
Formula Preprocessing in MUS Extraction?

Anton Belov1, Matti Järvisalo2, and Joao Marques-Silva1,3

1 Complex and Adaptive Systems Laboratory, University College Dublin, Ireland
2 HIIT & Department of Computer Science, University of Helsinki, Finland

3 IST/INESC-ID, Lisbon, Portugal

Abstract. Efficient algorithms for extracting minimally unsatisfiable subformu-
las (MUSes) of Boolean formulas find a wide range of applications in the analysis
of systems, e.g., hardware and software bounded model checking. In this paper
we study the applicability of preprocessing techniques for Boolean satisfiabil-
ity (SAT) in the context of MUS extraction. Preprocessing has proven to be ex-
tremely important in enabling more efficient SAT solving. Hence the study of the
applicability and the effectiveness of preprocessing in MUS extraction is highly
relevant. Considering the extraction of both standard and group MUSes, we fo-
cus on a number of SAT preprocessing techniques, and formally prove to what
extent the techniques can be directly applied in the context of MUS extraction.
Furthermore, we develop a generic theoretical framework that captures MUS ex-
traction problems, and enables formalizing conditions for correctness-preserving
applications of preprocessing techniques that are not applicable directly. We ex-
perimentally evaluate the effect of preprocessing in the context of group MUS
extraction.

1 Introduction

Efficient algorithms for extracting minimally unsatisfiable subformulas (MUSes) of
Boolean formulas find a wide range of applications in the analysis of systems, e.g., hard-
ware and software bounded model checking. A variety of different approaches to MUS
extraction has been proposed, see [5, 9, 22, 21, 23, 19] for recent examples and [20] for
a survey. Typically the state-of-the-art MUS extraction algorithms use Boolean satisfi-
ability (SAT) solvers as NP-oracles for checking the satisfiability of subformulas in an
iterative manner.

In recent years, formula preprocessing has emerged as an extremely important tech-
nique in enabling efficient SAT solving (see e.g. [6, 8, 10, 7, 11, 1, 12, 15]). Thus, in this
paper, we study of the applicability and the effectiveness of preprocessing in the context
of MUS extraction.

The result of MUS extraction on a preprocessed input formula F ′ is an MUS M ′

of F ′. However, since preprocessing changes the formula structure by, e.g., removing
clauses and removing or adding literals to clauses, M ′ is, in general, not an MUS of F .

? The first and third authors are financially supported by SFI PI grant BEACON (09/IN.1/I2618),
and by FCT grants ATTEST (CMU-PT/ELE/0009/2009) and POLARIS (PTDC/EIA-
CCO/123051/2010). The second author is financially supported by Academy of Finland
(grants 132812 and 251170).

Hence we are faced with the problem of reconstructing an MUS of F from M ′. Con-
sidering the whole MUS extraction process, in order to benefit from preprocessing, this
reconstruction must be performed efficiently. However, even guaranteeing correctness
(i.e., ensuring that the reconstructed subformulas are actually MUSes) when applying
preprocessing becomes non-trivial. This is especially true for the recently introduced
problem of group (or high-level) [18, 22] MUS extraction, which is practically a very
relevant generalization of the “plain” MUS extraction problem.

Considering the extraction of both standard and group MUSes, we focus on a num-
ber of important SAT preprocessing techniques, including clause elimination proce-
dures [7, 12] such as subsumption and blocked clause elimination [14], and resolution-
based preprocessing techniques (SatElite-style variable elimination [6], self-subsuming
resolution, and Boolean constraint propagation). We show formally to what extent
the techniques can be directly applied in the context of MUS extraction. It turns out
that, especially in the case of group MUS extraction, maintaining correctness under
preprocessing needs extra attention. This is further corroborated by the fact that in-
correct results produced by some group MUS extractors that applied preprocessing in
the special track of the 2011 SAT Competition on group MUS extraction were likely
due to incorrect applications of standard SAT preprocessing techniques (see http:

//www.satcompetition.org/2011/ for details). We develop a generic theoretical
framework based on labelled CNFs, which provides a unifying view to variants of MUS
extraction problems, and enables formalizing conditions for correctness-preserving ap-
plications of preprocessing techniques that are not applicable directly. Additionally, we
experimentally evaluate the effect of preprocessing in the context of group MUS ex-
traction.

2 Preliminaries

For a Boolean variable x, there are two literals, the positive literal, denoted by x, and the
negative literal, denoted by x̄. A clause is a disjunction of literals and a CNF formula
a conjunction of clauses. A clause can be seen as a finite set of literals and a CNF
formula as a finite set of clauses. A unit clause contains exactly one literal. A clause
is a tautology if it contains both x and x̄ for some variable x. A clause C is subsumed
by a clause C ′ ⊂ C (viewed as sets of literals). A truth assignment for a CNF formula
F is a function τ that maps variables in F to {0, 1}. If τ(x) = v, then τ(x̄) = v̄,
where 1̄ = 0 and 0̄ = 1. A clause C is satisfied by τ if τ(l) = 1 for some l ∈ C. An
assignment τ satisfies F if it satisfies every clause in F . A CNF formula is satisfiable
if there is an assignment that satisfies it, and unsatisfiable otherwise. We denote the set
of all unsatisfiable and satisfiable CNF formulas, resp., by UNSAT and SAT, resp. Two
CNF formulas F and F ′ are equisatisfiable if we have that F ∈ SAT iff F ′ ∈ SAT.

Minimal Unsatisfiability A CNF formula F is minimally unsatisfiable if (i) F ∈
UNSAT, and (ii) for any clauseC ∈ F , F \{C} ∈ SAT. We denote the set of minimally
unsatisfiable CNF formulas by MU. A CNF formula F ′ is a minimally unsatisfiable sub-
formula (MUS) of a formula F if F ′ ⊆ F and F ′ ∈ MU. The set of MUSes of a CNF
formula F is denoted by MUS(F). In general, a given unsatisfiable formula F may
contain more than one MUS.

2

Motivated by several industrially relevant applications, minimal unsatisfiability and
related concepts have been extended to CNF formulas where clauses are partitioned
into disjoint sets called groups [18, 22].

Definition 1. Given an explicitly partitioned unsatisfiable CNF formulaG = G0∪G1∪
· · · ∪Gk (a group MUS instance or group CNF formula), where the Gi’s are pair-wise
disjoint sets of clauses called groups, a group MUS of G is a subset G of {G1, . . . , Gk}
such that (i) G0 ∪

⋃
G (seen as a monolithic CNF formula) is unsatisfiable, and (ii) for

any group G ∈ G, G0 ∪
⋃(
G \ {G}

)
is satisfiable. The set of group MUSes of a group

MUS instance G is denoted by GMUS(G).

Clause Elimination Procedures Given a CNF formula F , a clause elimination pro-
cedure E is an algorithm that on input F returns a CNF formula E(F) ⊆ F that is
equisatisfiable with F . A specific clause elimination procedure E removes clauses sat-
isfying a specific (typically polynomial-time computable) redundancy property PE from
F until fixpoint. In other words, E on input F modifies F by repeating the following:
if there is a clause C ∈ F satisfying PE , let F := F \ {C}.

An example of a clause elimination procedure is blocked clause elimination (BCE),
which removes so-called blocked clauses [16] from CNF formulas until fixpoint. A lit-
eral l in a clause C of a CNF formula F blocks C (with respect to F) if for every clause
C ′ ∈ F with l̄ ∈ C ′, the resolvent (C \{l})∪ (C ′ \{l̄}) obtained from resolving C and
C ′ on l is a tautology. A clause is blocked (with respect to a fixed CNF formula) if it has
a literal that blocks it. Note that clauses that contain pure literals are blocked [14]. Addi-
tional well-known clause elimination procedures include tautology elimination (remov-
ing tautological clauses) and subsumption elimination (removing subsumed clauses).
These and other more involved clause elimination procedures are analyzed in the con-
text of CNF satisfiability in [12, 13].

Resolution-Based Preprocessing The resolution rule states that, given two clauses
C1 = (l ∨A) and C2 = (l̄ ∨B), the implied clause C = (A ∨B), called the resolvent
of C1 and C2, can be inferred by resolving on the literal l. We write C = C1 ⊗l C2.
This is lifted to two sets Sl and Sl̄ of clauses that all contain the literal l and l̄, resp., by
Sl ⊗l Sl̄ = {C1 ⊗l C2 | C1 ∈ Sl, C2 ∈ Sl̄, and C1 ⊗l C2 is not a tautology}.

Variable Elimination (VE) [6] is defined following the Davis-Putnam procedure (DP).
The elimination of a variable x in the whole CNF can be computed by pair-wise re-
solving each clause in Sx with every clause in Sx̄. Replacing the original clauses in
Sx ∪ Sx̄ with the set of non-tautological resolvents S = Sx ⊗x Sx̄ gives the CNF
(F \ (Sx ∪ Sx̄)) ∪ S which is equisatisfiable with F . In order to avoid exponential
worst-case space complexity, VE is bounded typically as follows: a variable x is al-
lowed to be eliminated only if |S| ≤ |Sx ∪ Sx̄| + ∆, i.e., the resulting CNF formula
(F \ (Sx ∪ Sx̄)) ∪ S will not contain more than a constant ∆ more clauses than the
original formula F (typically ∆ = 0 [6]). VE is currently one of the most important
SAT preprocessing techniques, as witnessed by e.g. the SatElite preprocessor [6].

In the following, we will consider individual steps of variable elimination. Given a
CNF formula F , the result of eliminating the variable x from F is VE(F, x) = (F \
(Sx ∪ Sx̄))∪ (Sx ⊗x Sx̄). Note that in the case x appears in one polarity only (i.e., x is
a pure literal), this operation simply removes all clauses that contain x.

3

Unit propagation Given a CNF formula F , unit propagation on F refers to applying
the following steps on F until fixpoint: if there is a unit clause (l) in F , remove all
clauses with the literal l from F , and remove the literal l̄ from all clauses in F . We will
consider individual steps of unit propagation on a CNF formula F , where a single literal
l is propagated: BCP(F, l) = {C ∈ F | C ∩ {l, l̄} = ∅} ∪ {C \ {l̄} | C ∈ F, l̄ ∈ C}.

Self-Subsuming Resolution (SSR) Given a CNF formula F , the self-subsuming resolu-
tion rule states that, given two clauses C,D ∈ F such that l ∈ C and l̄ ∈ D for some
literal l, and D is subsumed by C⊗lD, D can be replaced with C⊗lD in F (or, infor-
mally, l̄ can be removed from D). Hence a step of self-subsuming resolution, resolving
C andD on l, results in the formula SSR(F,C,D, l) = (F \D)∪{C⊗lD}. Regarding
the practical importance of SSR, as noted in [6], applying SSR in combination with VE
and subsumption elimination can give notable improvements w.r.t. applying VE alone.

3 Direct Preprocessing in MUS Extraction

In this section we address the question of the direct applicability of CNF preprocessing
techniques described in Sect. 2 in the context of MUS extraction. That is, whether we
can simply apply a technique to a formula F (keeping track of the changes), extract an
MUS of the preprocessed formula, and reconstruct an MUS of F from it in an efficient
and natural way.

3.1 Clause Elimination Procedures

Plain MUS Extraction It is rather straightforward to observe that clause elimination
procedures can be directly applied in the context of plain MUS extraction: for any MUS
M of a CNF formula F ′, such that F ′ is the result of applying any combination of clause
elimination procedures on an input CNF F , we have that M is an MUS of F .

Proposition 1. If F ′ is a result of applications of clause elimination procedures to an
unsatisfiable CNF formula F , then MUS(F ′) ⊆ MUS(F).

Proof. Since F ′ ⊆ F , we have M ⊆ F for any M ∈ MUS(F ′). Furthermore, since
M ∈ MU, we have M ∈ MUS(F). �

Note the inclusion instead of equality in Proposition 1: consider F = F1 ∪F2 such that
F1, F2 ∈ MU, F1 ∩ F2 = ∅. Since both F1 and F2 are unsatisfiable on their own, there
is a clause elimination procedure that removes all clauses either in F1 or F2 from F .

Group MUS Extraction We say that a clause elimination procedure S is applied on
a group MUS instance G = {G0, G1, . . . , Gn} when referring to applying S on G
seen as the monolithic CNF formula

⋃n
i=0Gi. The resulting group MUS instance is

S(G) = {G′0, G′1, . . . , G′n}, where for each i = 0..n we have G′i = Gi ∩ S(
⋃n
i=0Gi).

A natural idea for reconstructing a GMUS M of G from a GMUS M ′ of S(G) would
be to consider M = {Gi ∈ G | G′i ∈ M ′}. However, we will show that this natural
idea does not generally work: whether M is always guaranteed to be a GMUS of G
depends critically on the choice of the clause elimination procedure S. Surprisingly,
even subsumption elimination is problematic, as witnessed by the following example.

4

Example 1. Consider the group MUS instance G = {G0, G1, G2}, where G0 = {(r̄)},
G1 = {(p ∨ q), (q̄ ∨ r), (p̄ ∨ r)}, and G2 = {(p)}. Here {G1} is the only group MUS.
Here (p) ∈ G2 subsumes (p ∨ q) ∈ G1. However, {G′1} with G′1 = G1 \ {(p ∨ q)} is
not a group MUS of {G′0 = G0, G

′
1, G

′
2 = G2} since G0 ∪G′1 ∈ SAT; {G′1, G′2} is. �

A similar proposition to that of Proposition 1 in the context of group MUS extraction
can be shown for the restricted case of what we call “monotonic” clause elimination
procedures: a clause elimination procedure S is monotonic if, for any two CNFs F and
F ′ s.t. F ′ ⊆ F , we have that S(F ′) ⊆ S(F).

Proposition 2. Let G = {G0, G1, . . . , Gk} be a group MUS instance, and S any
monotonic clause elimination procedure. For any GMUSM ′ ⊆ S(G) of the group MUS
instance S(G) = {G′0, G′1, . . . , G′k} obtained from applying S on G, M = {Gi ∈ G |
G′i ∈M ′} is a GMUS of G.

Proof. Assume that M is not a group MUS of G. Take any group MUS M ′′ ⊂ M
of M . The monolithic CNF formula S(M ′′) is unsatisfiable. Since S is monotonic,
for each group, say G′′i , in S(M ′′), M ′ contains a group G′i that is a superset of G′′i .
Furthermore, since M ′′ ⊂M , there is a group in M ′ that is not a superset of any group
in S(M ′′). It follows that M ′ is not a group MUS of G′, which is a contradiction. �

In other words, any monotonic clause elimination procedure can be safely used for
preprocessing in the context of plain MUS and group MUS extraction. In addition to
tautology elimination, this includes, e.g., blocked clause elimination.

Proposition 3. Let G = {G0, G1, . . . , Gk} be a group MUS instance. For any GMUS
M ′ ⊆ BCE(G) of the group MUS instance BCE(G) = {G′0, G′1, . . . , G′k} obtained
from applying BCE on G, M = {Gi ∈ G | G′i ∈M ′} is a GMUS of G.

Proof. By Proposition 2, it is enough to show that BCE is monotonic. Recall that a
literal l in a clause C of a CNF formula F blocks C (with respect to F) if for every
clause C ′ ∈ F with l̄ ∈ C ′, the resolvent (C \{l})∪ (C ′ \{l̄}) is a tautology. Note that,
in particular, l blocks C if l̄ does not appear in any clause of F (i.e. l is pure). Hence, if
l blocks C wrt F , then l blocks C wrt any F ′ ⊆ F , and thus BCE(F ′) ⊆ BCE(F). �

Furthermore, pure literal elimination (PLE) is also covered. The CNF formula PLE(F)
resulting from applying pure literal elimination on F is the formula at the fixpoint of
the following: while there is a pure literal l in F , let F := F \ {C | l ∈ C}.

Proposition 4. Let G = {G0, G1, . . . , Gk} be a group MUS instance. For any GMUS
M ′ ⊆ PLE(G) of the group MUS instance PLE(G) = {G′0, G′1, . . . , G′k} obtained
from applying PLE on G, M = {Gi ∈ G | G′i ∈M ′} is a GMUS of G.

Proof. By Proposition 2, since PLE is clearly monotonic. �

Notice that any monotonic clause elimination procedure is also confluent (i.e., has a
unique fixpoint). However, the opposite does not hold: a counterexample is subsumption
elimination, which is confluent but not monotonic (recall Example 1).

5

3.2 Resolution-Based Preprocessing

Unit propagation

Plain MUS Extraction For the following, given a CNF formula F , let F ′ = BCP(F, l)
where (l) ∈ F . For a clause C in F ′, the BCP support supportBCP(C,F) of C in
F is {C} if C ∈ F , and {(l), (l̄ ∨ C)} (the premises that produced C) otherwise. A
natural idea for reconstructing an MUS M of F from an MUSM ′ of F ′ would be to let
M =

⋃
C∈M ′ supportBCP(C,F). Indeed, in the context of plain MUS extraction, this

natural idea works, i.e., M is always guaranteed to be an MUS of F .

Proposition 5. Let M ′ be an MUS of F ′ = BCP(F, l), where (l) ∈ F . Let M =⋃
C∈M ′ supportBCP(C,F). Then M ∈ MUS(F).

Proof. Assume w.l.o.g. that we have F = {(l), (l∨C ′1), . . . , (l∨C ′n), (l̄∨C1), . . . , (l̄∨
Cm)} ∪ R, where R is the set of clauses in F which do not contain the variable of l.
Hence the formula F ′ = BCP(F, l) = {C1, . . . , Cm} ∪ R. We have M ′ ∈ MU, and
want to show M ∈ MU. Note that if M ′ ⊆ R, then M = M ′, and we are done.

Otherwise, let M ′ = {Ci1 , . . . , Cik} ∪ R′, where Cij ∈ {C1, . . . , Cm}, Cij /∈
R′, and R′ ⊆ R. Then, we have M = {(l), (l̄ ∨ Ci1), . . . , (l̄ ∨ Cik)} ∪ R′. Clearly
BCP(M, l) = M ′, and sinceM ′ ∈ UNSAT,M must also be UNSAT (by the soundness
of BCP). Let now C ′ be any clause in M , and let M̂ = M \ {C ′}. If C ′ 6= (l), then
BCP(M̂, l) ⊂ M ′, and since M ′ ∈ MU, we have BCP(M̂, l) ∈ SAT, and so, by the
soundness of BCP, M̂ ∈ SAT. If C ′ = (l), then M̂ = {(l̄ ∨ Ci1), . . . , (l̄ ∨ Cik)} ∪R′.
But, sinceM ′ ∈ MU, we haveR′ ∈ SAT. Furthermore, the variable of l does not appear
in R′, and so setting l to 0 will satisfy the rest of the clauses in M̂ , and so M̂ ∈ SAT.

We conclude that M ∈ UNSAT, and, for any C ′ ∈ M , M \ {C ′} ∈ SAT. Hence,
M ∈ MU, and since M ⊂ F , we have M ∈ MUS(F). �

In other words, if a formula Fn is the result of an application of a sequence of BCP
steps F2 = BCP(F1, l1), . . ., Fn = BCP(Fn−1, ln−1), to a formula F1, then given
an MUS Mn of Fn, we can reconstruct an MUS M1 of F1 by taking the transitive
support of the clauses in Mn, i.e., Mn−1 =

⋃
C∈Mn

supportBCP(C,Fn−1), . . ., M1 =⋃
C∈M2

supportBCP(C,F2). In particular, if ∅ ∈ Fn, i.e. if the sequence of BCP steps
results in a conflict, then the clauses of F1 that were used to derive the conflict constitute
an MUS of F1. Thus Proposition 5 is a generalization of [17, Proposition 1] that states
that inconsistent subformulas detected by unit propagation are minimally unsatisfiable.

Group MUS Extraction In the context of group MUS extraction, however, unit propa-
gation cannot be safely applied over different groups by simply applying BCP on the
monolithic CNF formula FG = G0 ∪ · · · ∪Gn, where G = {G0, . . . , Gn} is the input
group MUS instance. An intrinsic problem arises from the fact that BCP(F, l) can be
seen as the combination of elimination of all clauses that are subsumed by (l) in F ,
and VE(F ′, l), where F ′ is the CNF formula resulting from the subsumption elimina-
tion step w.r.t. (l). More concretely, recall Example 1 which applies naturally to BCP
as well. Another intrinsic problem in applying BCP steps using clauses from different
groups is that the resolvents would inherit multiple group identities. Additionally, the
sets of inherited group identities is dependent on the BCP variable ordering, as shown
next.

6

Example 2. Consider the group MUS instanceG = {G0, . . . , G3}withG0 = {(x), (y)},
G1 = {(z∨p∨q)},G2 = {(x̄∨ z̄)}, andG3 = {(ȳ∨ z̄), (p∨ q̄), (p̄∨q), (p̄∨ q̄)}. Here
{G1, G3} is a group MUS of G. Assume now that a sequence of BCP steps is applied
toG, viewed as a monolithic CNF formula FG = G0∪· · ·∪G3. There are two possible
BCP sequences: both sequences produce an unsatisfiable CNF formula that contains all
four binary clauses over p and q.

Now consider the possible supports of the clause C = (p ∨ q). If the first step is
BCP(FG, x), then the transitive support of C in FG is {(x), (x̄ ∨ z̄), (z ∨ p ∨ q)}. In
this case the derivation of C involves clauses from G0, G1, and G2. If the first step
is BCP(FG, y), then the transitive support of C in Fg is {(y), (ȳ ∨ z̄), (z ∨ p ∨ q)},
involving clauses from G0, G1, G3. Now, if we would associate C with all groups in
its support, in the former case starting with BCP(FG, x) (i.e., under a variable ordering
preferring x to y) we end up with {G1, G2, G3} ⊃ {G1, G3}. �

A partial way of safely applying BCP on a group MUS instanceG = {G0, G1, . . . , Gk}
is to apply BCP fully on the special group G0. In case unit propagation on G0 alone
leads to a conflict, then G has a single group MUS, namely the empty set. Otherwise,
the derived unit clause can be propagated individually inside each groupGi, 1 ≤ i ≤ k.
The intuitive justification for this solution is that in the instance preprocessed with BCP,
the transitive support of any clause C ∈ Gi consists only of clauses of G0 and a single
Gi. By definition, the clauses in G0 are always included in the unsatisfiability check for
any selection of groups Gi, where i > 0, and furthermore, this way the group identities
will not mix between the other groups.

Self-Subsuming Resolution

While the support for BCP(F, l) allows to reconstruct a plain MUS of F from an MUS
of BCP(F, l), this technique fails for SSR under the following natural definition of
support: given a CNF formula F , let F ′ = SSR(F,C,D, l). For a clause E in F ′, the
SSR support supportSSR(E,F) of E in F is {E} if E ∈ F , and {C,D} otherwise.
As with the case of BCP support, this definition allows to recover the resolution step
involved in the procedure. Consider the following example.

Example 3. Consider the CNF formula F = {(x̄ ∨ p), (x ∨ p ∨ q), (p̄), (x ∨ q̄), (x̄)}.
After the application of self-subsuming resolution to the first two clauses of F we obtain
the formula F ′ = {(x̄ ∨ p), (p ∨ q), (p̄), (x ∨ q̄), (x̄)}. The only MUS of F ′ is M ′ =
{(p∨ q), (p̄), (x∨ q̄), (x̄)}. Since supportSSR((p∨ q), F) = {(x̄∨ p), (x∨ p∨ q)}, the
union of the supports of all clauses in M ′ is precisely the formula F , which can easily
be seen to not be in MU. �

Variable Elimination

Since unit propagation is a special case of variable elimination, the problems discussed
above with direct applications of BCP on the group MUS level apply to VE as well.
However, similarly as for SSR, VE is problematic even in the context of plain MUS
extraction. Intuitively, part of the problem is that the resolvents produced by a step
VE(F, x) of variable elimination can have multiple pairs of supports, i.e., are produced
via more than one distinct pair of premises (note that this is not the case for BCP). The
problems caused by this behaviour are highlighted by the following example.

7

Example 4. Consider the CNF formula F = A ∪R, where
A = {(x ∨ p ∨ q ∨ r), (x ∨ q̄ ∨ r), (x̄ ∨ p ∨ s), (s̄), (x̄ ∨ q)} and
R = {(p ∨ q ∨ r̄), (p ∨ q̄ ∨ r̄), (p̄ ∨ q ∨ r), (p̄ ∨ q ∨ r̄), (p̄ ∨ q̄ ∨ r), (p̄ ∨ q̄ ∨ r̄)}.
Notice thatR is the set of all possible clauses on p, q, r, except (p∨q∨r) and (p∨ q̄∨r).
Then,F ′ = VE(F, x) = A′∪R, whereA′ = {(p∨q∨r∨s), (p∨q∨r), (p∨q̄∨r∨s), (s̄)}.
F ′ has two MUSes:M1 = {(p∨q∨r∨s), (p∨ q̄∨r∨s), (s̄)}∪R andM2 = {(p∨q∨
r), (p ∨ q̄ ∨ r ∨ s), (s̄)} ∪R. Consider the idea of computing a minimal support of M1

and M2, i.e., the minimal set of premises P ⊆ F such that M1 ⊆ VE(P, x) and M2 ⊆
VE(P, x), respectively, with the idea that such a minimal support would be an MUS of
F . The minimal supports ofM1 andM2 are {(x∨p∨q∨r), (x∨q̄∨r), (x̄∨p∨s), (s̄)}∪R
and {(x∨ p∨ q ∨ r), (x∨ q̄ ∨ r), (x̄∨ p∨ s), (s̄), (x̄∨ q)} ∪R = A∪R, respectively.
The former is an MUS of F . However, the latter is not; in other words, even taking such
a restricted, and “tightened-up”, version of support for reconstructing an MUS is not
generally correct. �

For enabling direct applications of VE on group MUS instances, VE needs to be
restricted. As in the case of BCP, VE can be applied solely on G0, seen as a CNF
formula, replacing the original G0 with the resulting formula in the original instance.
Furthermore, correctness is preserved if VE is applied inside each groupGi, 1 ≤ i ≤ k,
meaning that “internal” variables that occur only in clauses of a single group can be
eliminated.

However, compared to such “ad hoc” technique-specific restrictions for applying
preprocessing techniques in the context of group MUS extraction, a more generic frame-
work for guaranteed correctness-preserving applications for different preprocessing tech-
niques is called for. In the next two sections, we develop such a framework based on the
concept of so-called labelled CNF formulas [2]. We then formally prove correctness of
labelled variants of clause elimination and resolution-based preprocessing techniques
for MUS extraction problems expressed in terms of labelled CNF formulas.

4 Labelled CNF Formulas

Assume a countable set of labels Lbls. A labelled clause (L-clause) is a tuple 〈C,L〉,
where C is a clause, and L is a finite (possibly empty) subset of Lbls. We denote the
label-sets by superscripts, i.e. CL is the labelled clause 〈C,L〉. A labelled CNF (LCNF)
formula is a finite set of labelled clauses. For an LCNF formula Φ, let Cls(Φ) =⋃
CL∈Φ{C} be the clause-set of Φ, and Lbls(Φ) =

⋃
CL∈Φ L be the label-set of Φ.

LCNF satisfiability is defined in terms of the satisfiability of the clause-sets of an LCNF
formula: Φ is satisfiable if and only if Cls(Φ) is satisfiable. We will re-use the nota-
tion SAT (resp. UNSAT) for the set of satisfiable (resp. unsatisfiable) LCNF formulas4.
However, the semantics of minimal unsatisfiability and MUSes of labelled CNFs are
defined in terms of their label-sets via the concept of the induced subformula.

Definition 2 (Induced subformula). LetΦ be an LCNF formula, and letM ⊆ Lbls(Φ).
The subformula of Φ induced by M is the LCNF formula Φ|M = {CL ∈ Φ | L ⊆M}.

4 To avoid overly optimistic complexity results, we will tacitly assume that the sizes of label-sets
of the clauses in LCNFs are polynomial in the number of the clauses

8

In other words, Φ|M consists of those labelled clauses of Φ whose label-sets are in-
cluded in M , and so Lbls(Φ|M) ⊆ M , and Cls(Φ|M) ⊆ Cls(Φ). Alternatively, any
clause that has at least one label outside of M is removed from Φ. Thus, it is convenient
to talk about the removal of a label from Φ. Let l ∈ Lbls(Φ) be any label. The LCNF
formula Φ|M\{l} is said to be obtained by the removal of label l from Φ.

Definition 3 (Minimally Unsatifiable LCNF). An LCNF formula Φ is minimally un-
satisfiable (denoted Φ ∈ LMU) if Φ ∈ UNSAT, and for all M ⊂ Lbls(Φ), Φ|M ∈ SAT.

Definition 4 (Labelled MUS). Let Φ be an LCNF formula. A set of labels M ⊆
Lbls(Φ) is a labelled MUS (LMUS) of Φ (M ∈ LMUS(Φ)), if Φ|M ∈ LMU.

Note that LMUSes are sets of labels, rather than sets of clauses; this is motivated by
the following example. Also, note that the empty set can be an LMUS of Φ (this is
the case when the subset of clauses of Cls(Φ) labelled with ∅ is unsatisfiable), and
for any LMUS M of Φ, Cls(Φ|M) includes all clauses of Φ labelled with ∅. Finally, if
M ∈ LMUS(Φ), thenLbls(Φ|M) = M (note the equality). We now illustrate how some
of the notions of minimal unsatisfiability get represented in the framework of LCNFs.

Example 5. (a) Let F = {C1, . . . , Cn} be a CNF formula, and let {i} be the label-
set of clause Ci. For any LMUS M of Φ = {C{i}i | Ci ∈ F}, the CNF formula
{Ci | i ∈ M} is an MUS of F (and vice versa). (Notice that this is a reduction from
MU to LMU.)
(b) Let F = G0 ∪ G1 ∪ . . . Gk be a group CNF formula. For each C ∈ F , take the
label-set of C to be ∅ if C ∈ G0, and {i} if C ∈ Gi for i ≥ 1. For any LMUS M of the
resulting LCNF Φ, {Gi | i ∈M} is a group MUS of F (and vice versa).
(c) For a CNF formula F and C ∈ F , let the set of variables of C be the label-set of C.
Any LMUS M of the resulting LCNF is a variable-MUS [4] of F (and vice versa). �

In the following, we refer to the LCNF formula constructed from a CNF formula
F as in Example 5(a) as the LCNF associated with F ; similarly, the LCNF formula
constructed from the group CNF formula F as in Example 5(b) is referred to as the
LCNF associated with the group CNF F . Notice that in Example 5(c) the label-sets of
clauses are not necessarily disjoint. This allows to capture the semantics of “intersect-
ing” groups, or, to put it differently, the multiple group identity of clauses (recall the
discussion of BCP in the context of group MUS extraction in Section 3).

Computing LMUSes

It is not difficult to see that the LMUS extraction problem can be reduced to the group
MUS extraction problem: given an LCNF formula Φ. For each label l ∈ Lbls(Φ),
introduce a fresh variable pl. For each L-clause CL ∈ Φ, create the clause C ∨

∨
l∈L pl,

and put the resulting clauses into the group G0. Finally, for each l ∈ Lbls(Φ) create a
singleton groupGl = {(p̄l)}. The resulting group-CNF formula FΦ = {G0}∪{Gl | l ∈
Lbls(Φ)} is equisatisfiable with Φ. Furthermore, {Gl1 , . . . , Glk} is a group-MUS of FΦ
if and only if {l1, . . . , lk} is an LMUS of Φ. We omit the proof, but the argument relies
on the fact that a removal of a group Gl from FΦ leaves the literal pl pure in the clauses
of G0, thus satisfying all clauses with pl. This in turn is equivalent to the removal of

9

all clauses CL ∈ Φ with l ∈ L, i.e., the removal of the label l from Φ. Note that
this reduction together with Example 5(a) can be used to show that the LMU decision
problem is DP-complete.

Although the reduction from LMUS extraction to group MUS extraction enables
the use of any group MUS extractor for the computation of LMUSes, we observe that
in fact there is a simpler and likely more efficient way to compute LMUSes: one can
simply load the clauses of the group G0 of the formula FΦ into an incremental SAT
solver (such as Minisat), and use the variables pl as assumption variables. Notice that
the state-of-the-art assumption-based MUS extractors, such as MUSer2 [3] which is
used in the experiments of this work, already do exactly this when computing MUSes
and group-MUSes.

With this practical motivation, we will next provide liftings of the “problematic”
preprocessing techniques (recall Section 3) to the labelled MUS setting. The liftings
resolve the problems discussed in Section 3, and are safe to implement and apply using
assumption variables.

5 Preprocessing in LMUS Extraction

We proceed by lifting clause elimination and resolution-based preprocessing techniques
to the labelled case, resulting in correctness-preserving preprocessing techniques for
labelled CNFs that are applicable in the general setting of group MUS extraction. It
should be noted that labelled CNFs can be used to generalize all concepts related to
minimal unsatisfiability and irredundancy (e.g. MSSes, MESes, MaxSAT, etc.) in var-
ious settings (clauses, groups, variables, circuits, etc.) [2]. As a by-product, given the
natural mapping between plain and group MUS instances described in Example 5, this
opens a path for correctness-preserving preprocessing for these settings as well.

5.1 Labelled Clause Elimination

While monotonic clause elimination procedures, including blocked clause elimination,
can be directly applied in the group MUS context (recall Proposition 2), for other clause
elimination procedures direct applicability appears to be limited. Especially, subsump-
tion elimination cannot be directly applied (recall Example 1).

A correctness-preserving lifting of clause elimination procedures which preserve
logical equivalence to the general setting of LMUS extraction is provided by the fol-
lowing proposition. Note that subsumption elimination is one of such procedures.

Proposition 6. Let Φ be an LCNF formula such that for some clauses CL1
1 , . . . , CLk

k

and CL in Φ, {C1, . . . , Ck} |= C and
⋃

1≤i≤k Li ⊆ L. Then, any LMUS of Φ \ {CL}
is an LMUS of Φ.

Proof. Let Φ′ = Φ \ {CL}, and let M be an LMUS of Φ′, i.e. Φ′|M ∈ LMU. We need
to show that Φ|M ∈ LMU. Note that since Φ = Φ′ ∪ {CL} we have Φ|M = Φ′|M ∪
{CL}|M . Thus, if L *M , then Φ|M = Φ′|M , and we are done since Φ′|M ∈ LMU.

If L ⊆ M , then CL ∈ Φ|M , and since
⋃

1≤i≤k Li ⊆ L, all clauses CLi
i are in

Φ|M , and hence in Φ′|M . Consider any label l ∈ M , and let M ′ = M \ {l}. If l ∈ L,

10

then CL /∈ Φ|M ′ , and therefore Φ|M ′ = Φ′|M ′ ∈ SAT, since Φ′|M ∈ LMU. If l /∈ L,
then Φ|M ′ = Φ′|M ′ ∪ {CL}, and since

⋃
Li ⊆ L, all clauses CLi

i are in Φ′|′M . Since
Φ′|M ′ ∈ SAT, any of its satisfying assignments satisfies all clauses CLi

i , and also the
clause C since {C1, . . . , Ck} |= C. Hence Φ|M ′ ∈ SAT, and for any l ∈M , Φ|M\{l} ∈
SAT, and so Φ|M ∈ LMU. ut

Applying Proposition 6 to subsumption elimination, we obtain that a clause CL1
1

subsumed by clause CL2
2 can be eliminated correctly (w.r.t. to LMUS computation) if

L2 ⊆ L1. In particular, in the group-MUS setting, all clauses subsumed by the clauses
from the same group, or by the clause from group G0, can be eliminated safely.

5.2 Labelled Resolution-based Preprocessing

We now introduce liftings of the resolution-based preprocessing techniques to the con-
text of LMUS extraction.

Definition 5 (L-resolvent). The L-resolvent of two labelled clauses (x ∨ A)L1 and
(x̄ ∨B)L2 on variable x is the labelled clause (A ∨B)L1∪L2 .

We will re-use the symbol ⊗x to denote the operation of L-resolution. As with the
case of (plain) clauses, L-resolution rule is extended to sets of labelled clauses: for
two such sets Sx and Sx̄ of L-clauses which all contain the literal x and x̄, resp., let
Sx⊗x Sx̄ = {CL1

1 ⊗x C
L2
2 | CL1

1 ∈ Sx, CL2
2 ∈ Sx̄, and C1⊗x C2 is not a tautology}.

Labelled Variable Elimination Given an LCNF formula Φ, with subformulas Φx =
{CL ∈ Φ | x ∈ C} and Φx̄ = {CL ∈ Φ | x̄ ∈ C}, similarly to the case of (plain)
CNF, we define the operation LVE(Φ, x) = (Φ \ (Φx ∪Φx̄))∪ (Φx ⊗x Φx̄). Notice that
(as with VE) the definition implies that for any CL ∈ LVE(Φ, x), we have x /∈ C, and
either (i) CL ∈ Φ, or (ii) there exist (x ∨ C1)L1 and (x̄ ∨ C2)L2 in Φ such that CL =
(C1 ∨ C2)L1∪L2 , or both (i) and (ii). It is not difficult to see that Cls(LVE(Φ, x)) =
VE(Cls(Φ), x), that is, the set of (plain) clauses underlying the LCNF Φ undergoes the
same transformation as it would without labels, modulo the repeated clauses. Hence, as
with the case of VE, LVE preserves satisfiability.

We will now show that the presence of labels attached to the clauses during the
variable elimination allows to keep track of the relationship between the pre- and post-
elimination formulas, and, as a result, allows to perform elimination correctly, that is,
any LMUS of LVE(Φ, x) is also an LMUS of Φ. As a first step, we show that the oper-
ations of LVE and |M commute.

Lemma 1. For any LCNFΦ, variable x, and set of labelsM , LVE(Φ, x)|M = LVE(Φ|M , x).

Proof. Take any CL ∈ LVE(Φ, x)|M . Note that L ⊆ M and x /∈ C. By the definition
of LVE, we have that either (i) CL ∈ Φ, or (ii) for some (x ∨ C1)L1 and (x̄ ∨ C2)L2

in Φ, we have C = C1 ∨ C2 and L1 ∪ L2 = L, or both (i) and (ii). In the case (i), the
clause CL is in Φ|M , since L ⊆ M , and since x /∈ C, CL ∈ LVE(Φ|M , x). In the case
(ii), both clauses (x∨C1)L1 and (x̄∨C2)L2 are in Φ|M , since L1 ∪L2 = L ⊆M , and
by the definition of LVE, CL = (C1 ∨ C2)L1∪L2 ∈ LVE(Φ|M , x).

11

For the opposite direction, take CL ∈ LVE(Φ|M , x). Note that x /∈ C. By the
definition of LVE, we have that either (i) CL ∈ Φ|M , or (ii) for some (x ∨ C1)L1

and (x̄ ∨ C2)L2 in Φ|M , we have C = C1 ∨ C2 and L1 ∪ L2 = L, or both (i) and
(ii). In the case (i), since CL ∈ Φ and x /∈ C, by the definition of LVE, we have
CL ∈ LVE(Φ, x), and since CL ∈ Φ|M we have L ⊆ M , and so CL ∈ LVE(Φ, x)|M .
In the case (ii), since (x ∨ C1)L1 and (x̄ ∨ C2)L2 are in Φ, by the definition of LVE
we have CL = (C1 ∨ C2)L1∪L2 ∈ LVE(Φ, x); since both clauses are in Φ|M , we have
L1 ⊆M and L2 ⊆M , Hence L = L1 ∪ L2 ⊆M , and CL ∈ LVE(Φ, x). ut

Correctness of LVE with respect to LMUS extraction is established by applying Lemma 1.

Theorem 1. For any LCNF formula Φ and variable x, any LMUS of LVE(Φ, x) is an
LMUS of Φ.

Proof. Let M be an LMUS of LVE(Φ, x), i.e. LVE(Φ, x)|M ∈ UNSAT, and for any
M ′ ⊂M , LVE(Φ, x)|M ′ ∈ SAT. By Lemma 1, we have LVE(Φ, x)|M = LVE(Φ|M , x),
and so LVE(Φ|M , x) ∈ UNSAT, and since LVE preserves satisfiability, Φ|M ∈ UNSAT.
Similarly, for the M ′ ⊂M , by Lemma 1, we have LVE(Φ, x)|M ′ = LVE(Φ|M ′ , x), and
so LVE(Φ|M ′ , x) ∈ SAT, and so Φ|M ′ ∈ SAT. Hence, Φ|M ∈ UNSAT and for any
M ′ ⊂M , Φ|M ′ ∈ SAT, that is, M is an LMUS of Φ. ut

Notice that the presence of labels addresses the problems with resolution-based
preprocessing techniques in plain and group MUS settings outlined in Section 3. For
example, labels provide a way to represent the multiple group identity of resolvents:
a resolvent of two clauses from different groups simply inherits the identity of both
groups. Furthermore, in the context of plain MUS extraction, if a clause C can be ob-
tained by resolving two pairs of clauses C1, C2 and C3, C4, then in the LCNF setting,
we will have two L-clauses CL1 and CL2 with L1 6= L2. Although this might impede
the effectiveness of VE, the correctness with respect to MUS computation is guaran-
teed. In fact, in Section 6, we demonstrate empirically that in the context of group MUS
extraction, the technique is still effective.

Labelled Unit Propagation Notice that BCP(F, l) can be seen as the combination
of (i) elimination of all clauses (l ∨ C1), . . . , (l ∨ Ck) that are subsumed by (l) in
F , and (ii) VE(F ′, l), where F ′ is the CNF formula resulting from the subsumption
elimination step w.r.t. (l). Hence, combining Proposition 6 and Theorem 1, we can
define labelled unit propagation LBCP(Φ, (l)L) for a given LCNF Φ and labelled unit
clause (l)L ∈ Φ as the combination of (1) labelled subsumption with the restriction that
for each (l ∨ Ci)Li ∈ Φ we have L ⊆ Li (following Proposition 6), and (2) LVE(Φ′, l),
where Φ′ is the LCNF resulting from step (1). Therefore, in the group-MUS setting,
BCP can be applied within any of the groups, and by propagating any of the unit clauses
derived from group G0 to the groups Gi for i > 0.

Labelled Self-Subsuming Resolution Recall that a step of self-subsuming resolution
SSR(F,C,D, l) = (F \D)∪{C⊗lD} can be seen as first adding the resolvent (C⊗lD)
to F , and then applying subsumption elimination to remove the the clause D ⊃ C ⊗l
D. Hence we define labelled self-subsuming resolution LSSR(Φ,CLC , DLD , l) as the
combination of (1) computing the L–resolvent of CLC and DLD , and (2) applying

12

labelled subsumption to remove DLD from the LCNF resulting from step (i), with the
restriction that LC ∪LD ⊆ LD, i.e., LC ⊆ LD. The correctness of LSSR is established
in the following proposition.

Proposition 7. Let Φ be any LCNF formula with two L-clauses CLC and DLD re-
solvable on the variable l and satisfying LC ⊆ LD. Then, any LMUS of the formula
LSSR(Φ,CLC , DLD , l) is an LMUS of Φ.

Proof. Follows directly from the facts that the clausesDLD ∈ Φ andCLC⊗lDLD ∈ Φ′
have the exact same set of labels LD since LC ⊆ LD, and that Cls(Φ) and Cls(Φ′) are
logically equivalent. ut

5.3 Applying the Labelled Preprocessing Techniques in Practice

The reduction from LMUS extraction to group MUS extraction and the subsequent
discussion on the applicability of incremental SAT solvers to the LMUS computation
problem (recall Section 4) suggest a simple way to implement most of the LCNF-based
preprocessing techniques, namely LBCP, LVE, LSSR, and labelled subsumption elimi-
nation. As discussed before, given an LCNF formula Φ, add a fresh variable pl for each
l ∈ Lbls(Φ), and for every CL ∈ Φ create a clause (C ∨

∨
l∈L pl). By FΦ let us denote

the resulting CNF formula (not the group-CNF discussed earlier). It is easy to see that
the corresponding preprocessing techniques for plain CNF formulas can now be applied
to FΦ as long as VE is disallowed to eliminate the variables pl. The resulting CNF for-
mula F ′Φ is then mapped back into an LCNF formula Φ′ by converting the variables pl
in the clauses into the label-sets of L-clauses to obtain the preprocessed version of Φ.
The formula Φ′ is then given to an LMUS computation algorithm. Based on the results
presented in this section, the computed LMUS M of Φ′ is an LMUS of Φ.

Connecting back to practical group MUS extraction, a simple way to apply the la-
belled preprocessing techniques within group MUS extraction is to exploit assumptions
within an incremental SAT solver that incorporates the original non-labelled versions
of the preprocessing techniques (recall the discussion on computing LMUSes in Sec-
tion 4). We used this approach for the experiments described next.

6 Experimental results

The aim of the experimental study was to evaluate the potential effectiveness of various
preprocessing techniques in the context of group MUS extraction. The focus on group
MUSes is due to the high relevance of the problem to a number of formal verification
applications (e.g. model checking and equivalence checking). To this end, we integrated
some of the preprocessing techniques discussed in this paper into the group MUS ex-
tractor MUSer2 [3]. Specifically, we implemented BCE, which, as shown in Section 3,
can be applied to group CNF instances safely prior to group MUS extraction by simply
disregarding the group identities of the clauses. To implement additional preprocessing
techniques, we took advantage of the fact that MUSer2 is an assumption-based MUS
extractor, and followed the recipe outlined in the previous section: we configured it to
work with the Minisat 2.2.0 (http://minisat.se/) SAT solver, and ran the SatElite

13

Fig. 6.1. Left: base vs. BCE. Center and right: base vs. VE+SSR+subsumption elimination (with
SatElite), intel-pba center, hwmcc right. CPU time includes the time used for preprocessing.

preprocessor [6] of Minisat prior to group MUS extraction (note that SatElite allows to
prohibit the elimination of particular variables). This corresponds to applying a combi-
nation of VE, SSR, and subsumption elimination prior to group MUS extraction

For the experiments, we used two sets of group MUS benchmarks. The first set,
intel-pba, contains 99 instances submitted by Intel to the group MUS track of SAT
Competition 2011. These instances originate from a proof-based abstraction frame-
work. Their characteristic features are the size (reaching 4 million clauses), and the
fact that over 90% of the clauses belong to group G0. Each of the rest of the groups
represents a gate (flop) over multiple timeframes in BMC unrolling. The second set,
hwmcc, consists of 148 belov instances used in the same competition. These instances
represent BMC unrolling of unsatisfiable instances from HWMCC 2010, whereby each
AIG gate in each timeframe is represented a separate group (of 3 clauses). In these in-
stances G0 consists only of the unit clause that represent properly assertion. Note that
hence the two sets differ drastically in structure, in a sense representing two extreme
opposites in applications of group MUS extraction in proof-based abstraction.

The scatter plot on the left in Fig. 6.1, which demonstrates the effects of BCE on
group MUS extraction time, suggests that BCE is not an effective technique for prepro-
cessing group MUS instances. This is despite the fact that on most benchmarks BCE
removes significant number of clauses (e.g. 2.5 million out of 3 on some of instances).
On the other hand, as seen from the center and right plots in Fig. 6.1, the positive im-
pact of resolution- and subsumption- based preprocessing on group MUS extraction
time can be very significant, particularly on the difficult instances from the intel-pba
set, where an order of magnitude speed-ups can be observed in some cases.

7 Conclusions

In this paper, we show that many CNF-level preprocessing techniques, routinely applied
for speeding up SAT solving, are problematic in the context of plain MUS extraction,
and, especially so, in the practically relevant context of group MUS extraction. To alle-
viate this problem, we developed sound liftings of the preprocessing techniques to the
general context of labelled MUS extraction that captures group MUS extraction as well

14

as various other forms of MUS extraction problems. Our experimental results show that
label-based preprocessing can improve the efficiency of group MUS extraction.

References

1. Bacchus, F.: Enhancing Davis Putnam with extended binary clause reasoning. In:
Proc. AAAI. pp. 613–619. AAAI Press (2002)

2. Belov, A., Marques-Silva, J.: Generalizing redundancy in propositional logic: Foundations
and hitting sets duality. Tech. rep., arXiv (2012), http://arxiv.org/abs/1207.1257

3. Belov, A., Marques-Silva, J.: MUSer2: An efficient MUS extractor. J. SAT 8, 123–128 (2012)
4. Belov, A., Ivrii, A., Matsliah, A., Marques-Silva, J.: On efficient computation of variable

MUSes. In: Proc. SAT. LNCS, vol. 7317, pp. 298–311. Springer (2012)
5. Desrosiers, C., Galinier, P., Hertz, A., Paroz, S.: Using heuristics to find minimal unsatisfiable

subformulas in satisfiability problems. J. Comb. Optim. 18(2), 124–150 (2009)
6. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination.

In: Proc. SAT. LNCS, vol. 3569, pp. 61–75. Springer (2005)
7. Fourdrinoy, O., Grégoire, É., Mazure, B., Sais, L.: Eliminating redundant clauses in SAT

instances. In: Proc. CPAIOR. LNCS, vol. 4510, pp. 71–83. Springer (2007)
8. Gershman, R., Strichman, O.: Cost-effective hyper-resolution for preprocessing CNF formu-

las. In: Proc. SAT. LNCS, vol. 3569, pp. 423–429. Springer (2005)
9. Grégoire, É., Mazure, B., Piette, C.: On approaches to explaining infeasibility of sets of

Boolean clauses. In: Proc. ICTAI. pp. 74–83. IEEE (2008)
10. Han, H., Somenzi, F.: Alembic: An efficient algorithm for CNF preprocessing. In:

Proc. DAC. pp. 582–587. IEEE (2007)
11. Heule, M., Järvisalo, M., Biere, A.: Efficient CNF simplification based on binary implication

graphs. In: Proc. SAT. LNCS, vol. 6695, pp. 201–215. Springer (2011)
12. Heule, M., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF formulas. In:

Proc. LPAR-17. LNCS, vol. 6397, pp. 357–371. Springer (2010)
13. Heule, M., Järvisalo, M., Biere, A.: Covered clause elimination. In: LPAR short paper (2010)
14. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Proc. TACAS. LNCS,

vol. 6015, pp. 129–144. Springer (2010)
15. Järvisalo, M., Heule, M., Biere, A.: Inprocessing rules. In: Proc. IJCAR. LNCS, vol. 7364,

pp. 355–370. Springer (2012)
16. Kullmann, O.: On a generalization of extended resolution. Discrete Applied Mathematics

96–97, 149–176 (1999)
17. Li, C., Manyà, F., Mohamedou, N., Planes, J.: Resolution-based lower bounds in MaxSAT.

Constraints 15, 456–484 (2010)
18. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of

constraints. J. Autom. Reasoning 40(1), 1–33 (2008)
19. van Maaren, H., Wieringa, S.: Finding guaranteed MUSes fast. In: Proc. SAT. LNCS, vol.

4996, pp. 291–304. Springer (2008)
20. Marques-Silva, J.: Computing minimally unsatisfiable subformulas: State of the art and fu-

ture directions. J. Mult-Valued Log. S. 19(1–3), 163–183 (2012)
21. Marques-Silva, J., Lynce, I.: On improving MUS extraction algorithms. In: Proc. SAT.

LNCS, vol. 6695, pp. 159–173. Springer (2011)
22. Nadel, A.: Boosting minimal unsatisfiable core extraction. In: Proc. FMCAD. pp. 221–229.

IEEE (2010)
23. Ryvchin, V., Strichman, O.: Faster extraction of high-level minimal unsatisfiable cores. In:

Proc. SAT. LNCS, vol. 6695, pp. 174–187. Springer (2011)

15

