | lingeling (2/8) 385 157525.12 315.05
2 | lingeling (4/8) 385 158654.54 317.30
3 | lingeling (8/8) 348 177518.27 355.03
4 | glucose (2/8) 345 191395.34 382.79
5 | glucose (4/8) 336 194150.19 388.30
6 | glucose (8/8) 297 217558.40 435.11

To analyze the variability in runtime, we have computed the average coefficient of variation which is ten times larger
for the (8/8) scenario than for the (2/8) scenario independent of the solver (see Table [20|for more details).

6.6.2. SLS Solvers

SLS solvers are less memory intensive than CDCL-based solvers (since there is no clause learning involved), but
still highly cache intensive due to frequent non-localized memory accesses. We ran the two best performing SLS
solvers Sparrow2011 and sattime2011 from the 2011 SAT Competition on a set of 19 randomly generated k—SAT
instances for k = 3,5, 7, executing each solver four times on the same instance using different seeds. As can be seen
from Figure |12} there is almost no difference between the (2/8) (green curve) and (4/8) (blue curve), whereas the
(8/8) scenario shows significant degradation in the performance for both solvers.

Performance degradation as a consequence of too many solvers per node appears to occur only when solvers have
to share the cache hierarchy. Our analysis will also hold when the solvers get close to the memory limit but do not
exceed it. Running four solvers per node would have been possible, but then the amount of memory available per
solver would have dropped below 4 GB, which for some CDCL solvers could have been critical. Hence we ran only
two solvers per node at a time, with a memory limit of 6 GB.

7. Lessons Learned

In this section we discuss issues which were realized either during organizing SC 2012 or after the competition
was run, and propose possible ways of dealing with these issues in forthcoming SAT and related solver competitions.

7.1. Progress with Respect to Previous Competitions

Since the first SAT Competition in 2002, considerable progress has been made in improving both SAT solver
performance and stability (see also [33]] for a comparison of the best solvers from 2002 to 2011). Today, CDCL-based
solvers are not only used within the SAT community, but are also widely employed as black-box solvers in many
different projects and application areas (see, e.g., references mentioned in Section [I).

Over the last years, and especially in 2012, we could see a continuing trend towards parallel and portfolio solvers.
Whereas until 2009 Satzilla [63]] was the only participating portfolio solver, and the first parallel solvers entered
competitions only in 2007, in SC 2012 we had 19 solvers in the Parallel Track and 14 participating multi-engine or
portfolio solvers. Multi-engine or portfolio solvers dominated the standard single-engine ones in both the Application
and the Hard Combinatorial track in terms of runtime performance. Their success can be explained by their ability to
overcome the shortcomings of a single, particular solving heuristic used in the single-engine solvers.

34

Sparrow2011 (2/8)
Sparrow2011 (4/8)
Sparrow2011 (8/8)
sattime2011 (2/8)
—e— sattime2011 (4/8)
sattime2011 (8/8)

(
800 — (

b b

600 —

CPU Time (s)

400 —

200 —

number of solved instances

Figure 12: Difference in performance between the execution conditions of the SLS solvers Sparrow2011 and satttime2011 when executed two
(2/8) (green), four (4/8) (blue) and eight (8/8)(red) solvers per node.

However, considerable improvements could also be observed on basic algorithms for single-engine solvers. Espe-
cially the success of CCASat in the Random SAT Track, which implements a new local-search algorithm is remark-
able. But also in the Application SAT+UNSAT Track, progress can be registered, for example in the case of glucose,
the best single-engine solver, which has shown a considerably better performance than its 2011 version.

To further illustrate the progress, let us take a closer look at two instances of the Application Track, which both
had already been used in SAT-Race 2010. The problem bitverif/minxorminandl28 (containing 153,834
variables and 459,965 clauses) could not be solved by any of the 20 solvers participating in SAT-Race 2010. In 2012,
it was solved for the first time in less than 900 seconds (in 233 seconds by linge_dyphase). Similarly, the instance
md5gen/gus-md5-10, encoding a cryptographic problem, and also not solved by any solver in 2010, was solved
by six solvers in 2012@

7.2. Benchmark Selection

In Section [3.4 we pointed out a potential pitfall of the benchmark rating procedure that evaluates the empirical
hardness of benchmarks using a limited set of SAT solvers: the selected set might be biased towards a particular
solver used during evaluation, and thus a newer version of this solver used in the competition. Although increasing
the number of evaluation solvers decreases this bias, it cannot fully eliminate it. In addition, such increase may be
infeasible due to resource restrictions. Thus, the benchmark selection process must maintain a balance between the
performance of the evaluation solvers on the selected benchmark set explicitly during the construction of the set.
However, it is not entirely clear how possible attempts to “correct” bias towards particular solvers might affect the
results of the competition. For example, eliminating bias towards a recently introduced, exceptionally well performing
solver, might also lead to favoring already more established solver techniques implemented by many over new and
highly potential techniques implemented by few. This in turn may lead to the competition results masking away
potentially very important new solver techniques from becoming more standard ones.

34Both bitverif/minxorminand128 and md5gen/gus-md5-10 are unsatisfiable.

35

7.3. Timeout and the Number of Benchmark Instances

Enforcing a fixed limit on the computational resources (especially, the timeout in the case of SC 2012) poses
challenges for any solver competition, and has connections to the number of benchmark instances used. Using a small
timeout enables the use of more benchmark instances, and favors solvers which are geared towards solving relatively
easy instances very fast but which may not perform well on harder instances. A large timeout favors solvers with
robust performance in terms of solving instances of varying hardness and characteristics, but at the same time are
likely to exhibit a higher average runtime on a smaller set of instances. In SC 2012 a somewhat small timeout of 900
seconds was enforced, while the number of benchmark instances per track per track was quite large (600). In contrast,
in the past SAT Competitions a larger timeout (5000 seconds) and fewer instances (around 200-300) were used.

Based on the analysis of the results presented in Section [] at least in “short-timeout” competitions like SC 2012,
the ranking of the top-performing sequential solvers can be established rather accurately using a smaller number of
benchmark instances (300 instead of 600, cf. Section [6.3), and also with a somewhat smaller timeout value (450
seconds instead of 900, cf. Section[6.2)). This is somehow surprising and puts the relatively high timeout of the SAT
Competition (5000 seconds) into question.

However, this is not the case for parallel solvers, whose ranking is affected to a very large degree by both the
number of selected benchmarks and the cutoff. This is most likely due to the fact that the performance of these solvers
is significantly less deterministic—due to nondeterminism caused by parallel execution, at the very least—than the
performance of sequential solvers. Thus, it seems that resource allocation in future competitions should definitely
favor parallel solvers to a large degree. Finally, elimination of a single fixed timeout as the basis of solver ranking
could be another—perhaps more ambitious—goal, taking advantage of the fact that running experiments with a fixed
timeout ¢ easily produces results for any timeout ¢’ < t.

7.4. Benchmark Categorization

Specific benchmark instances may have both Application and Hard Combinatorial characteristics, with one notable
example being the class of SAT encoded cryptographic problems, such as attacks against the block ciphers AES and
DES (see discussion in Section [6.3)), but other examples are abound — consider, for example, factoring vs. equiva-
lence checking of multipliers. This means that the classification of benchmarks between the two classes is far from
straightforward. Furthermore, as demonstrated by the results of the experiment described in Section[6.3] the changes
in classification may have a dramatic effect on the rankings of the solvers. This is clearly an important issue that must
be addressed in future competitions.

7.5. Solver Categorization

SAT Competitions have had to deal with different categories of solvers from the beginning. Initially, the main
distinction was between complete DPLL/CDCL solvers, look-ahead solvers, and incomplete local-search algorithms.
Each type of solver was specialized on certain benchmark instances, and thus the three categories of Application, Hard
Combinatorial and (satisfiable) Random benchmarks emerged.

Later, with the rise of multi-core CPUs, parallel SAT algorithms turned up, and in 2008 a special track for parallel
solvers was added to the competitions. In 2007, a portfolio solver (SATzilla) won a medal for the first time, by
combining different solvers (even different solver types), and applying machine learning techniques to detect the most
suitable solver. The number of portfolio solvers submission has increased in the subsequent competitions. Lately,
solvers combining ideas from different approaches and algorithms (which we called multi-engine solvers in SC 2012)
also surfaced. With this growing diversity of SAT solving approaches, it becomes more and more complicated for
competitions to choose the right tracks and benchmark sets to accommodate all solvers suitably, and to categorize
solvers in the right way.

One may wonder why solver categorization is needed at all. Why not have just one track with the union of all
benchmarks on which the “globally best” solver is determined? One reason might be that a taxonomy of solvers is
of scientific interest by itself (cf. Section[6.4). A more important rationale, in our opinion, is that by having different
tracks, research on particular solver classes can be stimulated. Having, for example, a separate track for satisfiable
random instances, gives stochastic local search solvers a chance to win a prize and thus furthers research in this area.

In SC 2012, we mainly adopted the traditional categorization of solvers as laid down by previous competitions
(CDCL vs. look-ahead vs. local search). We also kept the special track for Parallel Solvers introduced in 2008.

36

For the first time, we introduced a special track for Sequential Portfolio Solvers, as these solvers had grown more
important over the last years. This track was poorly accepted, though. Authors of solvers that we classified as
“portfolio” pushed to get into the main tracks. We thus opened the main tracks for such solvers, too, at the same
time adding a classification to the main tracks. We distinguished between (i) “traditional” solvers, which employ one
core SAT algorithm (single-engine); (ii) simple combinations of existing solvers (portfolio), in which a focus is put
on selecting the right solvers, e.g., by using machine-learning techniques; and (iii) more complex approaches using
interacting combinations of different solvers (multi-engine), as described in Section E} For SC 2012, we considered
this distinction a good compromise between simplicity, historical evolution of categories, and separation of different
solving techniques.

As determination of solver categories allows, to some extent, to give a stimulus to particular research directions,
we believe that it will remain a controversial topic in future competitions.

7.6. Native Implementations vs. Building on Existing Solver Source Code

A recurring theme in recent SAT solver competitions has been that many competitors submit solvers which are
relative small modifications of already available state-of-the-art open-source SAT solvers. In SC 2012, we saw a
number of such solver submissions that were modifications or built on top of the successful Glucose solver. Here one
should notice that Glucose itself is based on the successful Minisat solver. This raises the question of whom to give
credit for a successful solver. As many SAT solvers are open source, it is quite easy to take existing solvers, and to
either just modify them slightly or combine different such solvers into a new tool. One can argue whether the act of
combining (or somewhat modifying) them is as significant a contribution to SAT solving technology as the ideas that
went into the original solvers.

This problem is aggravated by preprocessors (such as SatELite [86]) and similar tools, which are used as “add-on
components” in existing solvers. Again, the question arises, how to handle such component-based solvers and whom
to give credit for competition entrants that just replace or add a component.

To partially deal with this problem, a MiniSat Hack Track was initiated in 2009, in which solvers that modify
the source code of MiniSat by at most 5% could participateE] By this construct, small contributions (with respect to
implementation effort) to the state of the art in CDCL solvers were encouraged, while still giving credit to the original
MiniSat authors.

In SC 2012, there was no separation between native implementations of solvers and solver submissions that were
heavily based on already available solver source code. We believe that more incentives should be provided for solver
developers to actually implement their solvers from scratch, hence contributing to the maintenance of a heteroge-
neous set of publicly available SAT solvers. Apart from recognizing the overall best-performing solvers, giving
formal recognition to solvers with large unique contributions to the VBS—of high interest to, e.g., portfolio solver
developers—would be a good option to consider. This idea has also been suggested in [83]].

The MiniSAT Hack Track of the 2009 and 2011 SAT Competitions is one way of organizing a separate track for
solvers heavily building on the source code of others. However, even irrespectively of whether the solvers are required
to be submitted in open source to a competition, we foresee some difficulties to objectively evaluate to what extent a
submitted solver relies on existing solver source code.

7.7. Participation of Portfolio Solvers

The SAT Competition series was introduced to promote the practical development of SAT solvers and to provide
a way to measure the utility of solving techniques and modifications proposed in the literature. The heterogeneity of
the used benchmarks and the results produced by different solvers provide a perfect testbed for portfolio SAT solvers,
which have shown remarkable performance in the last competitions. However, allowing portfolio solvers to compete
in the same competition tracks as other solvers poses certain problems.

One could argue that it is beneficial to enter portfolio solvers to the main competition tracks in order to measure
the performance of the actual current state of the art in SAT solvers, often exhibited by portfolio solvers. However,
portfolio SAT solvers use outdated core SAT solvers by default. This is due to the fact that the portfolio submitted

35In the 2009 SAT Competition, the rules state that a solver participating in the MiniSat Hack Track is only allowed to change or add 125 lines
of C code, which is approximately 5% of the total lines of code of MiniSat.

37

to a competition cannot contain actual core solvers submitted to the same solver competition, since the core solver
developers generally do not make their solvers available before the competition. Thus the performance of portfolio
solvers submitted to a specific competition could likely be improved simply by including the best-performing new
solvers, submitted to the same competition, to the portfoliosE] A fundamental question is what actually constitutes
“state—of—the—art”, in case core solvers are made to directly compete with portfolio approaches. Assume, for example,
that a portfolio solver using solvers from over two years back ends up winning a track. In our opinion, this does not
directly imply that the improvements to the core solvers within the last two years have not been significant. However,
we do believe that it is valuable to know how well the best portfolio solvers perform in comparison to the current
state—of—the—art core SAT solvers.

A more competition-oriented issue, arising from allowing portfolio solvers (and other types of multi-engine ap-
proaches using external core solvers in a black-box manner) to compete for the same awards as the core solvers, is
fairness from the side of the core solver developers. This is due to the fact that the portfolio approaches directly
capitalize on the advancements in the core SAT solvers by employing the core solvers in a black-box manner.

A separate track for portfolio solvers would seem to be the correct way to measure the advances in portfolio solvers.
The aim would be to objectively evaluate the core part of intelligent portfolio approaches, namely, the algorithms
applied within the portfolio to select the solver that is run on a given input instance. In such a track, the set of solvers
available, as well as the set of training instances, should be fixed by the organizers a priori. Entrants submitted to the
track would consist of the solver selection methods only, without any a priori training. The solver selection methods
would then be trained using the fixed set of training instances. The performance of the submitted solver selection
methods should then be measured on a separate test set. This approach to evaluating portfolios would allow to more
objectively measure the merits of the most important methods implemented within portfolios, namely, the SAT solver
selection algorithms. Ideally, such a portfolio competition would be run immediately after the main core SAT solver
competition of the same year, so that the most recent best-performing core solvers could be included in the set of
solvers available in the portfolio.

7.8. Ranking Schemes

Our analysis of the correlation between the rankings established with different ranking schemes (see Section [6.1)
suggests that the more elaborate careful ranking (CR) scheme would produce very similar results to the currently used
solution count ranking (SCR) as well as the PARx ranking scheme family. On the other hand, SCR benefits from
transitivity and, perhaps, from being more intuitive and accessible to researchers outside the SAT community. As
such, in our opinion, SCR is an adequate scheme for future SAT competitions.

8. Conclusions

We provided a detailed overview of SAT Challenge 2012, the main SAT solver competition organized in 2012.
We covered various aspects of the competition, including the rules, tracks, ranking scheme, and benchmark selection
and generation process. Furthermore, we presented an in-depth analysis of the results of the competition—given that
the number of participants and the distribution of their respective research groups is very high (recall Section @)—the
results of the competition arguably provide a snapshot of the state of the art in SAT solvers in 2012. Finally, we
suggested a number of improvements to future SAT, and other similar, competitions.

SAT solver competitions have been one of the driving forces for progress achieved over the last one and a half
decade in implementing SAT solvers. Competitions can be seen as a community-wide algorithm engineering approach,
in which different proposed algorithms and data structures are evaluated based on clear standards, and the results of
the evaluation are passed back to the community to further improve their solvers.

Acknowledgements: We would like to emphasize that a solver competition cannot be successful without the active in-
volvement and participation from the community at large. We would especially like to thank all those who contributed
to SC 2012 by submitting solvers or benchmarks. We are also very grateful to the anonymous reviewers for their
insightful comments which helped us to improve this article considerably.

36Some analysis on this, using the SATzilla framework and the SAT Competition 2011 results, was suggested by Xu et al. and is available at
http://www.cril.univ-artois.fr/SAT11/xu/revised/SATzilla_2011.htmll

38

http://www.cril.univ-artois.fr/SAT11/xu/revised/SATzilla_2011.html

References

[1] A.Biere, M. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfiability, Vol. 185 of Frontiers in Artificial
Intelligence and Applications, IOS Press, 2009.

[2] S. A. Cook, The complexity of theorem-proving procedures, in: Proc. STOC, 1971, pp. 151-158.

[3] A. Biere, A. Cimatti, E. M. Clarke, Y. Zhu, Symbolic model checking without BDDs, in: Proc. TACAS, Vol.
1579 of LNCS, Springer, 1999, pp. 193-207.

[4] E. M. Clarke, D. Kroening, F. Lerda, A tool for checking ANSI-C programs, in: Proc. TACAS, Vol. 2988 of
LNCS, 2004, pp. 168-176.

[5] A.R. Bradley, SAT-based model checking without unrolling, in: Proc. VMCALI, Vol. 6538 of LNCS, Springer,
2011, pp. 70-87.

[6] H. A. Kautz, B. Selman, Planning as satisfiability, in: Proc. ECAI, 1992, pp. 359-363.
[7] J. Rintanen, Planning as satisfiability: Heuristics, Artificial Intelligence 193 (2012) 45-86.

[8] C. Barrett, R. Sebastiani, S. A. Seshia, C. Tinelli, Satisfiability modulo theories, in: Handbook of Satisfiability,
IOS Press, 2009, Ch. 26, pp. 825-885.

[9] R. Nieuwenhuis, A. Oliveras, C. Tinelli, Solving SAT and SAT modulo theories: From an abstract Davis—
Putnam-Logemann—Loveland procedure to DPLL(T), Journal of the ACM 53 (6) (2006) 937-977.

[10] R. Sebastiani, Lazy satisfiability modulo theories, Journal of Satisfiability, Boolean Modeling and Computation
3 (3-4) (2007) 141-224.

[11] M. Janota, W. Klieber, J. Marques-Silva, E. M. Clarke, Solving QBF with counterexample guided refinement,
in: Proc. SAT, Vol. 7317 of LNCS, Springer, 2012, pp. 114—128.

[12] M. Janota, J. P. Marques-Silva, Abstraction-based algorithm for 2QBF, in: Proc. SAT, Vol. 6695 of LNCS,
Springer, 2011, pp. 230-244.

[13] F. Lin, Y. Zhao, ASSAT: computing answer sets of a logic program by SAT solvers, Artif. Intell. 157 (1-2) (2004)
115-137.

[14] E. Giunchiglia, Y. Lierler, M. Maratea, Answer set programming based on propositional satisfiability, J. Autom.
Reasoning 36 (4) (2006) 345-377.

[15] M. Gebser, B. Kaufmann, T. Schaub, Conflict-driven answer set solving: From theory to practice, Artif. Intell.
187 (2012) 52-89.

[16] C. Drescher, M. Gebser, T. Grote, B. Kaufmann, A. Konig, M. Ostrowski, T. Schaub, Conflict-driven disjunctive
answer set solving, in: Proc. KR, AAAI Press, 2008, pp. 422-432.

[17] J. Davies, F. Bacchus, Solving MAXSAT by solving a sequence of simpler SAT instances, in: Proc. CP, Vol.
6876 of LNCS, Springer, 2011, pp. 225-239.

[18] F. Heras, A. Morgado, J. Marques-Silva, Core-guided binary search algorithms for maximum satisfiability, in:
Proc. AAAI, AAAI Press, 2011.

[19] Z. Fu, S. Malik, On solving the partial MAX-SAT problem, in: Proc. SAT, Vol. 4121 of LNCS, Springer, 2006,
pp- 252-265.

[20] C. Ansotegui, M. L. Bonet, J. Levy, A new algorithm for weighted partial MaxSAT, in: Proc. AAAI, AAAI
Press, 2010.

39

[21] E. Grégoire, B. Mazure, C. Piette, On approaches to explaining infeasibility of sets of boolean clauses, in: ICTAI,
2008, pp. 74-83.

[22] J. Marques-Silva, Minimal unsatisfiability: Models, algorithms and applications, in: Proc. ISMVL, IEEE Com-
puter Society, 2010, pp. 9-14.

[23] A. Belov, 1. Lynce, J. Marques-Silva, Towards efficient MUS extraction, AI Communications 25 (2) (2012)
97-116.

[24] S. Wieringa, Understanding, improving and parallelizing MUS finding using model rotation, in: Proc. CP, Vol.
7514 of LNCS, Springer, 2012, pp. 672-687.

[25] E. M. Clarke, A. Gupta, O. Strichman, SAT-based counterexample-guided abstraction refinement, IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 23 (7) (2004) 1113-1123.

[26] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided abstraction refinement for symbolic
model checking, Journal of the ACM 50 (5) (2003) 752-794.

[27] M. Janota, R. Grigore, J. Marques-Silva, Counterexample guided abstraction refinement algorithm for proposi-
tional circumscription, in: Proc. JELIA, Vol. 6341 of LNCS, Springer, 2010, pp. 195-207.

[28] C. M. Wintersteiger, Y. Hamadi, L. de Moura, Efficiently solving quantified bit-vector formulas, in: Proc. FM-
CAD, IEEE, 2010, pp. 239-246.

[29] L. de Moura, H. Ruess, M. Sorea, Lazy theorem proving for bounded model checking over infinite domains, in:
Proc. CADE-18, Vol. 2392 of LNCS, Springer, 2002, pp. 438-455.

[30] C. W. Barrett, D. L. Dill, A. Stump, Checking satisfiability of first-order formulas by incremental translation to
SAT, in: Proc. CAYV, Vol. 2404 of LNCS, Springer, 2002, pp. 236-249.

[31] C.Flanagan, R. Joshi, X. Ou, J. B. Saxe, Theorem proving using lazy proof explication, in: Proc. CAV, Vol. 2725
of LNCS, Springer, 2003, pp. 355-367.

[32] W. Dvordk, M. Jarvisalo, J. P. Wallner, S. Woltran, Complexity-sensitive decision procedures for abstract argu-
mentation, Artificial Intelligence 206 (2014) 53-78.

[33] M. Jarvisalo, D. Le Berre, O. Roussel, L. Simon, The international SAT solver competitions, Al Magazine 33 (1)
(2012) 89-92.

[34] M. Buro, H. K. Biining, Report on a SAT competition, Bulletin of the European Association for Theoretical
Computer Science 49 (1993) 143-151.

[35] D. Johnson, M. Trick (Eds.), Second DIMACS implementation challenge: Cliques, coloring and satisfiability,
Vol. 26 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, American Mathematical
Society, 1996.

[36] L. Simon, D. Le Berre, E. Hirsch, The SAT2002 competition, Annals of Mathematics and Artificial Intelligence
43 (1) (2005) 307-342.

[37] D. Le Berre, L. Simon, The essentials of the SAT 2003 Competition, in: Proc. SAT 2003, Vol. 2919 of LNCS,
Springer, 2004, pp. 452-467.

[38] D. Le Berre, L. Simon, Fifty-five solvers in Vancouver: The SAT 2004 Competition, in: SAT 2004 Selected
Paper, Vol. 3542 of LNCS, Springer, 2005, pp. 321-344.

[39] A. Balint, A. Belov, D. Diepold, S. Gerber, M. Jarvisalo, C. Sinz (Eds.), Proceedings of SAT Challenge 2012:
Solver and Benchmark Descriptions, Vol. B-2012-2 of Department of Computer Science Series of Publications
B, University of Helsinki, 2012, iSBN 978-952-10-8106-4.

40

[40] G. S. Tseitin, On the complexity of derivation in propositional calculus, in: J. Siekmann, G. Wrightson (Eds.),
Automation of Reasoning 2: Classical Papers on Computational Logic 1967-1970, Springer, 1983, pp. 466—483.

[41] D. A. Plaisted, S. Greenbaum, A structure-preserving clause form translation, Journal of Symbolic Computation
2 (3) (1986) 293-304.

[42] M. Heule, M. Dufour, J. van Zwieten, H. van Maaren, March_eq: Implementing additional reasoning into an
efficient look-ahead SAT solver, in: SAT 2004 Revised Selected Papers, Vol. 3542 of LNCS, Springer, 2005, pp.
345-359.

[43] bwGRIiD (http://www.bw grid.de/), Member of the german d-grid initiative, funded by the ministry of educa-
tion and research (bundesministerium fiir bildung und forschung) and the ministry for science, research and
arts baden-wuerttemberg (ministerium fiir wissenschaft, forschung und kunst baden-wiirttemberg), Tech. rep.,
Universities of Baden-Wiirttemberg (2007-2010).

[44] O. Roussel, Controlling a solver execution: the runsolver tool, Journal on Satisfiability, Boolean Modeling and
Computation 7 (2011) 139-144.

[45] A. Balint, D. Gall, G. Kapler, R. Retz, Experiment design and administration for computer clusters for SAT-
solvers (EDACC), Journal on Satisfiability, Boolean Modeling and Computation 7 (2-3) (2010) 77-82.

[46] A.Balint, D. Diepold, D. Gall, S. Gerber, G. Kapler, R. Retz, EDACC - an advanced platform for the experiment
design, administration and analysis of empirical algorithms, in: Proc. LION 5, Vol. 6683 of LNCS, Springer,
2011, pp. 586-599.

[47] D. P. Anderson, BOINC: A system for public-resource computing and storage, in: Proc. Sth IEEE/ACM Intl.
Workshop on Grid Computing (GRID’04), IEEE Computer Society, 2004, pp. 4-10.

[48] L. Simon, P. Chatalic, SatEx: A web-based framework for SAT experimentation, Electronic Notes in Discrete
Mathematics 9 (2001) 129-149.

[49] G. Sutcliffe, C. B. Suttner, Evaluating general purpose automated theorem proving systems, Artif. Intell. 131 (1-
2) (2001) 39-54.

[50] C. Barrett, M. Deters, L. M. de Moura, A. Oliveras, A. Stump, 6 years of SMT-COMP, J. Autom. Reasoning
50 (3) (2013) 243-2717.

[51] M. Gebser, L. Liu, G. Namasivayam, A. Neumann, T. Schaub, M. Truszczynski, The first answer set program-
ming system competition, in: Proc. LPNMR, Vol. 4483 of LNCS, Springer, 2007, pp. 3—17.

[52] M. Denecker, J. Vennekens, S. Bond, M. Gebser, M. Truszczynski, The second answer set programming compe-
tition, in: Proc. LPNMR, Vol. 5753 of LNCS, Springer, 2009, pp. 637-654.

[53] F. Calimeri, G. Ianni, F. Ricca, The third open answer set programming competition, CoRR abs/1206.3111.

[54] C. Suttner, G. Sutcliffe, The design of the CADE-13 ATP system competition, Journal of Automated Reasoning
30 (1997) 1-1.

[55] G. Sutcliffe, Proceedings of the 6th IICAR ATP System Competition (CASC-J6), http://www.cs.miami.
edu/~tptp/CASC/J6/Proceedings.pdf (2012).

[56] M. Jarvisalo, D. L. Berre, O. Roussel, The SAT Competition 2011, Results of Phase 1, slides, http://www.
cril.univ-artois.fr/SAT11/phasel.pdf (2011).

[57] B. Selman, D. G. Mitchell, H. J. Levesque, Generating hard satisfiability problems, Artif. Intell. 81 (1-2) (1996)
17-29.

[58] I. P. Gent, T. Walsh, The SAT phase transition, in: Proc. ECAI, John Wiley and Sons, 1994, pp. 105-109.

41

http://www.cs.miami.edu/~tptp/CASC/J6/Proceedings.pdf
http://www.cs.miami.edu/~tptp/CASC/J6/Proceedings.pdf
http://www.cril.univ-artois.fr/SAT11/phase1.pdf
http://www.cril.univ-artois.fr/SAT11/phase1.pdf

[59] D. Pham, C. Gretton, gNovelty™, http://www.satcompetition.org/2007/gNovelty+.pdf.
(2007).

[60] R. Bruttomesso, D. R. Cok, A. Griggio, Satisfiability modulo theories competition (SMT-COMP 2012): Rules
and procedures, http://smtcomp.sourceforge.net/2012/rulesl2.pdf (2012).

[61] G. Sutcliffe, Private communication. (2013).

[62] H. Hoos, B. Kaufmann, T. Schaub, M. Schneider, Robust benchmark set selection for boolean constraint solvers,
in: Proc. LION 7, Vol. 7997 of LNCS, Springer, 2013, pp. 138—152.

[63] L. Xu, F. Hutter, H. Hoos, K. Leyton-Brown, SATzilla: Portfolio-based algorithm selection for SAT, Journal of
Artificial Intelligence Research 32 (2008) 565-606.

[64] S. Mertens, M. Mézard, R. Zecchina, Threshold values of random K-SAT from the cavity method, Random
Struct. Algorithms 28 (3) (2006) 340-373.

[65] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, L. Troyansky, 2+p-SAT: Relation of typical-case com-
plexity to the nature of the phase transition, Random Struct. Algorithms 15 (3-4) (1999) 414-435.

[66] O. Kullmann, The SAT 2005 solver competition on random instances, Journal on Satisfiability, Boolean Model-
ing and Computation 2 (1-4) (2006) 61-102.

[67] P. L’Ecuyer, R. Simard, TestuO1: A C library for empirical testing of random number generators, ACM Trans.
Math. Softw. 33 (4).

[68] A. Braunstein, M. Mézard, R. Zecchina, Survey propagation: An algorithm for satisfiability, Random Struct.
Algorithms 27 (2) (2005) 201-226.

[69] A.Balint, U. Schoning, Choosing probability distributions for stochastic local search and the role of make versus
break, in: Proc. SAT, LNCS, Springer, 2012, pp. 16-29.

[70] D. A. Tompkins, H. H. Hoos, UBCSAT: An implementation and experimentation environment for SLS algo-
rithms for SAT & MAX-SAT, in: Revised Selected Papers of SAT 2004, Vol. 3542, Springer, 2004, pp. 306-320.

[71] J. Marques-Silva, I. Lynce, S. Malik, Conflict-driven clause learning SAT solvers, in: Handbook of Satisfiability,
IOS Press, 2009, Ch. 4, pp. 131-153.

[72] A. Darwiche, K. Pipatsrisawat, Complete algorithms, in: Handbook of Satisfiability, IOS Press, 2009, Ch. 3, pp.
99-130.

[73] N. Eén, N. Sorensson, An extensible SAT-solver, in: SAT 2003 Selected Revised Papers, Vol. 2919 of LNCS,
Springer, 2004, pp. 502-518.

[74] J. M. Silva, K. Sakallah, GRASP: A search algorithm for propositional satisfiability, IEEE Transactions on
Computers 48 (5) (1999) 506-521.

[75] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, S. Malik, Chaff: Engineering an efficient SAT solver, in:
DAC, ACM, 2001, pp. 530-535.

[76] M. J. Heule, H. van Maaren, Look-ahead based SAT solvers, in: Handbook of Satisfiability, IOS Press, 2009,
Ch. 5, pp. 155-184.

[77] H. Kautz, A. Sabharwal, B. Selman, Incomplete algorithms, in: Handbook of Satisfiability, IOS Press, 2009,
Ch. 6, pp. 185-203.

[78] G. Audemard, L. Simon, Predicting learnt clauses quality in modern SAT solvers, in: Proc. IJCAI, 2009, pp.
399-404.

42

http://www.satcompetition.org/2007/gNovelty+.pdf
http://smtcomp.sourceforge.net/2012/rules12.pdf

[79] S. Cai, K. Su, Configuration checking with aspiration in local search for SAT, in: Proc. AAAI, AAAI Press,
2012.

[80] A. Van Gelder, Careful ranking of multiple solvers with timeouts and ties, in: Proc. SAT, Vol. 6695 of LNCS,
Springer, 2011, pp. 317-328.

[81] M. Nikolik, Statistical methodology for comparison of SAT solvers, in: Proc. SAT, Vol. 6175 of LNCS, Springer,
2010, pp. 209-222.

[82] F.Hutter, H. H. Hoos, K. Leyton-Brown, T. Stiitzle, ParamILS: An automatic algorithm configuration framework,
J. Artif. Intell. Res. 36 (2009) 267-306.

[83] L. Xu, F. Hutter, H. Hoos, K. Leyton-Brown, Evaluating component solver contributions to portfolio-based
algorithm selectors, in: Proc. SAT, Vol. 7317 of LNCS, Springer, 2012, pp. 228-241.

[84] J. Chen, Phase selection heuristics for satisfiability solvers, CoRR abs/1106.1372.

[85] A. Kiigel, Natural Max-SAT encoding of Min-SAT, in: Proc. LION 6, Vol. 7219 of LNCS, Springer, 2012, pp.
431-436.

[86] N. Eén, A. Biere, Effective preprocessing in SAT through variable and clause elimination, in: Proc. SAT, Vol.
3569 of LNCS, Springer, 2005, pp. 61-75.

Appendix A. Values for Generating the Random SAT Track Benchmarks

Table A.22: The values for clause density « (at top in a cell) and the number of variables n (at bottom) used for generating each subset of random
benchmarks.

Set | k=3 k=4 k=5 k=6 k=7
1 4.2 9 20 40 85
40000 10000 1600 400 200

) 4208 9.121 20.155 40.674 85.558
35600 8800 1420 360 180

3 4215 9.223 20.275 41.011 85.837
31400 7800 1280 340 170

4 4223 9324 20395 41348 86.116
27200 6800 1140 320 160

5 4.23 9425 20.516 41.685 86.395
23000 5800 1000 300 150

6 4237 9.526 20.636 42.022 86.674
18800 4800 860 280 140

7 4245 9.627 20.756 42.359 86.953
14600 3800 720 260 130

3 4252 9.729 20.876 42.696 87.232
10400 2800 580 240 120

9 4.26 9.83 20.997 43.033 87.511
6200 1800 440 220 110

10 4267 9931 21.117 4337 87.79
2000 800 300 200 100

43

Appendix B. Results of SC 2012: Full Rankings

Table B.23: Full results: Application SAT+UNSAT main track

Solver type |Rank|T-Rank |Solver #solved | %osolved | time (cum.) | time (med.)
vbs - - | Virtual Best Solver (VBS) 568 94.7 56528 30.3
portfolio 1 1|SATzilla2012 APP 531 88.5 85194 114.0
portfolio 2 2| SATzilla2012 ALL 515 85.8 86638 122.2
multi-engine 3 1 |Industrial SAT Solver 499 83.2 93705 160.2
reference - - |lingeling (SAT Comp. 2011 Bronze) 488 81.3 84715 135.3
multi-engine 4 2 | interactSAT 480 80.0 87676 152.5
single-engine 5 1| glucose 475 79.2 71501 114.4
single-engine 6 2| SINN 472 78.7 86302 146.4
single-engine 7 3|ZENN 468 78.0 74019 124.7
single-engine 8 4 |Lingeling 467 71.8 91973 185.5
single-engine 9 5 |linge_dyphase 458 76.3 90192 204.4
single-engine 10 6 | simpsat 453 75.5 95737 222.0
single-engine 11 7 | glue_dyphase 452 75.3 67412 126.4
reference - - | glueminisat (SAT Comp. 2011 Silver) 452 75.3 68818 145.7
multi-engine 12 3| CCCneq 452 75.3 94956 224.7
reference - - | glucose (SAT Comp. 2011 Gold) 451 75.2 62424 77.8
single-engine 13 8| TENN 451 75.2 82154 173.1
multi-engine 14 4|CCCeq 446 74.3 91896 230.9
reference - - | CryptoMiniSat 442 73.7 95035 240.6
portfolio 15 3| ppfolio2012 423 70.5 97819 293.0
portfolio 16 4 | pfolioUZK 404 67.3 98418 348.6
reference - - | minisat 399 66.5 65633 189.5
single-engine 17 9 | relback 393 65.5 75842 285.6
single-engine 18 10 | Glucose++ 389 64.8 75377 300.4
single-engine 19 11 |satUZKs 387 64.5 70910 263.7
single-engine 20 12 | caglue 387 64.5 78154 323.6
single-engine 21 13 |contrasat12 383 63.8 63645 243.6
single-engine 22 14 |satUZK 379 63.2 68621 282.3
single-engine 23 15 |relback_m 358 59.7 65364 397.3
single-engine 24 16 |riss 351 58.5 67549 434.3
multi-engine 25 5| Clingeling 278 46.3 76576 900.0
single-engine 26 17| Sat4j 249 41.5 61334 900.0
multi-engine 27 6| Flegel 231 38.5 40190 900.0
single-engine 28 18 | march 37 6.2 9689 900.0

44

Table B.24: Full results: Hard Combinatorial SAT+UNSAT main track

Solver type |Rank|T-Rank |Solver #solved | %osolved | time (cum.) | time (med.)
vbs - - | Virtual Best Solver (VBS) 529 88.2 24848 1.3
portfolio 1 1|SATzilla2012 COMB 476 79.3 38108 454
portfolio 2 2| SATzilla2012 ALL 473 78.8 41765 452
portfolio 3 3| ppfolio2012 422 70.3 35784 50.5
multi-engine 4 1|interactSAT ¢ 417 69.5 40313 56.6
portfolio 5 4 | pfolioUZK 401 66.8 34187 71.7
portfolio 6 5 | aspeed-crafted 370 61.7 49239 269.3
single-engine 7 1| clasp-crafted 367 61.2 49317 2717.0
reference - - | MPhaseSAT (SAT Comp. 2011) 361 60.2 35006 172.6
portfolio 8 6| claspfolio-crafted 352 58.7 42522 296.7
reference - -|clasp (SAT Comp. 2011 #1 Non-portfolio) 347 57.8 41038 322.2
single-engine 9 2| Lingeling 333 55.5 27313 291.0
multi-engine 10 2| CCCneq 329 54.8 36311 454.6
multi-engine 11 3|CCCeq 329 54.8 36943 494.3
multi-engine 12 4 |Flegel 326 54.3 42999 596.2
multi-engine 13 5| Clingeling 326 54.3 47136 599.8
reference - - | glucose (SAT Comp. 2011 #3 Non-portfolio) 322 53.7 34546 515.4
single-engine 14 3|ZENN 314 52.3 27878 490.8
single-engine 15 4 | simpsat 314 52.3 30999 582.3
single-engine 16 5 | relback 314 52.3 32182 642.5
single-engine 17 6| SINN 313 52.2 33730 647.6
single-engine 18 7| caglue 311 51.8 30109 647.1
reference - - | CryptoMiniSat 307 51.2 32414 682.9
single-engine 19 8| satUZKs 306 51.0 40401 801.5
single-engine 20 9| contrasat12 306 51.0 40540 778.0
reference - - |lingeling 305 50.8 29095 801.4
single-engine 21 10 | relback_m 304 50.7 36940 806.0
reference - - | minisat 304 50.7 39055 843.9
single-engine 22 11 |satUZK 300 50.0 35028 869.6
single-engine 23 12 | TENN 287 47.8 26183 900.0
single-engine 24 13| linge_dyphase 279 46.5 29183 900.0
single-engine 25 14 |riss 273 45.5 31599 900.0
single-engine 26 15| Sat4j 271 45.2 26382 900.0
single-engine 27 16 | sattime2012 243 40.5 30541 900.0
single-engine 28 17 | sattime2011 238 39.7 28198 900.0
single-engine 29 18| gNovelty+PCL 231 38.5 12791 900.0
reference - -|Sparrow2011 217 36.2 19972 900.0
single-engine 30 19 | march 217 36.2 21817 900.0
single-engine 31 20 |BossLS 190 31.7 15034 900.0
single-engine 32 21 |CCASat 184 30.7 9052 900.0
single-engine 33 22 | sparrow2011-PCL 150 25.0 15330 900.0
reference - -|EagleUP (SAT Comp. 2011) 34 5.7 997 900.0

45

Table B.25: Full results: Parallel Application track

Solver type | Rank | Solver #solved | %solved | time (cum.) | time (median)
vbs - | Virtual Best Solver (VBS) 576 96.0 39670 19.6
parallel 1 | pfolioUZK 531 88.5 72390 69.1
parallel 2 | PeneLoPe 530 88.3 62967 54.4
parallel 3 | ppfolio2012 525 87.5 78833 91.4
parallel 4 | Cellulose 521 86.8 53705 42.0
parallel 5 | ppfolio 509 84.8 75400 91.3
parallel 6 | Sucrose 503 83.8 76120 80.7
parallel 7 | ParaCIRMiniSAT 496 82.7 63497 86.7
parallel 8 | clasp 490 81.7 62424 77.8
parallel 9 | Glycogen 489 81.5 76241 97.1
parallel 10 | ZENNfork 485 80.8 73808 89.1
parallel 11 | CryptoMiniSat 482 80.3 90543 166.4
parallel 12 | Plingeling 467 77.8 87632 169.2
parallel 13 | CCCneq 467 77.8 87970 159.5
parallel 14 | CCCeq 466 77.7 92724 167.1
parallel 15 | SATX10 464 77.3 73527 124.3
parallel 16 | Treengeling 457 76.2 82929 180.2
parallel 17 | Minifork 428 71.3 55864 106.5
reference - | claspmt 362 60.3 56435 352.3
parallel 18 | splitter 273 45.5 35325 900.0

46

	Introduction
	The Boolean Satisfiability Problem in Short

	Overview of SAT Challenge 2012
	Organization
	Participation and Evaluation
	Benchmark Categories and Competition Tracks
	Computing environment
	EDACC: Experiment Design and Administration for Computer Clusters

	Benchmark Selection and Generation
	Review of Benchmark Selection Methods
	CADE ATP System Competitions (CASC)
	SAT Competitions
	SMT Competitions
	ASP Solver Competitions

	Analysis of Benchmark Ranking and Selection Methods
	SAT Challenge 2012 Benchmark Selection
	Application Benchmarks
	Hard Combinatorial Benchmarks
	Random SAT Benchmarks

	Solver Bias in Benchmark Selection

	Entrants
	Overview of Results
	Awarded Solvers
	Detailed Results
	Application SAT+UNSAT Track
	Hard Combinatorial SAT+UNSAT Track
	Random SAT Track
	Special Tracks

	Analysis
	Impact of Ranking Schemes
	Stability of Rankings with Respect to the Timeout
	Stability of Rankings with Respect to the Benchmarks Set
	How Similar are the Submitted Solvers
	Minimum Solver Set(s)
	Impact of the Computing Environment
	CDCL Solvers
	SLS Solvers

	Lessons Learned
	Progress with Respect to Previous Competitions
	Benchmark Selection
	Timeout and the Number of Benchmark Instances
	Benchmark Categorization
	Solver Categorization
	Native Implementations vs. Building on Existing Solver Source Code
	Participation of Portfolio Solvers
	Ranking Schemes

	Conclusions
	Values for Generating the Random SAT Track Benchmarks
	Results of SC 2012: Full Rankings

