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Abstract

We develop a novel circuit-level stochastic local
search (SLS) method D-CRSat for Boolean satis-
fiability by integrating a structure-based heuristic
into the recent CRSat algorithm. D-CRSat signif-
icantly improves on CRSat on real-world applica-
tion benchmarks on which other current CNF and
circuit-level SLS methods tend to perform weakly.
We also give an intricate proof of probabilistically
approximate completeness for D-CRSat, highlight-
ing key features of the method.

1 Introduction
Today, Boolean satisfiability (SAT) solvers are routinely used
to solve hard problem instances arising from AI research
and various industrial applications. The most efficient SAT-
based approach to solving such real-world instances is typ-
ically based on conflict-driven clause learning (CDCL). In
contrast, stochastic local search (SLS) for SAT is often con-
sidered effective mainly on random SAT instances. Only re-
cently some research effort has been directed towards making
SLS a noteworthy alternative for solving real-world instances.
This work contributes substantially to these efforts by devel-
oping novel structure-based SLS techniques that can lift the
performance of SLS closer to that of CDCL on real-world
application instances.

A major challenge in improving the performance of SLS
on real-world application instances is in developing efficient
techniques that exploitvariable dependencies[Kautz and Sel-
man, 2007]. The results in this paper indicate that a key to
solving this challenge is to exploit non-clausal formula rep-
resentations (such asBoolean circuits) instead of focusing on
the customary approach of first translating formulas into the
flat conjunctive normal form (CNF) format and then applying
CNF-level SLS methods.

Most SLS methods previously proposed for non-clausal
formulas focus search on truth assignments overindepen-
dent(or input) variables[Sebastiani, 1994; Kautzet al., 1997;
Stachniak, 2002; Phamet al., 2007; Muhammad and Stuckey,
2006; Stachniak and Belov, 2008; Belov and Stachniak,
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2009]. An alternative approach to circuit-level SLS was first
proposed in the BC SLS method[Järvisalo et al., 2008b;
2008a]. In contrast to searching in a bottom-up mode as in
circuit-level SLS methods focusing on input variables, search
in BC SLS is driven top-down in the overall structure of
the circuit by utilizing so-calledjustification frontiers. BC
SLS also introduced the concept ofjustification-basedSLS,
in which search steps aim at correcting local inconsistencies
within a circuit byjustifying inconsistently assigned (unjusti-
fied) gates. The more recent circuit-level SLS method CRSat
builds on the concept of justification-based search[Belov and
Stachniak, 2010]. The key novel feature of CRSat is the in-
corporation of limited constraint propagation into the search.
Additionally, CRSat relaxes justification-based search tocon-
sider all unjustified gates. CRSat was shown to significantly
outperform BC SLS on problem instances from real-world
application domains[Belov and Stachniak, 2010].

In this work we develop a noveldepth-drivencircuit-level
SLS method D-CRSat. D-CRSat exploits the explicit circuit-
level instance structure through a symbiosis oflimited for-
ward propagationand a structure-based heuristic based on
gate depth informationwithin justification-based search. We
show that D-CRSat significantly improves the performance of
CRSat on a wide range of industrial application benchmarks
on which both bottom-up mode circuit-level SLS and current
CNF-level SLS methods (using a standard CNF translation
for the latter) tend to perform weakly. In fact, D-CRSat com-
pares in some cases favourably even with a modern circuit-
level CDCL solver. Complementing these major practical im-
provements, we give a proof ofprobabilistically approximate
completeness(PAC) [Hoos, 1999] for D-CRSat. While also
interesting in its own right, the proof reveals that gate depth
information is indeed an important search parameter. Com-
pared to typical PAC proofs, the case of D-CRSat is more
involved due to non-local changes caused by the constraint
propagation mechanism. The proof also reveals that D-CRSat
(and CRSat) has an intrinsic ability to autonomously restart
search without explicitly being forced to do so. An additional
side-product of the proof is that CRSat is also PAC.

2 Preliminaries
A Boolean circuit over a finite setG of gates is a set
C of equations of the formg = f(g1, . . . , gn), where
g, g1, . . . , gn ∈ G andf : {0, 1}n → {0, 1} is a Boolean



function, with the additional requirements that (i) eachg ∈ G
appears at most once as the left hand side in the equations in
C, and (ii) the underlying directed graph〈G,E(C)〉, where
E(C) = {〈g′, g〉 ∈ G×G | g = f(. . . , g′, . . .) ∈ C}, is
acyclic. If 〈g′, g〉 ∈ E(C), theng′ is achild of g andg is a
parentof g′. For a gateg, the sets of its children (i.e., thefanin
of g) and parents (i.e., thefanoutof g) are denoted byfanin(g)
andfanout(g), respectively. Thedescendantandancestorre-
lations fanin∗ and fanout∗ are the transitive closures of the
child and parent relations, respectively. Ifg = f(g1, . . . , gn)
is in C, theng is anf -gate (or of typef ). A gate with no
children (resp. no parents) is aninput gate(resp. anoutput
gate). The sets of input gates and output gates inC are de-
noted byinputs(C) andoutputs(C), respectively. A gate that
is neither an input nor an output is aninternal gate.

An (truth) assignmentfor C is a (possibly partial) function
τ : G → {0, 1}. A complete assignmentτ for C is consistent
if τ(g) = f(τ(g1), . . . , τ(gn)) for eachg = f(g1, . . . , gn)
in C. Thedomainof τ , i.e., the set of gates assigned inτ , is
denoted bydom(τ). Two assignments,τ andτ ′, disagreeon
a gateg ∈ dom(τ) ∩ dom(τ ′) if τ(g) 6= τ ′(g). Furthermore,
we identify〈g, v〉 ∈ τ with τ(g) = v.

A constrained Boolean circuitCα consists of a Boolean
circuit C and an assignmentα for C. Each〈g, v〉 ∈ α is a
constraint, andg is constrainedto v if 〈g, v〉 ∈ α. A com-
plete assignmentτ for C satisfiesCα if (i) τ is consistent
with C, and (ii) it respects the constraints:τ ⊇ α. If some
assignment satisfiesCα, thenCα is satisfiable. A circuit that
is not satisfiable isunsatisfiable. Without loss of generality,
we assume that constraints are imposed only on output gates.

Therestrictionτ |G′ of an assignmentτ to a setG′ ⊆ G of
gates is defined as{〈g, v〉 ∈ τ | g ∈ G′}. Given a gate equa-
tion g = f(g1, . . . , gn) and a valuev ∈ {0, 1}, a justification
for the pair〈g, v〉 is a partial assignmentσ : {g1, . . . , gn} →
{0, 1} to the children ofg such thatf(τ(g1), . . . , τ(gn)) = v
holds for all extensionsτ ⊇ σ. That is, the values as-
signed byσ to the children ofg are enough to forceg to
take the consistent valuev. For example, the justifications
for 〈g, 0〉, whereg = AND(g1, g2), are{〈g1, 0〉}, {〈g2, 0〉},
and{〈g1, 0〉, 〈g2, 0〉}, out of which the first two aresubset-
minimal. A gate g is justified in an assignmentτ if it is
assigned, i.e.τ(g) is defined, and (i) it is an input gate, or
(ii) g = f(g1, . . . , gn) ∈ C and τ |{g1,...,gn} is a justifica-
tion for 〈g, τ(g)〉. We denote the set ofunjustifiedgates in an
assignmentτ by unjust(Cα, τ).

For a truth assignmentτ and set of gatesG ⊆ dom(τ), let

flip(G, τ) =
(

τ \
⋃

g∈G

{〈g, τ(g)〉}
)

∪
⋃

g∈G

{〈g, 1− τ(g)〉}.

In other words,flip(G, τ) is the truth assignment obtained by
changing the values of the gates inG, and leaving the rest of
τ unchanged.

3 Justification-Based Circuit-Level SLS
This section provides an overview of the justification-based
circuit-level SLS methods BC SLS and CRSAT. We start
with BC SLS which introduced the idea of justification-based
SLS [Järvisaloet al., 2008b] that was later adopted in CR-
SAT [Belov and Stachniak, 2010]

3.1 BC SLS
In BC SLS search is driven by the dynamically updatedjus-
tification frontier jfront(Cα, τ) of the constrained circuitCα

based on the current assignmentτ . For a givenτ , consider the
smallest setS of gates which includes all constrained gates
and, for each justified gateg in S, all the gates that participate
in some subset-minimal justification forg. The justification
frontier jfront(Cα, τ) is the “bottom edge” ofS, consisting
of those gates inS that are not justified. By definition, we
always havejfront(Cα, τ) ⊆ unjust(Cα, τ).

BC SLS exploits the fact that when the justification fron-
tier jfront(Cα, τ) is empty, the constrained circuitCα is sat-
isfiable. Starting with a random complete assignmentτ for
Cα, and as long as the justification frontierjfront(Cα, τ) is
not empty, the algorithm removes a gateg from jfront(Cα, τ)
at random, and performs either adownward move—which is
central in justification-based search—or anupward move.

In a downwardmove the gateg is justified by choosing a
justificationσ for 〈g, τ(g)〉, and flipping the values of gates
on whichσ andτ disagree. As a result, some gates infanin(g)
may become unjustified and are hence added to the updated
justification frontier. To chooseσ, the setΣ of all justifica-
tions for〈g, τ(g)〉 is constructed, and one element is selected
from this set either at random, or greedily with the objective
of minimizing the size of the set of gates injfront(Cα, τ) and
their descendants after the move.

In anupwardmove the value ofg itself is flipped (requiring
thatg is unconstrained). As a result,g becomes justified, and,
potentially, some gates infanout(g) become unjustified.

Intuitively, BC SLS balances between moving the justifi-
cation frontier towards the inputs with downward moves with
the upward moves that, in essence, assign to the chosen gate
the value that is consistent with the assignment on its chil-
dren, hence pushing the frontier towards the outputs.

3.2 CRSAT

The CRSAT algorithm also applies the idea of justification-
based search. However, in contrast to BC SLS, CRSAT does
not maintain the justification frontier or perform explicitup-
ward moves. Instead, CRSAT incorporates a more directlim-
ited forward propagationmechanism—restricted bottom-up
circuit-level constraint propagation—within the search.

Pseudo-code for CRSAT is presented as Algorithm 1.
First, a complete extension of a random value assignment
to inputs(Cα) is constructed, i.e., the value of each uncon-
strained internal gate is set consistently with the values of its
children. Then, as long asunjust(Cα, τ) is not empty (i.e.,
τ is not a satisfying assignment), the algorithm selects a gate
g from unjust(Cα, τ) at random (line 6), and, similarly to
the downward moves in BC SLS, justifiesg by choosing a
justificationσ for 〈g, τ(g)〉 and flipping the values of gates
on whichσ andτ disagree. However, CRSAT additionally
propagates the consequences of the flip using limited forward
propagation. These two actions form astepof CRSat (see
function STEP(Cα, G, τ) on lines 19-22).

The justificationσ used to make a step is selected from the
setΣ of all justifications for〈g, τ(g)〉 either at random (with
probabilitywp), or greedily with the objective of minimizing
the number of unjustified gates after the step.



Algorithm 1 CRSAT(Cα, wp, cutoff)
Input: Cα – constrained Boolean circuit

wp – noise parameter ,i.e., probability of random walk
cutoff– cutoff, i.e., maximum number of steps

Output: status –SAT if a satisfying assignment forCa is found,
UNKNOWN otherwise

τ – a satisfying assignment forCα if found, ∅ otherwise
1: τ ← a complete extension of a random assignment to

inputs(Cα)
2: steps← 0
3: while steps< cutoff do
4: if unjust(Cα, τ) = ∅ then
5: return 〈SAT, τ〉
6: g ← a random element fromunjust(Cα, τ)
7: Σ← the set of justifications for〈g, τ(g)〉
8: with-probability wp do
9: σ ← random element ofΣ ⊲ random walk

10: otherwise
11: σ ← a random justification from the justifications inΣ
12: that minimize|unjust(Cα, ·)| after step
13: ⊲ greedy downward move
14: end with-probability
15: G← set of gates inσ that disagree withτ
16: τ ← STEP(Cα, G, τ) ⊲ flip + limited forward propagation
17: steps← steps+ 1

18: return 〈UNKNOWN, ∅〉

19: function STEP(Cα, G, τ )
20: τ ′ ← flip(G, τ)
21: τ ′ ← LBCP-FORWARD(Cα, G, τ ′)
22: return τ ′

3.3 Limited Forward Propagation
We now provide details on how to implement the limited for-
ward propagation mechanism (Algorithm 2) that is one of the
key techniques in both CRSAT and the method developed in
this paper. More details can be found in[Belov, 2010].

The propagation algorithm uses a priority queueQ of gates
(without duplicates) that allows to query thesmallestgate ac-
cording to a topological order in constant time. Recall thata
topological order on the set of gates in a circuit is any strict
total order< that respects the condition “ifg1 ∈ fanin(g2),
theng1 < g2”.

Given a set of gatesG (that presumably have just changed
their value as a result of a flip), the algorithm starts by insert-
ing the gates intoQ. Then, for each gateg removed fromQ,
the algorithm queues all gates infanout(g) if either g ∈ G,
or g is unjustified and not constrained. In the latter case the
value ofg is flipped, and sog becomes justified. Thus, infor-
mally, given the set of gatesG the algorithm propagates their
values towards the outputs of the circuit, but only as long as
some gates change their values.

The following proposition captures a key property of the
forward propagation procedure applied within CRSAT.

Proposition 1 LetCα be a constrained circuit,τ an assign-
ment forCα, andG be a set of gates constructed on line 15
of CRSAT. Letτ ′ = STEP(Cα, G, τ). Then:

(i) For all g /∈ G ∪ dom(α), if g ∈ unjust(Cα, τ ′), then
g ∈ unjust(Cα, τ).

Algorithm 2 LBCP-FORWARD(Cα, G, τ )
Input: Cα – constrained Boolean circuit;
G – a set of gates whose value changes are to be propagated.
τ – an assignment forCa;

Output: τ ′ – an assignment forCα which is a result of limited
forward propagation of the assignmentτ |G.

1: τ ′ ← τ
2: Q.ENQUEUE(G)
3: while ¬ Q.EMPTY do
4: g ←Q.POP FRONT
5: if g ∈ G then ⊲ g is one of the original gates
6: Q.ENQUEUE(fanout(g))
7: else
8: if g ∈ unjust(Cα, τ ′) \ dom(α) then
9: ⊲ g unconstrained and unjustified

10: τ ′ ← flip({g}, τ ′)
11: Q.ENQUEUE(fanout(g))
12: return τ ′

(ii) For all g /∈ G, if g ∈ unjust(Cα, τ ′), thenτ ′(g) = τ(g).

Thus, a step of CRSAT does not create new unjustified gates
beside, possibly, those inG anddom(α). Furthermore, any
gate not inG that is unjustified after a step has the same value
as before the step.

4 D-CRSAT : Depth-Based CRSAT

The efficiency of justification-based search depends critically
on how gates are selected for justification during search.
In [Belov and Stachniak, 2010] no explicit gate selection
heuristic for CRSAT was proposed. On the other hand, the
search heuristic of BC SLS is tightly bound to the justi-
fication frontier, causing a single move of BC SLS to be
quite expensive in practice. In this section we introduce a
structure-based gate selection heuristic which, when incor-
porated into CRSAT, results in significant performance im-
provement with only small overhead. We call the result-
ing method D-CRSAT. In the following sections we pro-
vide theoretical justifications and experimental evidencefor
D-CRSAT ’s good performance.

Given a constrained Boolean circuitCα, for each gateg in
Cα we define thedepthof g in Cα asdepth(Cα, g) = 0 if
g ∈ outputs(C) and, otherwise,

depth(Cα, g) = 1 +max{depth(Cα, g′) | g′ ∈ fanout(g)}.

We denote by D-CRSAT the version of CRSAT in which the
unjustified gateg on line 6 is selected at random from the
set of gates inunjust(Cα, τ) that areat maximum depthac-
cording todepth(Cα, g). In other words, D-CRSAT always
selects the unjustified gateg from the set of gates

argmax
g∈unjust(Cα,τ)

depth(Cα, g).

Proposition 1 provides some intuition as to why the combi-
nation of this depth-based heuristic and limited forward prop-
agation may be appealing. Namely, forward propagation does
not create new unjustified unconstrained gates, and hence can
only make currently unjustified gates justified. Therefore,
choosing a gate for justification from the set of unjustified



gatesat maximum depthprovides forward propagation with
more opportunities to justify gates at smaller depths.

The depth-based heuristic makes D-CRSAT a more fo-
cused refinement of CRSAT (in CRSAT gate selection is done
at random), but even so, we establish that D-CRSAT is prob-
abilistically approximately complete. In fact, the proof of this
fact shows that D-CRSAT may find a satisfying assignment
using a significantly smaller number of steps than CRSAT.

5 PAC and Restarts
An SLS algorithm isprobabilistically approximately com-
plete (PAC)[Hoos, 1999] if the probability of finding a so-
lution to any satisfiable instance is asymptotically 1.

Definition 1 A SAT algorithmA is probabilistically approx-
imately complete (PAC)if for any satisfiable instanceF ,
limt→∞ P (RTA,F ≤ t) = 1, whereP (RTA,F ≤ t) denotes
the probability thatA finds a satisfying assignment forF in
time≤ t. Further,A is essentially incompleteif it is not PAC.

Ourmain theoretical resultis the following.

Theorem 1 D-CRSAT with any noise parameter value
wp > 0 and infinite cutoff is PAC.

For full versions of the proofs in this section, see[Belov,
2010]. Before proceedings with a proof of Theorem 1, we
show that the conditionwp > 0 is indeed necessary.

Theorem 2 D-CRSAT with wp = 0 and infinite cutoff is es-
sentially incomplete.

Proof. Consider the circuitCα

OR OR

g2

y2y1

x3x2

g1
OR

x1

S

11

¬

whereα = {〈y1, 1〉, 〈y2, 1〉} andg2 is the output gate of a
sub-circuitS such thatτ∗(g2) = 0 for any satisfying assign-
mentτ∗ for Cα. Assume that the initial assignment isτ0 =
α∪{〈g1, 1〉, 〈g2, 0〉, 〈x1, 0〉, 〈x2, 1〉, 〈x3, 1〉, . . .} and that ev-
ery gate inS is justified underτ0. Now unjust(Cα, τ0) =
{y2}, and D-CRSAT greedily flips the value ofg2 to 1, mak-
ing g2 unjustified. SinceS is unsatisfiable wheng2 is as-
signed to1, D-CRSAT will either get stuck insideS, or will
return to the assignmentτ0 and greedily flipg2 again. 2

It is easy to show that any CNF-level SLS algorithm that al-
lows random walk duringany stepis PAC[Hoos, 1999]: ran-
dom walk guarantees that there is a non-zero probability of
the event that the Hamming distance from the current assign-
mentτ to some fixed satisfying assignmentτ∗ is decreased.
This is because any unsatisfied clausec must have at least one
variable set in disagreement withτ∗ and so with the proba-
bility 1/|c|, this particular variable will be flipped during the
random walk. Similar argument, generalized to the setting of
constrained Boolean circuits, establishes the PAC property of
BC SLS[Järvisaloet al., 2008a].

For D-CRSAT this approach to proving PAC does not
work, since D-CRSAT cannot flip the unjustified gate se-
lected on line 6. Thus, if during a step all unjustified gates
are assigned in disagreement withτ∗, then D-CRSAT may be
unable to decrease the Hamming distance toτ∗ in this step.
This situation could be avoided if D-CRSAT could start with
an assignment in which all unjustified gates were assigned as
in τ∗, and could always choose justifications that agree with
τ∗; by Proposition 1, all unjustified gates would then always
be assigned as inτ∗. Observe that for any assignmentτ with
unjust(Cα, τ) ⊆ dom(α) (we call suchτ ’s restart assign-
ments), the unjustified gatesareassigned as inτ∗.

Additional difficulty in proving PAC is caused by the fact
that forward propagation makes non-local changes to the cur-
rent assignment. Hence, even when the value of one gate is
set as inτ∗ during a step, forward propagation may cause
other gates in the circuit to be set in disagreement withτ∗.
The solution is to monitor the changes in the Hamming dis-
tance between the current assignmentτ and the selected sat-
isfying assignmentτ∗, both restricted to theinput gates.

Lemma 1 Let Cα be a satisfiable constrained Boolean cir-
cuit, and letm ≥ 0 be such that the assignmentτm at the
beginning of them-th iteration ofD-CRSAT is a restart as-
signment. Then, there is a constantk, where

0 ≤ k ≤ depth(Cα) · |inputs(Cα)|, (1)

such that the probability of the event that the assignment
τm+k at the beginning of the(m + k)-th iteration is satis-
fying is at least

(

wp

2f − 1

)k

, (2)

wheref is the maximum size of fanin among the gates inCα.

Proof sketch. Assume thatτm is not satisfying (otherwise
k = 0), and letτ∗ be some satisfying assignment forCα.
Consider those executions of D-CRSAT in which the justifi-
cationσ selected on line 14 is such thatτ∗|dom(σ) = σ. At
each step, the probability of selecting such a justificationis
at leastwp/(2f − 1) (i.e., the probability of taking a random
walk, and selecting the justification that agrees withτ∗ from
the2f−1 possibilities). Thus, the probability of selecting jus-
tifications according toτ∗ during anyk consecutive steps is at
least (2). By Proposition 1, for anyk, τm+k agrees withτ∗ on
the values of all unjustified gates. Sinceτm is not satisfying,
at least one constrained gate is unjustified, and, for each un-
justified gateg, fanin∗(g) must contain at least one input gate
that disagrees withτ∗. In the worst case all|inputs(Cα)| in-
put gates disagree withτ∗. D-CRSAT has to make at most
depth(Cα) steps to assign values as inτ∗ to such gates: D-
CRSAT always selects a gate of maximal depth for justifica-
tion and, hence, some input gate will be flipped after no more
thandepth(Cα) steps. Since input gates arenot affected by
forward propagation, once an input gate is assigned accord-
ing to τ∗ it will not change its value in the future. Hence the
numberk of steps required to assign all inputs according to
τ∗ satisfies (1). Henceτm+k|inputs(Cα) = τ∗|inputs(Cα), and
thereforeτm+k = τ∗ (otherwise there would be a gate un-
justified underτm+k whose assignment disagrees withτ∗).

2



We observe that D-CRSAT starts the search from a restart
assignment (line 1), and, in fact, will modify any assignment
into a restart assignment in a bounded number of steps:

Lemma 2 LetCα be a constrained Boolean circuit, and let
τm be the assignment at the beginning of them-th iteration
of D-CRSAT. Then, there is a constantk, where

0 ≤ k ≤ |G|2 · depth(Cα), (3)

such that the assignmentτm+k at the beginning of the(m +
k)-th iteration is a restart assignment.

Proof sketch.Assume thatτm is not a restart assignment; oth-
erwise we are done. Letgm /∈ dom(α) be the unjustified gate
selected at them-th iteration. All gates infanin∗(gm) are jus-
tified. To justify gm without making any gate infanin∗(gm)
unjustified, the algorithm needs to

(i) follow a path fromgm down to some input gate and jus-
tify every gate along the path (at mostdepth(Cα) steps);

(ii) select the next unjustified gate and repeat (i). This gate
has to be infanin∗(gm) since we always select unjusti-
fied gates at maximum depth, and by Proposition 1 the
only new unjustified gates resulting from step (i) are in
fanin∗(gm) ∪ dom(α); and

(iii) repeat (ii) for all gates infanin∗(gm).

Since |fanin∗(gm)| ≤ |G|, gm and all gates infanin∗(gm)
will be justified in at most|G| · depth(Cα) steps. Again,
by Proposition 1 the only new unjustified gates that will be
created during this process are indom(α). Since at iteration
m there are at most|G| unjustified gates outside ofdom(α),
after at most|G|2 · depth(Cα) steps all such unjustified gates
will be justified, resulting in a restart assignment. 2

With Lemmas 1 and 2 we can prove Theorem 1.
Proof sketch of Theorem 1.Consider any execution of D-
CRSAT. Let τi be an assignment on stepi of this execution,
and letXi be a random variable with

Xi =







0 if τi is a non-satisfying restart assignment
1 if τi is a non-satisfying non-restart assignment
2 if τi is a satisfying assignment.

Let k1 and k2 be the bounds (1) and (3), respectively.
The sequence〈X0, Xk1

, Xk1+k2
, X2k1+k2

, X2k1+2k2
, . . . 〉 is

a Markov chain. Using Lemmas 1 and 2, one can show that
state 2 is the only persistent state. 2

The proof of Theorem 1 also applies to CRSAT as, with
non-zero probability, it can always justify a gate at maxi-
mum depth. However, compared to D-CRSAT, the expected
number of steps (recall Lemmas 1 and 2) can be significantly
larger, i.e., in theory D-CRSAT converges to a satisfying as-
signment significantly faster. The experimental results pre-
sented next confirm that this is also the case in practice.

Furthermore, Lemma 2 reveals another intriguing prop-
erty of both D-CRSAT and CRSAT. Namely, the algorithms
are always bound to eventually return to a restart assign-
ment. Since, by definition, both of the algorithms start the
search from some restart assignment, Lemma 2 shows that
D-CRSAT and CRSAT have the intrinsic ability todynami-
cally restart without explicitly forced restarts.

6 Experiments
We compare the performance of D-CRSAT to that of CRSAT
(using our implementationsd-crsat andcrsat) and also
to other circuit and CNF-level SLS methods. For this, we also
implemented a circuit-level methodinputLS that searches
over assignments to input gates in the style of[Phamet al.,
2007] (the authors were unable to provide us with their im-
plementation). We also used the CNF-level methodsTNM and
slstc that were one of the best SLS solvers in SAT Compe-
tition 2009 on random and application instances, resp., on the
standardTseitinCNF encodings of the benchmark circuits.

In bothd-crsat andcrsat), a justification at each step
is selected from the set of subset minimal justifications forthe
selected gate. This is due to positive results in preliminary
experiments for both methods. For retrieving the unjustified
gates of maximum depth ind-crsat, the setunjust(Cα, τ)
of unjustified gates is kept in a heap data-structure that al-
lows to retrieve such a gate in constant time, but incurs a
O(log(|unjust(Cα, τ)|)) penalty for insertions.

For each solver, we obtained the empirical run-time and
run-length distributions from 100 runs on each benchmark.
The near-optimal random walk probability values were deter-
mined experimentally beforehand. The experiments were run
under Linux on a Intel Core 2 Duo 3.00-GHz processor. As
benchmarks, we used over 450 And-Inverted circuits (AIGs)
from four different industrial application domains.
hwmcc08-sat 204 AIGs obtained from Hardware Model Checking

Competition 2008 (http://fmv.jku.at/hwmcc08/) problems us-
ing aigtobmc (http://fmv.jku.at/aiger) with step boundk = 45
for time frame expansion.

smtqfbv-sat 61 AIGs generated using Boolector
(http://fmv.jku.at/boolector/) to bit-blastQF BV (theory
of bit-vectors) instances of the SMT Competition 2009
(http://www.smtcomp.org/2009/)

sss-sat-1.098 AIGs from “formal verification of buggy variants of a
dual-issue superscalar microprocessor” (http://www.miroslav-
velev.com/satbenchmarks.html) converted to AIGs with ABC
(http://www.eecs.berkeley.edu/˜alanmi/abc/).

vliw-sat-1.1 98 AIGs from “formal verification of buggy variants of
a VLIW microprocessor”, in the same fashion as sss-sat-1.0.

6.1 Results
Table 1 summarizes the results. The time and steps ra-
tios are calculated from the median running times and num-
ber of steps. Overall,d-crsat takes significantly fewer
steps thancrsat. Despite the fact that the heap incurs
a run-time penalty, the differences in the number of search
steps translate into improvements in run-times. Improve-
ments are pronounced on difficult problems (Figure 1, up-
per). d-crsat solves significantly more instances than the
circuit-level methodinputLS and the CNF-level methods
TNM andslstc. It also solves a vast majority of those in-
stances solved by the other solvers significantly faster.

We also compared-crsat to NoClause, a circuit-level
conflict-driven clause learning solver[Thiffault et al., 2004]
with many modern CDCL solver techniques in the style of
zChaff (including VSIDS, 1-UIP learning and backjumping,
watched literals, etc.); such CDCL techniques are at the cen-
ter of state-of-the-art SAT solvers for industrial applications.



Table 1: Performance ofd-crsat compared to other SLS-based SAT solvers. Here an instance isconsidered “solved” by a
solver if the success rate on 100 tries with 300 stimeout per try is over50%. The “time ratio” (resp. “step ratio”) column for a
solver shows the ratio of total time (resp. steps) taken by the solver to that ofd-crsat on instances solved bybothsolvers.

Benchmark class d-crsat crsat inputLS slstc TNM
(# instances) solved solved time ratio steps ratio solved time ratio solved time ratio solved time ratio

hwmcc08-sat (204) 137 103 6.58x 8.84x 17 0.31x 81 23.69x 50 331.83x
smtqfbv-sat (61) 53 38 3.97x 7.17x 25 10.32x 2 181.87x 1 1.00x
sss-sat-1.0 (96) 79 74 2.14x 2.23x 15 377.64x 64 4.12x 3 489.29x
vliw-sat-1.1(98) 94 95 1.02x 1.22x 68 23.90x 9 597.78x 0 n/a

Figure 1 (lower) shows thatd-crsat compares in cases
favourably even withNoClause, especially on the vliw-sat-
1.1 family (although one should notice thatNoClause is not
as efficient as the best current CNF-level CDCL solvers).

7 Conclusions
We developed a circuit-level SLS method D-CRSat that com-
bines justification-based SLS with structure-based heuristics
and limited reasoning by forward propagation. We showed
experimentally that D-CRSat outperforms CRSat on vari-
ous classes of real-world circuit benchmarks, and dominates
other recent circuit and CNF-level SLS methods, including an
implementation of circuit-level SLS focusing on input vari-
ables. In some cases, CRSat compares favourably even with
a circuit-level conflict-driven clause learning solver. This in-
dicates that further advances in SLS-based techniques could
make SLS a viable alternative to CDCL-based algorithms for
solving instances from real-world application domains. Com-
plementing our experimental results, the presented intricate
PAC proof for D-CRSAT provides key insights into the pro-
posed gate selection heuristic, highlighting the gate depth as
an important search parameter and revealing the intrinsic abil-
ity of D-CRSAT to dynamically restart search.
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Figure 1: Upper: steps taken bycrsat andd-crsat; lower:
runtimes ofd-crsat (median) andNoClause.


