Depth-Driven Circuit-Level Stochastic Local Search for SAT

Anton Belov* Matti J arvisalo' Zbigniev Stachniak
University College Dublin University of Helsinki York University
Ireland Finland Canada
Abstract 2009. An alternative approach to circuit-level SLS was first

proposed in the BC SLS methddarvisaloet al, 2008b;
20084d. In contrast to searching in a bottom-up mode as in
circuit-level SLS methods focusing on input variablesrslea

in BC SLS is driven top-down in the overall structure of
the circuit by utilizing so-calledgustification frontiers BC
SLS also introduced the conceptjaktification-basedLS,

in which search steps aim at correcting local inconsistmnci
within a circuit byjustifyinginconsistently assignedigjusti-

We develop a novel circuit-level stochastic local
search (SLS) method D-CRSat for Boolean satis-
fiability by integrating a structure-based heuristic
into the recent CRSat algorithm. D-CRSat signif-
icantly improves on CRSat on real-world applica-
tion benchmarks on which other current CNF and
circuit-level SLS methods tend to perform weakly.

We also give an intricate proof of probabilistically fied) gates. The more recent circuit-level SLS method CRSat
approximate completeness for D-CRSat, highlight- iids on the concept of justification-based sedBeov and
ing key features of the method. Stachniak, 2010 The key novel feature of CRSat is the in-
corporation of limited constraint propagation into thersba
1 Introduction Additionally, CRSat relaxes justification-based searatoio-

o . sider all unjustified gates. CRSat was shown to significantly

Today, Boolean satisfiability (SAT) solvers are routineted outperform BC SLS on problem instances from real-world
to solve hard problem instances arising from Al researchypplication domaingBelov and Stachniak, 2010
and various industrial applications. The most efficient SAT |n this work we develop a novelepth-drivercircuit-level
based approach to solving such real-world instances is typs|.S method D-CRSat. D-CRSat exploits the explicit circuit-
ically based on conflict-driven clause learning (CDCL). In|evel instance structure through a symbiosidiofited for-
contrast, stochastic local search (SLS) for SAT is oftenconward propagationand a structure-based heuristic based on
sidered effective mainly on random SAT instances. Only regate depth informatiomithin justification-based search. We
cently some research effort has been directed towards makirshow that D-CRSat significantly improves the performance of
SLS anoteworthy alternative for solving real-world instes. CRSat on a wide range of industrial application benchmarks
This work contributes substantially to these efforts byedev on which both bottom-up mode circuit-level SLS and current
oping novel structure-based SLS techniques that can &ft thCNF-level SLS methods (using a standard CNF translation
performance of SLS closer to that of CDCL on real-world for the latter) tend to perform weakly. In fact, D-CRSat com-
application instances. pares in some cases favourably even with a modern circuit-

A major challenge in improving the performance of SLS |evel CDCL solver. Complementing these major practical im-
on real-world application instances is in developing edfiti provements, we give a proof pfobabilistically approximate
techniques that exploiariable dependencig¢&autz and Sel- completenes@AC) [Hoos, 1999 for D-CRSat. While also
man, 2007. The results in this paper indicate that a key tOinteresting in its own right, the proof reveals that gatettep
solving this challenge is to exploit non-clausal formulp-re jnformation is indeed an important search parameter. Com-
resentations (such &@volean circuityinstead of focusing on pared to typical PAC proofs, the case of D-CRSat is more
the customary approach of first translating formulas in® th involved due to non-local changes caused by the constraint
flat conjunctive normal form (CNF) format and then applying propagation mechanism. The proof also reveals that D-CRSat
CNF-level SLS methods. (and CRSat) has an intrinsic ability to autonomously réstar

Most SLS methods previously proposed for non-clausakearch without explicitly being forced to do so. An additibn

formulas focus search on truth assignments dmelepen- side-product of the proof is that CRSat is also PAC.
dent(orinput) variabled Sebastiani, 1994; Kautt al., 1997;

Stachniak, 2002; Phaegt al,, 2007; Muhammad and Stuckey, 2 Preliminaries

2006; Stachniak and Belov, 2008; Belov and StachmakA Boolean circuitover a finite setG of gatesis a set

*Partially supported by SFI PI grant BEACON (09/IN.1/12618). C of equations of the formy = f(g1,...,9n), Where
TFinancially supported by Academy of Finland (grant 132812). ¢,g1,...,9, € G and f : {0,1}" — {0,1} is a Boolean

function, with the additional requirements that (i) egch G

3.1 BCSLS

appears at most once as the left hand side in the equations jR BC SLS search is driven by the dynamically updajtest

C, and (ii) the underlying directed gragh, £(C)), where
E(C) = {lg9)€GxG | g=[(....q\...)€C}, is
acyclic. If (¢’,¢g) € E(C), theng’ is achild of g andg is a
parentof ¢’. For a gatey, the sets of its children (i.e., thanin
of g) and parents (i.e., tfanoutof g) are denoted bfanin(g)
andfanout(g), respectively. Thelescendar@ndancestore-
lations fanin® andfanout™ are the transitive closures of the
child and parent relations, respectivelyglt= f(g1,...,9n)
is in C, theng is an f-gate (or of typef). A gate with no
children (resp. no parents) is amput gate(resp. anoutput
gate. The sets of input gates and output gateg’iare de-
noted byinputs(C) andoutputs(C), respectively. A gate that
is neither an input nor an output is arternal gate

An (truth) assignmenfior C is a (possibly partial) function
7:G — {0,1}. A complete assignmentfor C is consistent
if 7(9) = f(7(g1),-..,7(g9n)) for eachg = f(g1,...,9n)
in C. Thedomainof 7, i.e., the set of gates assignedrinis
denoted bydom(7). Two assignments; andr’, disagreeon
a gateg € dom(7) Nndom(7’) if 7(g) # 7'(g). Furthermore,
we identify (g, v) € 7 with 7(g) = v.

A constrained Boolean circui€“ consists of a Boolean
circuit C and an assignment for C. Each(g,v) € ais a
constraint andg is constrainedto v if (g,v) € a. A com-
plete assignment for C satisfiesC* if (i) 7 is consistent
with C, and (ii) it respects the constraints: O «. If some
assignment satisfigs®, thenC“ is satisfiable A circuit that

tification frontier jfront(C', 7) of the constrained circut'®
based on the current assignmenfFor a givenr, consider the
smallest sefS of gates which includes all constrained gates
and, for each justified gatein S, all the gates that participate
in some subset-minimal justification fgr The justification
frontier jfront(C*, 7) is the “bottom edge” of5, consisting

of those gates ir$ that are not justified. By definition, we
always havéfront(C%, 7) C unjust(C*, 7).

BC SLS exploits the fact that when the justification fron-
tier jfront(C®, 7) is empty, the constrained circuit® is sat-
isfiable. Starting with a random complete assignmefr
C«, and as long as the justification frontigront(C“,) is
not empty, the algorithm removes a gateom jfront(C', 7)
at random, and performs eithedawnward move-which is
central in justification-based search—orwgpward move

In adownwardmove the gate is justified by choosing a
justificationo for (g, 7(g)), and flipping the values of gates
on whiche andr disagree. As a result, some gateaifin(g)
may become unjustified and are hence added to the updated
justification frontier. To choose, the set: of all justifica-
tions for (g, 7(g)) is constructed, and one element is selected
from this set either at random, or greedily with the objextiv
of minimizing the size of the set of gatesjfront(C*, 7) and
their descendants after the move.

In anupwardmove the value of itself is flipped (requiring
thatg is unconstrained). As a resultbecomes justified, and,

is not satisfiable isinsatisfiable Without loss of generality, potentially, some gates fanout(g) become unjustified.
we assume that constraints are imposed only on output gates. |ntuitively, BC SLS balances between moving the justifi-

TherestrictionT|g- of an assignment to a setG’ C G of
gates is defined ggg,v) € 7 | g € G'}. Given a gate equa-
tiong = f(g1,...,9,) and avalue € {0, 1}, ajustification
for the pair(g, v) is a partial assignmemnt: {g1,...,gn} —
{0, 1} to the children of; such thatf (7(g1),...,7(gn)) = v
holds for all extensionss © ¢. That is, the values as-
signed byo to the children ofg are enough to force to
take the consistent value For example, the justifications
for (g,0), whereg = AND(g1, g2), are{(g1,0)}, {(g2,0)},
and{{g1,0), (g92,0)}, out of which the first two arsubset-
minimal A gate g is justified in an assignment if it is
assigned, i.er(g) is defined, and (i) it is an input gate, or
(i) g = fg1,.--.,92) € Candr|y,, . 4.3 IS a justifica-
tion for (g, 7(g)). We denote the set afnjustifiedgates in an
assignment by unjust(C*, 7).

For a truth assignmentand set of gate& C dom(7), let

flip(G,7) = (r\ |J {{g. 7o)} U [J {lg, 1 = 7(a))}-

geG geG

cation frontier towards the inputs with downward moves with
the upward moves that, in essence, assign to the chosen gate
the value that is consistent with the assignment on its chil-
dren, hence pushing the frontier towards the outputs.

3.2 CR&aT

The CRS\T algorithm also applies the idea of justification-
based search. However, in contrast to BC SLS, @R&bes
not maintain the justification frontier or perform explicip-
ward moves. Instead, CRS incorporates a more direlitn-
ited forward propagatiormechanism—restricted bottom-up
circuit-level constraint propagation—within the search.
Pseudo-code for CRS is presented as Algorithm 1.
First, a complete extension of a random value assignment
to inputs(C®) is constructed, i.e., the value of each uncon-
strained internal gate is set consistently with the valdetso
children. Then, as long amjust(C%, 7) is not empty (i.e.,
7 is not a satisfying assignment), the algorithm selects @ gat
g from unjust(C®,7) at random (line 6), and, similarly to

In other wordsflip(G, 7) is the truth assignment obtained by the gownward moves in BC SLS, justifigsby choosing a

changing the values of the gates(f) and leaving the rest of
7 unchanged.

3 Justification-Based Circuit-Level SLS

justification o for (g, 7(g)) and flipping the values of gates
on whicho and r disagree. However, CRS additionally
propagates the consequences of the flip using limited fatwar
propagation. These two actions formstepof CRSat (see

This section provides an overview of the justification-lsase function STEP(C*, G,) on lines 19-22).

circuit-level SLS methods BC SLS and CRIS We start

The justifications used to make a step is selected from the

with BC SLS which introduced the idea of justification-basedsetX of all justifications for(g, 7(g)) either at random (with

SLS [Jarvisaloet al., 20081 that was later adopted in CR-
SAT [Belov and Stachniak, 2010

probabilitywp), or greedily with the objective of minimizing
the number of unjustified gates after the step.

Algorithm 1 CRSAT(C'*, wp, cutoff Algorithm 2 LBCP-FORWARD(C®, G, T)

Input: C — constrained Boolean circuit Input: C* — constrained Boolean circuit;
wp — noise parameter ,i.e., probability of random walk G — a set of gates whose value changes are to be propagated.
cutoff— cutoff, i.e., maximum number of steps T —an assignment fat'?;
Output: status —SAT if a satisfying assignment far'® is found, Output: 7" — an assignment fo£* which is a result of limited
UNKNOWN otherwise forward propagation of the assignment:.

7 — a satisfying assignment far if found, () otherwise L1 71
1: 7 «+ a complete extension of a random assignment to 2: Q.ENQUEUHG)

inputs(C'®) 3: while = Q.EMPTY do

2: steps«+ 0 4: g <Q.POPFRONT

3: while steps< cutoff do 5: if g € G then > g is one of the original gates

4 if unjust(C*,7) = 0 then 6: Q.ENQUEUHfanout(g))

5 return (SAT,7) 7: else

6: g < arandom element fromnjust(C*, 7) 8: if g € unjust(C*,7") \ dom(a) then S

7: 3 « the set of justifications fofg, 7(g)) : / ' g unconstrained and unjustified

8: with-probability wp do 10: 7"« flip({g},7")

9 o + random element of >randomwalk 11 Q.ENQUEUHfanout(g))

10: otherwise 12: return 7’

11: o + arandom justification from the justifications ih

12: that minimizdunjust(C®, -)| after step

13: > greedy downward move (i) Forall g ¢ G, if g € unjust(C%,7’), thent’(g) = 7(g).

14: end with-probability .

15 G « setof gates im that disagree with Thu_s, a step _of CR& dqes not create new unjustified gates
16: 1< STER(C®,G,7) o flip + limited forward propagation ~ Peside, possibly, those i@ anddom(«). Furthermore, any
17: steps« stepst 1 gate not inG that is unjustified after a step has the same value
18: return (UNKNOWN, () as before the step.

19: function STE(C*, G, 7) 4 D-CRSAT: Depth-Based CR\T
20: 7 «flip(G, 1) o o _
21: 7'+ LBCP-FORWARD(C®, G, ') The efficiency of justification-based search depends atitic
22: return 7’ on how gates are selected for justification during search.

In [Belov and Stachniak, 2010 explicit gate selection
o] heuristic for CR&T was proposed. On the other hand, the
3.3 Limited Forward Propagation search heuristic of BC SLS is tightly bound to the justi-

We now provide details on how to implement the limited for- fication frontier, causing a single move of BC SLS to be
key techniques in both CRS and the method developed in Structure-based gate selection heuristic which, whenrinco
this paper. More details can be found Belov, 2014. porated into CRST, results in significant performance im-
The propagation algorithm uses a priority quélief gates provement with only small overheaq. We _caII the result-
(without duplicates) that allows to query temallesgate ac- "9 method D-CRAT. In the following sections we pro-
cording to a topological order in constant time. Recall that vide theor'etlcal justifications and experimental evidefare
topological order on the set of gates in a circuit is any stric D-CRSAT's good performance. _
total order< that respects the condition “if, € fanin(g2), Given a constrained Boolean circdit', for each gatg in
theng; < g". C we define thedepthof g in C* asdepth(C*, g) = 0 if
Given a set of gate€' (that presumably have just changed 9 € outputs(C) and, otherwise,
their value as a result of a flip), the algorithm starts byiise gepth(C®, g) = 1 + max{depth(C,¢’) | ¢ € fanout(g)}.
ing the gates intd@). Then, for each gatg removed fromQ),
the algorithm queues all gatesfiumout(g) if either g € G, We denote by D-CR&T the version of CR&T in which the
or ¢ is unjustified and not constrained. In the latter case théinjustified gatey on line 6 is selected at random from the
value ofg is flipped, and s@ becomes justified. Thus, infor- set of gates irunjust(C,) that areat maximum deptiac-
mally, given the set of gates the algorithm propagates their cording todepth(C®, g). In other words, D-CRST always
values towards the outputs of the circuit, but only as long aselects the unjustified gagefrom the set of gates
some gates change their values.
The following proposition captures a key property of the
forward propagation procedure applied within CR'S

argmax depth(C?,g).
g€Eunjust(C,T)

Proposition 1 provides some intuition as to why the combi-
; nation of this depth-based heuristic and limited forwarajpr
rr}egkfgigal,_ ﬁ”?ﬁ téi:PsgtaoggatesTcGons.tructed on line 15 agation may be appealing. Namely, forward propagation does
0 Lt = (C*, G, 7). Then: not create new unjustified unconstrained gates, and hence ca
() Forall g ¢ G Udom(«), if g € unjust(C*,7"), then only make currently unjustified gates justified. Therefore,
g € unjust(C*, 7). choosing a gate for justification from the set of unjustified

Proposition 1 LetC* be a constrained circuit; an assign-

gatesat maximum deptiprovides forward propagation with For D-CRS\T this approach to proving PAC does not

more opportunities to justify gates at smaller depths. work, since D-CR&T cannot flip the unjustified gate se-
The depth-based heuristic makes D-CRS more fo- lected on line 6. Thus, if during a step all unjustified gates

cused refinement of CRS$ (in CRSAT gate selection is done are assigned in disagreement with then D-CR3T may be

at random), but even so, we establish that D-@RI prob- unable to decrease the Hamming distance*tdn this step.

abilistically approximately complete. In fact, the proétiois This situation could be avoided if D-CRS$ could start with

fact shows that D-CR& may find a satisfying assignment an assignment in which all unjustified gates were assigned as

using a significantly smaller number of steps than GRS in 7%, and could always choose justifications that agree with
7*; by Proposition 1, all unjustified gates would then always
5 PAC and Restarts be assigned as ir*. Observe that for any assignmentvith

unjust(C%,7) C dom(«) (we call suchr’s restart assign-
ment$, the unjustified gateare assigned as in*.

Additional difficulty in proving PAC is caused by the fact
o)) o that forward propagation makes non-local changes to the cur
Definition 1 A SAT algorithmA is probabilistically approx- rent assignment. Hence, even when the value of one gate is
imately complete (PAC)f for any satisfiable instancé”, set as inr* during a step, forward propagation may cause
lim; 0o P(RTA,r < t) =1, whereP(RTa p < t) denotes other gates in the circuit to be set in disagreement with
the probability thatA finds a satisfying assignment férin The solution is to monitor the changes in the Hamming dis-
time<t. FUrther,A IS essentla”y |nC0mp|eté it is not PAC. tance between the current assignrneahd the selected sat-

An SLS algorithm isprobabilistically approximately com-
plete (PAC)[Hoos, 1999 if the probability of finding a so-
lution to any satisfiable instance is asymptotically 1.

Ourmain theoretical resulis the following. isfying assignment*, both restricted to thput gates
Theorem 1 D-CRSAT with any noise parameter value Lemmal Let C* be a satisfiable constrained Boolean cir-
wp > 0 and infinite cutoff is PAC. cuit, and letm > 0 be such that the assignment, at the

beginning of then-th iteration of D-CRSAT is a restart as-

For full versions of the proofs in this section, sggelov, . X
b Eide signment. Then, there is a consténtvhere

201d. Before proceedings with a proof of Theorem 1, we

show that the conditiop > 0 is indeed necessary. 0 < k < depth(C®) - |inputs(C%)], (1)
Theorem 2 D-CRSAT with wp = 0 and infinite cutoff is €S- gych that the probability of the event that the assignment
sentially incomplete. Tmsk at the beginning of thém + k)-th iteration is satis-
Proof. Consider the circui€C'® fying is at least X
wp
2
1) @

wheref is the maximum size of fanin among the gateSin

Proof sketch. Assume thatr,, is not satisfying (otherwise
k = 0), and lett* be some satisfying assignment fOf".
Consider those executions of D-CRiSin which the justifi-
cationo selected on line 14 is such that|,,,,) = 0. At
each step, the probability of selecting such a justification
at leastwp/(27 — 1) (i.e., the probability of taking a random
wherea = {{y1,1), (y2,1)} andgs is the output gate of a walk, and selecting the justification that agrees witHrom
sub-circuitS such thatr* (g,) = 0 for any satisfying assign- the2/ —1 possibilities). Thus, the probability of selecting jus-

ment7* for C*. Assume that the initial assignmentrig = tifications according te* during anyk consecutive stepsis at
aU{{g1,1), (g2,0), (x1,0), (x2,1), (x3,1),...} and thatev- least (2). By Proposition 1, for arky; 7,,,-, agrees with-* on
ery gate inS is justified underrg. Now unjust(C*,79) = the values of all unjustified gates. Singg is not satisfying,

{y2}, and D-CR3T greedily flips the value of, to 1, mak- at least one constrained gate is unjustified, and, for each un
ing g» unjustified. SinceS is unsatisfiable whep, is as- justified gatey, fanin*(g) must contain at least one input gate
signed tol, D-CRSAT will either get stuck insides, or will that disagrees with*. In the worst case allnputs(C*)| in-
return to the assignmeng and greedily flipg, again. o put gates disagree with*. D-CRSAT has to make at most
Itis easy to show that any CNF-level SLS algorithm that al-depth(C*) steps to assign values assit to such gates: D-
lows random walk duringny steds PAC[Hoos, 1999 ran- CRSAT always selects a gate of maximal depth for justifica-
dom walk guarantees that there is a non-zero probability ofion and, hence, some input gate will be flipped after no more
the event that the Hamming distance from the current assigrthandepth(C®) steps. Since input gates aret affected by
mentr to some fixed satisfying assignmerit is decreased. forward propagation, once an input gate is assigned accord-
This is because any unsatisfied clauseust have at least one ing to7* it will not change its value in the future. Hence the
variable set in disagreement witlf and so with the proba- numberk of steps required to assign all inputs according to
bility 1/c|, this particular variable will be flipped during the 7* satisfies (1). Hence,, «linputs(ce) = 7 linputs(ce),» and
random walk. Similar argument, generalized to the setting othereforer,,,, = 7* (otherwise there would be a gate un-
constrained Boolean circuits, establishes the PAC proért justified underr,,, whose assignment disagrees with).
BC SLS[Jarvisaloet al,, 20084. O

We observe that D-CRS starts the search from arestart 6 EXxperiments
_assignment (Iine_l), and, _in fact, will modify any assigntnen \ye compare the performance of D-CRSo that of CRST
into a restart assignment in a bounded number of steps: (using our implementations- cr sat andcr sat) and also
Lemma 2 Let C® be a constrained Boolean circuit, and let to other circuit and CNF-level SLS methods. For this, we also
T be the assignment at the beginning of theth iteration ~ implemented a circuit-level methachput LS that searches

of D-CRSAT. Then, there is a constakt where over assignments to input gates in the styldRifiamet al,
5 o 2007 (the authors were unable to provide us with their im-
0 <k < |G| depth(C?), 3) plementation). We also used the CNF-level methbdsland
such that the assignment, . at the beginning of thém + s_l_ st c that were one of the bes_t SLS s_olvers in SAT Compe-
k)-th iteration is a restart assignment. tition 2009 on random and application instances, resphen t

. . standardl'seitinCNF encodings of the benchmark circuits.
Proof sketchAssume that,, is not a restart assignment; oth- |, pothd- cr sat andcr sat), a justification at each step

erwise we are done. Let, ¢ dom(«) be the unjustified gate g selected from the set of subset minimal justificationster
selected at theu-th iteration. All gates ifanin”(g,,,) are jus- gelected gate. This is due to positive results in prelinyinar
tified. To justify g,,, without making any gate ifenin™(g9.n) experiments for both methods. For retrieving the unjustifie
unjustified, the algorithm needs to gates of maximum depth i+ cr sat , the seunjust(C®, 1)
(i) follow a path fromg,,, down to some input gate and jus- of unjustified gates is kept in a heap data-structure that al-
tify every gate along the path (at makipth(C®) steps); lows to retrieve such a gate in constant time, but incurs a

(i) select the next unjustified gate and repeat (i). Thiggat ©(log(|unjust(C,7)])) penalty for insertions. .
has to be irfanin* (g, Since we always select unjusti- For each solver, we obtained the empirical run-time and

fied gates at maximum depth, and by Proposition 1 thdun-length distributions from 100 runs on each benchmark.
only new unjustified gates resulting from step (i) are in | '€ near-optimal random walk probability values were deter
fanin®(gm) U dom(); and mined experimentally beforehand. The experiments were run
m o, under Linux on a Intel Core 2 Duo 3.00-GHz processor. As
(iii) repeat (ii) for all gates irfanin™ (g,). benchmarks, we used over 450 And-Inverted circuits (AIGs)
Sincelfanin®(g,,)| < |G|, g and all gates irfanin*(g,,) from four different industrial application domains.

will be justified in at mosyG| - depth(C) steps. Again, hwmcc08-sat 204 AlGs obtained from Hardware Model Checking
by Proposition 1 the only new unjustified gates that will be Competition 2008 (http://fmv.jku.at/hwmcc08/) problems us-

created during this process aredomn(«). Since at iteration ing aigtobmc (http://fmv.jku.at/aiger) with step bouhd= 45
m there are at mosti'| unjustified gates outside dbm(«), for ime frame expansion.
after at mostG|? - depth(C) steps all such unjustified gates smtqfbv-sat 61 ~ AlGs ~ generated using Boolector
will be justified, resulting in a restart assignment. a (http://fmv.jku.at/boolector/) to bit-blastQF_BV (theory
With Lemmas 1 and 2 we can prove Theorem 1. of bit-vectors) instances of the SMT Competition 2009
Proof sketch of Theorem 1Consider any execution of D- (http://www.smtcomp.org/2009/)
CR®AT. Letr; be an assignment on stepf this execution, sss-sat-1.098 AIGs from “formal verification of buggy variants of a
and letX; be a random variable with dual-issue superscalar microprocessor” (http://www.miroslav-
.) L . velev.com/sabenchmarks.html) converted to AIGs with ABC
0 if 7; is a non-satisfying restart assignment (http://www.eecs.berkeley.edu/~alanmi/abc/).
X; =41 if ;is anon-satisfying non-restart assignment yjiy-sat-1.1 98 AIGs from “formal verification of buggy variants of
2 if 7; is a satisfying assignment. a VLIW microprocessor”, in the same fashion as sss-sat-1.0.

Let k; and ko be the bounds (1) and (3), respectively. 6.1 Results

The sequenceXo, Xk, , Xk, +ky» Xok+ks> X2ki+2k2,---) IS Table 1 summarizes the results. The time and steps ra-
a Markov chain. Using Lemmas 1 and 2, one can show thajios are calculated from the median running times and num-
state 2 is the only persistent state. O per of steps. Overallg- cr sat takes significantly fewer

The proof of Theorem 1 also applies to CRSas, with steps thancr sat. Despite the fact that the heap incurs
non-zero probability, it can always justify a gate at maxi- & run-time pena_lty, the differences in the n_umber of search
mum depth. However, compared to D-CRSthe expected St€PS translate into improvements in run-times. Improve-
number of steps (recall Lemmas 1 and 2) can be significantij"€nts are pronounced on difficult problems (Figure 1, up-
larger, i.e., in theory D-CR& converges to a satisfying as- er). d- cr sat solves significantly more instances than the

signment significantly faster. The experimental resules pr Circuit-level method nput LS and the CNF-level methods
sented next confirm that this is also the case in practice. 1 NMandsl st c. It also solves a vast majority of those in-

Furthermore, Lemma 2 reveals another intriguing prop_stances solved by the other solvers significantly faster.
erty of both D-CR®T and CRT. Namely, the algorithms e also compard- crsat toNod ause, a circuit-level
are always bound to eventually return to a restart assigrﬁ‘?nﬂ'Ct'd”Ven clause learning SOIVEFhIf_fauIt etal, 2004
ment. Since, by definition, both of the algorithms start theWith many modern CDCL solver techniques in the style of
search from some restart assignment, Lemma 2 shows thathaff (including VSIDS, 1-UIP leamning and backjumping,

D-CRSAT and CRT have the intrinsic ability talynami- watched literals, etc.); such CDCL techniques are at the cen
cally restart without explicitly forced restarts ter of state-of-the-art SAT solvers for industrial appticas.

Table 1: Performance af- cr sat compared to other SLS-based SAT solvers. Here an instamom$idered “solved” by a
solver if the success rate on 100 tries with 300 stimeoutrges bver50%. The “time ratio” (resp. “step ratio”) column for a
solver shows the ratio of total time (resp. steps) taken bystiver to that ofl- cr sat on instances solved byothsolvers.

Benchmark class |[|d-crsat crsat i nput LS sl stc TNM
(# instances) solved || solved time ratio] steps ratigf solved time ratio]| solved time ratio] solved time ratio
hwrecc08- sat (204) 137 103 6.58x 8.84x 17 0.31x 81 23.69x 50 331.83x
snt gf bv- sat (61) 53 38 3.97x 7.17x 25 10.32x 2 181.87x 1 1.00x
sss-sat- 1.0 (96) 79 74 2.14x 2.23x 15 377.64x 64 4.12x 3 489.29x
vliwsat-1.1(98) 94 95 1.02x 1.22x 68 23.90x 9 597.78x 0 n/a

Figure 1 (lower) shows thad- cr sat compares in cases
favourably even witiNoCl ause, especially on the vliw-sat-
1.1 family (although one should notice ti¥dCl ause is not
as efficient as the best current CNF-level CDCL solvers).

7 Conclusions

[Phamet al, 2007 D.N. Pham, J. Thornton, and A. Sattar. Build-
ing structure into local search for SAT. Proc. IJCAl pages
2359-2364, 2007.

[Sebastiani, 1994R. Sebastiani. Applying GSAT to non-clausal
formulas.J. Artif. Intell. Res.1:309-314, 1994.

[Stachniak and Belov, 2008Z. Stachniak and A. Belov. Speeding-

We developed a circuit-level SLS method D-CRSat that com- up non-clausal local search for propositional satisfiability with

bines justification-based SLS with structure-based hcsis

and limited reasoning by forward propagation. We showe

clause learning. IProc. SAT volume 4996 of NCS pages 257—

d 270. Springer, 2008.

experimentally that D-CRSat outperforms CRSat on vari{Stachniak, 200R Z. Stachniak. Going non-clausal. 8AT, 2002.
ous classes of real-world circuit benchmarks, and domsnateThiffault et al, 2004 C. Thiffault, F. Bacchus, and T. Walsh. Solv-

other recent circuit and CNF-level SLS methods, includimg a

implementation of circuit-level SLS focusing on input vari

ing non-clausal formulas with DPLL search.Pnoc. CP, volume
3258 of LNCS pages 663-678. Springer, 2004.

ables. In some cases, CRSat compares favourably even with

a circuit-level conflict-driven clause learning solver.ig'n-

dicates that further advances in SLS-based techniqued coul
make SLS a viable alternative to CDCL-based algorithms for

solving instances from real-world application domainsnto
plementing our experimental results, the presented attic

PAC proof for D-CRSAT provides key insights into the pro-

posed gate selection heuristic, highlighting the gateldapt
an important search parameter and revealing the intrilbdic a
ity of D-CRSAT to dynamically restart search.

References
[Belov and Stachniak, 2009A. Belov and Z. Stachniak. Improving

variable selection process in stochastic local search for proposi-

tional satisfiability. InProc. SAT volume 5584 oLLNCS pages
258-264. Springer, 2009.

[Belov and Stachniak, 2010A. Belov and Z. Stachniak. Improved
local search for circuit satisfiability. IRroc. SAT volume 6175
of LNCS pages 293-299. Springer, 2010.

[Belov, 2010 A. Belov. Stochastic Local Search for Non-clausal
and Circuit Satisfiability PhD thesis, York University, 2010.

[Hoos, 1999 Holger H. Hoos. On the run-time behaviour of
stochastic local search algorithms for SAT.Hroc. AAA| pages
661-666. AAAI Press, 1999.

[Jarvisaloet al, 20084 M. Jarvisalo, T. Junttila, and I. Nieméel

Justification-based local search with adaptive noise strategies. In

Proc. LPAR volume 5330 o£NCS pages 31-46. Springer, 2008.
[Jarvisaloet al, 20088 M. Jarvisalo, T.A. Junttila, and |. Niemél

Justification-based non-clausal local search for SAT. In

Proc. ECA| pages 535-539. 10S Press, 2008.

[Kautz and Selman, 2007H.A. Kautz and B. Selman. The state of
SAT. Discrete Applied Mathematic455(12):1514-1524, 2007.

[Kautzet al, 1997 H. Kautz, D. McAllester, and B. Selman. Ex-
ploiting variable dependency in local searchlI@Al, 1997.

[Muhammad and Stuckey, 200&. Muhammad and P.J. Stuckey.

A stochastic non-CNF SAT solver. IRroc. PRICA] volume
4099 ofLNCS pages 120-129. Springer, 2006.

T T
hwmcc08-sat
smtqgfbv-aigs-sat
sss-sat-1.0
vliw-sat-1.1

o4 b

1e+07

1e+06 - “

< B
q
;
o

100000 |

crsat median steps

10000 v

1000 | s 1

Cutoff 1€+07 —=

100 L L L L
10000 100000 1e+06

crsat-d median steps

1e+07

T T
hwmcc08-sat
smtqfbv-aigs-sat
sss-sat-1.0
vliw-sat-1.1

1000 K|

o4 >0

NoClause run-time [sec]

01

0.01

Timeout 300 sec

0.001 L !
0.001 0.01 0.1 1 10 100

crsat-d median run-time [sec]

1000

Figure 1: Upper: steps taken byr sat andd- crsat ; lower:
runtimes ofd- cr sat (median) andNoCl ause.

