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Abstract. This work focuses on improving state-of-the-art in stotica®cal
search (SLS) for solving Boolean satisfiability (SAT) imstas arising from real-
world industrial SAT application domains. The recentlyraatuced SLS method
CRSAT has been shown to noticeably improve on previously sugd&ts tech-
nigues in solving such real-world instances by combinirgiification-based lo-
cal search with limited Boolean constraint propagation fn rion-clausal for-
mula representation form of Boolean circuits. In this wark, study possibilities
of further improving the performance of CR8by exploiting circuit-level struc-
tural knowledge for developing new search heuristics forSER To this end,
we introduce and experimentally evaluate a variety of $eheurristics, many of
which are motivated by circuit-level heuristics origiyadleveloped in completely
different contexts, e.g., for electronic design autormatipplications. To the best
of our knowledge, most of the heuristics are novel in the @dnof SLS for SAT
and, more generally, SLS for constraint satisfaction pots.

1 Introduction

Stochastic local search (SLS) [11] is an important paradidmch facilities finding so-
lutions to various kinds of hard computational problemssé@arching over a declarative
formulation of the problem at hand. It has been recognizatigdhe possibility to push
further the efficiency of SLS techniques is to develop se&chniques that exploit
the structureof constraint satisfaction problems. Indeed, variouscstme-exploiting
SLS methods have been developed (among others) for gemerstraint satisfaction
problems (CSPs; for examples see [1, 2,18, 10]) and Boolatisfiability (SAT; for
examples see [16,20,21,17,19,14,13,22,4,5]).

This work focuses on developing efficient structure-expigiSLS techniques for
SAT. In more detail, we study techniques that are aimehdustrially relevant(or,
as termed in the latest 2011 SAT Competitiapplicatior) instance classes. The most
effective methods for solvingandomSAT instances are based on SLS. Furthermore, re-
cent advances in SLS foraftedSAT instances has resulted in an SLS method winning
the satisfiable crafted instance category of the 2011 SAT @uitior?. In contrast, on
industrial instances the current SLS methods are ofterbhoiferior to the dominant
conflict-driven clause learning (CDCL) SAT solvers.
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To the best of our knowledge, currently the best performib§ Siethod aimed at
industrial SAT instances is CRS [5, 6]. Instead of working on the rather low conjuc-
tive normal form (CNF) level, CR& searches for a solution directly on the level of
arbitrary propositional formulas, relying on the compaginesentation form of Boolean
circuits for a succinct way of representing propositiowaiiulas. Furthermore, instead
of relying on restricting search to input variables, asrftas been proposed [16, 20, 21,
17,19], CR3T is based on thpustification-basedircuit-level SLS approach [14, 13],
searching over the whole subformula structure, and incatps a limited form of di-
rected circuit-level Boolean constraint propagation tdHer exploit structural aspects
of the input formulas[5].

We have recently shown that CRScan be further improved by incorporating a
structure-based heuristic for focusing search steps. fHsislted in thedepth-based
variant of CR3T [6]. The depth-based heuristic has interesting fundanhgmtgp-
erties, including the fact that CR$ remainsprobabilistically approximately com-
plete(PAC) [12] even when focusing search via the heuristic.

Contributions The success of the depth-based search heuristic suggastsrthuit-
level structural properties of SAT instances can indeedxpeited to further improve
SLS. Motivated by this, in this work we develop and experitaiy study a wide
range of novel structure-based SLS search heuristicssiioglon CR3T1. We pro-
vide a systematic large-scale study of the proposed stexttased heuristics. We re-
late the heuristics to the depth-based heuristic studietiail in [6], with the aim of
developing further understanding on what are the undeglpioperties that make the
depth-based search work in practice. Furthermore, we tigegs whether related (or
even completely different) structural properties resnleven more effective heuris-
tics. Analysis of the experiments reveals various intémgsibservations on the type of
structural properties of circuits result in effective sgeneuristics.

Finally, as a future motivation for the studied heuristivg, are interested in ex-
tending the CR&T approach, combining justification-based search over &giom-
binations of constraints and exploiting limited consttairopagation, to more generic
classes of constraint satisfaction problems (CSPs) fachnlbical search is a very viable
alternative [1, 2, 18, 10]. The development of good strietmsed search heuristics for
the circuit-level is directly applicable for the logicalrmabinations of more high-level
constraints, where the logical combinations can be vievgedrauits.

Organization Key definitions and concepts related to Boolean circuis§ability are
reviewed as necessary preliminaries in Sect. 2. Sect. 3digated to presenting the
CRSaT circuit-level SLS algorithm for which this work developsstture-based search
heuristics. The heuristics are introduced in Sect. 4. Befonclusions (Sect. 6), results
of an extensive empirical evaluation on the effectivenéskestructure-based heuris-
tics are presented in Sect. 5.

2 Preliminaries

A Boolean circuitover a finite set7 of gatesis a setC of equations of the form
g = f(g1,...,9n), Whereg, g1,...,9, € Gandf : {0,1}" — {0,1} is a Boolean



function, with the additional requirements that (i) eacke G appears at most once
as the left hand side in the equationsdh and (ii) the underlying directed graph
(G,E(C)), whereE(C) = {{(¢',9) e GXxG | g= f(...,q,...) € C}, is acyclic.
If {(¢’,g) € E(C), theng’ is achild of g andg is aparentof ¢’. For a gatey, the
sets of its children (i.e., th&anin of g) and parents (i.e., thianoutof ¢) are denoted
by fanin(C, g) andfanout(C, g), respectively. Thelescendanand ancestorrelations
fanin® andfanout™ are the transitive closures of the child and parent relatiogspec-
tively. If g = f(91,...,9n) isinC, theng is an f-gate (or of typef). A gate with no
children (resp. no parents) is arput gate(resp. aroutput gatg. The sets of input gates
and output gates i’ are denoted binputs(C) andoutputs(C'), respectively. A gate
that is neither an input nor an output isiaternal gate Typical gate types includeoT
(NOT(v) is 1 iff vis0) andAND (AND(vy, v9) is 1 iff both v; andwv, arel).

An (truth) assignmenfor C is a (possibly partial) functiom : G — {0,1}. A
complete assignment for C' is consistentf 7(g) = f(7(g1),...,7(gn)) for each
g = f(g1,-..,9,) In C. When convenient we writéy, v) € 7 instead ofr(g) = v.
Thedomainof 7, i.e., the set of gates assignedrins denoted bylonm(7). We say that
two assignments; and7’, disagreeon a gatey € dom(7) Nndom(7’) if 7(g) # 7/(9g).
For a truth assignmentand set of gate§& C dom(7), letflip(G, 7) denote the truth
assignment obtained by changing the values of the gat8samd leaving the rest of
unchanged.

A constrained Boolean circu®“ consists of a Boolean circuit and an assignment
a for C. Each(g,v) € « is aconstraint andg is constrainedto v if (g,v) € «a.
A complete assignment for C' satisfiesC? if (i) 7 is consistent withC', and (ii) it
respects the constraintsD «. If some assignment satisfi€s*, thenC* is satisfiable
A circuit that is not satisfiable ignsatisfiableWithout loss of generality, we assume
that constraints are imposed only on output gates.

The restriction 7|¢- of an assignment to a setG’ C G of gates is defined as
{{g9,v) € 7 | g € G’}. Given a gate equation = f(g1,...,9,) and a valuev €
{0,1}, ajustificationfor the pair(g,v) is a partial assignment : {g1,...,9.} —
{0,1} to the children ofg such thatf(7(g1),...,7(g9»)) = v holds for all exten-
sionst DO o. That is, the values assigned byto the children ofg are enough to
force g to take the consistent value For example, the justifications fdg, 0), where
g = AND(g1, g2), are{{g1,0)}, {{g=2, 0)}, and{{g1, 0, (g2, 0) }, out of which the first
two aresubset-minimalA gatey isjustified in an assignmentif it is assigned, i.er(g)
is defined, and (i) it is an input gate, or ()= f(g1,...,9,) € Candr|gy, . g3 i
justification for{g, 7(g)). We denote the set afnjustifiedgates in an assignmentby
unjust(C®, 7).

3 CRSat: Justification-Based SLS with Forward Propagation

CR®AT is an SLS-based SAT algorithm for Boolean circuits that afgs directly on
circuit structure — that is, without the conversion to CNReTalgorithm was first de-
scribed in [5] and was subsequently analyzed theoretieaityimproved in [6]. In this
section we provide a high-level overview of the algorithmd aefer the reader to [5, 6]
for additional details.



CRSAT is based on th@ustification-based14, 13] approach to circuit-level SLS.
In this approach, the circuit is traversed from the outpatgputs, and the values of
the internal gates are adjusted using local information in an attemptitoireate all
unjustified gates. CR& combines a weakened version of justification-based SLS with
so calledimited forward propagatior- a restricted form of circuit-level Boolean con-
straint propagation, described in what follows.

Pseudo-code for CRS is presented as Algorithm 1. First, a complete extension of
a random value assignmentitputs(C®) is constructed, i.e., the value of each uncon-
strained internal gate is set consistently with the valdés children. Then, as long as
unjust(C®, 7) is not empty (i.e.7 is not a satisfying assignment), the algorithm heuris-
tically selects an unjustified gate(line 6; we will discuss gate selection heuristics in
the next section in detail). Once an unjustified gaie chosen, the algorithm selects
a justificationo for (g, 7(g)) (lines 7- 13) and performs a searstep The latter con-
sists of (i) flipping the values of gates on whielandr disagree (line 15), followed by
(ii) propagating the consequences of the flip towards thpwisof the circuit (line 16).

Algorithm 1 Generic CR&T(C?*, wp, cutofi

Input: C“ — constrained Boolean circuit
wp — noise parameter ,i.e., probability of random walk
cutoff— cutoff, i.e., maximum number of steps

Output: status — SATIf a satisfying assignment far'® is found, UNKNOW®dtherwise

T — a satisfying assignment f6r® if found, () otherwise

1: 7 < a complete extension of a random assignmeitgats(C)

2: steps«+ 0

3: while steps< cutoff do

4 if unjust(C*, ) = () then

5 return (SAT, )

6: g < a heuristically selected gate framjust(C*, )

7:

8

9

X «+ the set of justifications fotg, 7(g))
with-probability wp do

o < random element oF > random walk
10: otherwise
11: o + arandom justifications from those i that minimize
12: the number of unjustified gates after the step > greedy downward move

13: end with-probability

14: G < set of gates i that disagree withr

15: 7+ flip(G, 1) > flip
16: T < LBCP-FORWARD(C“, G, T) > limited forward propagation
17: steps¢«— steps+ 1

18: return (UNKNOWH)

The justifications used to make a step can be selected from th& setall justifica-
tions for(g, 7(g)) either at random (with probabilityp), or greedily with the objective
of minimizing the number of unjustified gates after the siépte that taking®’ to be a
set ofsubset-minimgustifications results in good performance in practices thialso
how our current implementation works.



The forward propagation procedure LBCR#WARD is presented as Algorithm 2.
It uses a priority queu€& of gates (with no duplicates) that allows to query simeall-
estgate according to a topological order in constant finiessentially, the procedure
implements a circuit-level Boolean constraint propagaéitgorithm, except that (i) the
values are propagatedaly towards the outputs of the circuit, and (ii) propagatiomalo
each path stops immediately when an unjustified gate becprsified; hence it im-
plementdimited forward propagationThe addition of limited forward propagation to
justification-based SLS results in multiple orders of magge speed-ups on industrial
SAT instances [3].

Algorithm 2 LBCP-FORWARD(C?*, G, T)

Input: C“ — constrained Boolean circuit;
G — a set of gates whose value changes are to be propagated.
T —an assignment faf'*;
Output: 7" — an assignment fo€“ which is a result of limited forward propagation of the
assignment|q.
T
: Q.ENQUEUHG)
: while = Q.EMPTY dO
g <(Q.POPFRONT
if g € G then > g is one of the original gates
Q.ENQUEUHfanout(g))
else
if g € unjust(C*, 7') \ dom«) then > g unconstrained and unjustified
7« flip({g},7")
Q@ .ENQUEUHKfanout(g))

©oNDAR

=
e

s return 7’
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=

It comes as no surprise that the effectiveness of &R&pends critically on the
way the gates are selected for justification during the se@rine 6 of Algorithm 1).
A good selection heuristic focuses search to the most impbgates in terms of sat-
isfiability. On the other hand, if a too deterministic (foed} selection procedure is
used, the search may not converge into a satisfying assigning6] we showed that
the efficiency of CR&T can be significantly improved by focusing the search using
a structure-based gate selection heuristic which takesaictount thelepthof the se-
lected gates. In the next section we describe a number di@alalistructural properties
of gates and propose a number of gate selection heurisesitmn these properties.

4 Structure-Based Search Heuristics for CR&T

In this section we introduce a number of heuristics for geigoof the unjustified gate
to justify at each search step in the main loop of @R 8ine 6 of Algorithm 1). The
underlying idea is that these heuristics should be ablekmitdo account the structural

4 Recall that a topological order on the set of gates in a diisuany strict total ordex that
respects the condition “ij; € fanin(g2), theng; < g2”



properties of the constrained Boolean circuit at hand, aodd the search on the gates
that are deemed important based on these properties. éwaility, we must aim agffi-
cientlycomputable heuristics, as the main loop may be executewnslbf times in a
typical run of the algorithm (although, in contrast to tygi€LS algorithms, most of the
computation effort in CRS&T is attributed to the execution of forward propagation, and
hence we can afford slightly more expensive computatioas tisual SLS heuristics).

We now give a listing of the initial set of gate propertiesthwintuition on why
these properties may be interesting. We then describe thespmnding gate selection
heuristics, and, in the next section, present the resutteegbreliminary empirical eval-
uation of these heuristics. The analysis of the resultslealdl us to the development of
additional heuristics, which will be described and anatlireSect. 5.

Depth: depth(C, g), where thedepthof a gateg in C'is

0 if g € outputs(C*

depth(C, g) = {1 + max{depth(C,¢’) | ¢’ € fanout(C, g)} otherwise. )
The importance of gate depth for CRSwas justified theoretically and confirmed
empirically in [6]. The key aspect is that selection of gatéth high depth drives
the algorithm close to the inputs of the circuit, thus allogvithe algorithm to ex-
plore the space of assignments to input gates fastée depth of all gates i’
can be computed i@(|C|) time (whergC| denotes the number of gateif), and
stored for constant time retrieval.

FO: |fanout(C, g)]
Gates with largéanout sizeare in a sense more influential than the rest. Intuitively,
by forcing CRI\T to justify these gates, the truth values of these criticatispaf
the circuit are fixed first, which may result in many of the otbates’ values to be
set by forward propagation. The fanout size of a gate isawdd in constant time.

TFO: [fanout™(C, g)|
This is also a measure of the influence of the gate in the tirituuitively, the
largerthe size of the transitive fanguhe more influence the gate’s value has on
transitively justifying the output constraints of the ciitvia forward propagation.
The computation of the size of the transitive fanout of a gatgliresO(|C'|) in the
worst-case (although typically only a fraction of gate€imave to be evaluated).

TFI: |fanin®(C, g)|
The size of the transitive-faninf a gateg can be considered an estimate of the
number of search steps required to justify all gates in thecstcuit rooted ay.
This measure is also related to the size of ititerest setused as an objective
function in justification-based SLS algorithm BC SLS [14].IBhe computation
of the size of the transitive fanin of a gate requi€®$C|) in the worst-case.

CC: CC(C,g,7(g)), where thesSCOAP (Sandia Controllability and Observability Anal-
ysis Program) combinational controllability measy83 CC is defined as follows:

5 Here one should notice that driving the search towards igatets in justification-based search
is different from the idea of restrictintpe flipsto input gates as in [16, 20, 21, 17, 19] due to
the conceptual differences of these approaches.



1 if g € inputs(C)

CC(C,9,0) = {1 Wiy efanin(c.g) CC(C, ¢, 0) if g is anaND-gate,

1 if g € inputs(C)
CC(C.g.1) = { L4+ etanin(c.g) CC(C, ¢, 1) if g is ananD-gate.
Given a gatgy and its current value,, SCOAP aims to provide a measure of how
difficult it is to satisfy the sub-circuit rooted gtgiven thatg is constrained to,
(i.e., tocontrol the valuev, at g). Originally, SCOAP was used as a combinational
testability measure. For our purposes, SCOAP intuitivelyvjules a measure of
how difficult it is to transitively justify the output constints of a circuit. Due to
the fact that we apply And-Inverter graphs (AIGs) as benaknrestances in this
paper, the definition is restricted AanD-gates only. However, the definition can be
naturally extended to other gate types.
Here one should notice the original definition of SCOAP assifpr NOT-gates
(negations) the value of the gate’s childremented by onén contrast, here we do
no increment such values, but instaagplicitly skipNOTs in the following sense.
In caseg = NOT(g'), all gates infanout of ¢’ are included irfanout of ¢’ instead
of g. This is due to the fact that negations (inverters) are heghuthplicitly in the
justification steps and forward propagation performed byS&R and hence the
CC value assigned to eactoT-gate equals the value assigned to the gate’s child.
Note that SCOAP controllability measures for all gate€’itan be computed in

O(|C|) time.
CO: CO(C,g), where theSCOAP combinational observability meas{8¢is defined
as follows:
_Jo if g € outputs(C)
CO(C.9) = { 1 + ming canout(c,g) CCO(C, ¢', g) otherwise,

where for alaND-gate we have

CCO(C,g¢',9) = CO(C,g') + > cCcg ).
g €fanin(C,g9’)\{g}

As in CC, we implicitly skipNOTs in the definition. This measure attempts to cap-
ture how difficult it is toobservea specific value for a gate given the output con-
straints; in other words, how likely is it that the value istas a minimal justifica-
tion that is transitively consistent with the output coasits. The measure can be
computed for all gates i in O(|C|) time.

Flow: flow(C, g), where theoutput flow valuef a gatey in C'is

1 if g € outputs(C')

!
flow(C, ) = 3 _flow(C.g') :
Fanout(C. 9] otherwise.

g’ €fanout(C,g)

In other words, we compute a total flow value for each gate hyripg a unit
quantity flow down from the output gates of the circuit. Hetrésiimportant to



notice that the definition oflow implicitly skips NOT-gates. This flow-based idea
was first evaluated in [15] as a heuristic for restrictingsbeof decision variables in
CDCL solvers. Our intuition is that, if a large total flow passhrough a particular
gate, the gate iglobally very connected with the constraints+inapproximating
in a sense the number of possible paths for forward propagatnd thug would
have an important role in the satisfiability of the circuit.

Each of the structural properties presented above givesas pair of gate selection
heuristics: for a given propertf{C<, g, ), one heuristic selects at random a gate from

argmax f(C% g,7).
g€E€unjust(C, 1)
We will refer to this heuristic as max-variant f-max, of the heuristic based ofi.
And, a dual heuristic, thein-variant f-min, selects at random a gate from

argmin  f(C%, g,7).
g€E€unjust(C, 1)
Thus, we have 7 pairs of dual heuristics, and the baselingstielRand that simply
selects a random gate from framjust(C*, 7) —this is the heuristic used in the original
paper on CR&T [5].

We now note that some of the presented structural measuigstes are in parts
correlated (either positively or negatively) with gate ttefihese ar8FO, TFI, CC,
CO), while others FO, Flow) are not. The reason that we pay a particular attention to
the depth is that we know that tiepth-max heuristic is very effective [6]. As such,
when we evaluate the heuristics based on the propertiesutbaiositively correlated
with depth @epth-friendlyheuristics) we are interested in detecting improvemergs ov
Depth-max. Such an improvement would suggest that another, perhaps fuoda-
mental property, is at play in CRS$-style circuit SLS. Furthermore, the duals of depth-
friendly heuristics are expected a priori to perform pooltlyevaluating the heuristics
that are not correlated with deptligpth-agnostibeuristics), we are also interested in
detecting significant differences in performance on soragsgls, or even on particular
problem instances. Such differences would suggest th#h-dgmostic heuristics might
be used as secondary heuristics in QR &e.qg. for tie-breaking).

To summarize, the following heuristics are the primaryéssgf the empirical eval-
uation and analysis presented in the next section:

— Baseline Rand and alsdDepth-max.

— Depth-friendly TFO-max, TFI-min, CC-min (small controllability value means
the gate isasyto control, and hence intuitively close to input§)Q-max (large
observability value means the gatedifficult to observe, and hence intuitively far
from outputs).

— Depth-agnosticFO-min, FO-max, Flow-min, Flow-max.

5 Evaluation

In order to provide an objective empirical comparison of Slo®ers, the well-known
SLS textbook by Hoos and Stitzle [11] suggests a procedur@nding near-optimal



noise (the setting of the parametep in Alg. 1) by essentially binary searching for the
noise values for each individual instance and solver to léueted. While full binary
search is computationally infeasible given the vast nurobeenchmark instances used
in our experiments and, on the other hand, the computatiesalirces available to us,
we applied the following approximation of the Hoos-Stétgztheme. Noise was opti-
mized for each solver and instance individually based omi&$ tising a timeout of 200
seconds per try (with no limit on the number of steps), atee&ues 0.05, 0.1, 0.2,
0.3, 0.4, 0.5. The noise with highest success rate (primdtgrion) and best median
time (secondary criterion) was selected. In cases where Were two or more options
ranked best using both of these criteria, a random candatatmg those options was
picked. Note that the benchmark-class based noise optiorizavhich is computation-
ally cheaper, is often insufficient on industrial applioatbenchmarks. For example,
among 61 solved instances of one of the benchmark classestaesbelow §ss-sat-
1.0) we found 10 instances to have a near-optimal noise valpg,, of 0.05, 10 with
wpno = 0.1, 14 instances witlwp,, = 0.2, 9 instances withup,, = 0.3, 9 instances
with wp,, = 0.4 and 9 instances withp,,, = 0.5.

The reported CPU times and number of steps for each instaatkeamedian CPU
time (in seconds) and the median number of search steps ldthdst noise setting
over 25 tries for the experiments summarized in Fig. 1 anch8,aver 100 tries for
the experiments summarized in Fig.2The experiments were performed on an HPC
cluster, each node of which runs on a dual quad-core Xeon®345Hz with 32 GB
of memory.

5.1 Benchmark Families

As benchmarks, we considered over 650 And-Inverted csdiflGs, that is, con-
strained Boolean circuits in which gate typesD andNoOT are used) from five dif-
ferent industrial application benchmark classes. We abththe AlGs as described in
the following.

hwmcc08-sat 204 satisfiable AlGs obtained from the Hardware Model Chegkiom-
petition 2008 problenTs The original sequential circuits were unfolded using the
aigtobmc tool (part of the AlGer packadgThe step bouné = 45 was used for
the time frame expansion.

smtgfbv-sat 61 satisfiable AIGs generated by using the Boolector SMTesd[8] to
bit-blastQF-BV (theory of bit-vectors) instances of the SMT Competitiol9Fd
into AIGs.

5 Based on our experience, given the large number of instaBBesies is enough to detect the
main trends. The experiments described in Fig. 2 requireempecision.

" Original instances available http://fmv.jku.at/hwmcc08/

8 Available athttp://fmv.jku.at/aiger/

9 http://fmv.jku.at/boolector/

10 http:/iwww.smtcomp.org/2009/



sss-sat-1.098 satisfiable AlGs from “formal verification of buggy vartarof a dual-
issue superscalar microproces$é[23]. These circuits, originally in the ISCAS
format, were converted to AIG using the ABC sysiéif7].

vliw-sat-1.1 98 satisfiable AlGs from “formal verification of buggy vartamf a VLIW
microprocessor”, originating from the same place and cdadeo AIG in a similar
fashion as sss-sat-1.0 instances.

sat-race Satisfiable AlGs filtered from a total of 200 instances usetthéfinal round
of structural SAT traclof the SAT Race 2008 and 2010 competitidps.

In order to be able carry out the experiments in practice, isleel a selection of a
total of 300 instances from these benchmark classes ag/flBased on the good per-
formance reported in [6] for thBepth-max heuristic, we filtered out trivial instances
for Depth-max (instances for which the median number of steps wag30). From
the remaining ones, in order to we picked those instancéswbaonsidersolvedby
Depth-max (i.e., instances for which the success ratedepth-maxwas > 50 %),
This resulted in the following distribution of instancesvrincc08 — 95, smtqgfbv — 46,
sss-sat-1.0 — 61, vliw-sat-1.1 — 96, and sat-race — 2.

5.2 Results and Analysis

Fig. 1 presents a “cactus” plot, i.e., the number of instarleat can be solved within a
given timé®, summarizing the comparative performance of the 15 stradtased gate
selection heuristics described in Sect. 4. The followingatasions can be drawn.

First, we note that whenever a heuristic outperforms thelreRand heuristic, its
dual performs worse thaRand, and vice versa. In fact, we see that in many cases the
better the performance of a heuristic, the worse is the padace of its dual. This sug-
gests that the properties proposed in Sect. 4 are meaningfut context of CRST.
One exception to the nice “symmetric” picture is the pairdzhen SCOAP combina-
tional controllabilityCC, where the worse of the dualSC-max, performs surprisingly
close to the baselingand — we will discuss this point later. An additional observatio
is that the depth-friendly heuristicB=O-max, TFI-min, CC-min and CO-max al-
ways perform significantly better than their duals, andthfeimore, form most of the
best performing heuristics. This corroborates the hymishthat there is an important
underlying property correlated with the depth of gates.

Second, we observe surprisingly good performance from ¢ip¢hdagnostiélow-
min. Recall that, intuitively, gates with high flow are thosetthave large influence on
other gates in the circuit. Thus, on the surface, this resgts doubt on the role of the

11 Available athttp://www.miroslav-velev.com/sat_benchmarks.html

12 http://ww.eecs.berkeley.edu/ ~alanmi/abc/

13 Available athttp://baldur.iti.uka.de/sat-race-2010/downloads.ht ml

4 This allowed us to perform these extensive experimentsdctime within the given time frame.
We hope to extend the experiments also to those instances/addyDepth-max.

15 The median CPU times were used for the plot. The median nuoftserarch steps would also
be an appropriate measure for comparing the quality of bdwuristics. However, the relative
performance differences based on time and on number stepgey close in this case, and
the cactus plot using running times is easier to read.



Fig. 1. A comparison of the performance of 15 gate-selection heesigescribed in Sect. 4 as a cactus plot, i.e., the numbiiost instances that can
eachsolvedwithin a given time limit. An instance is consideredivedif a success rate over the 25 triesis50%. The CPU time of a solved instance is

the median CPU time for the instance over all runs (includirgunsuccessful ones).
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Fig. 2. Scatter plots that compare the performances of selectatstiesiin terms of the median
number of steps, over 100 tries. Timed-out instances attedlavith the number of steps set to
107, on the vertical and horizontal lines.

influential gates in the context of CR®. On the other hand, between the two duals
based on the size of the fanout of gates, it iskllemax that performs well, rather than
FO-min. A closer look at some of our instances resolves this appamrtradiction
— the flow isnot depth-agnostic, but, in fact, is negatively correlatechvdepth. The
reason for this is that most of our benchmark circuits hageitantly more inputs
than outputs, and thus gates that are close to inputs teravodmall flow values. At
the same time, we did not detect any interesting relatigredbetweemepth-maxand
FO-min, most likely due to the fact that the latter is much more allpcaperty than
the former. This suggests that to further study the effetctmfiuence” of gates in the
context of CR8T, alternative measures are needed, e.g., ones that aredrageaph-
theoretic centrality measures. This conclusion is corrataal by the fact that, although
the depth-friendly heuristics capture high influence — gati¢h large depth often have
large transitive fanout and thus have high influence thrdaghard propagation — the
results show thatFO-max is not the best performing heuristic.

Finally, we observe that the SCOAP-based heuri€icsmin andCO-max, as well
as theTFO-max heuristic based on the size of the transitive fanout of gaiegaot per-
form as well adDepth-max. However, in contrast, the heuristic that prefers gatel wit
small transitive faninTFI-min , appears to perform noticeably better th2epth-max.
The scatter plot in Fig. 2(a) which compares the performafitigese two heuristics in
terms of the number of search steps demonstrates that thefdize transitive fanin of
gates can provide a better guidance to @R &an the depth of the gate.

Note that gates with small transitive fanin are very likedybe close to the inputs.
Based on the theoretical analysis of C&Sn [3] and [6] the performance of the algo-
rithm should improve if it arrives to the input level frequlsnHence, to get insight into
the reasons of the good performancel&i-min , we need to understand whether the
heuristic is effective simply because it brings the aldoritfaster to the input level, or
whether there is another mechanism at play. One way to igatstthe answer to this



question is to compare the performancd®i-min with a heuristic that is based on a
measure that disregards the number of gates in the sulitaivoted at the gate, and
takes into account only the distance from the gate to thetilgpel. Such a measure,
well known in EDA literature, is called thievelof a gate, and is defined as follows:

Level: level(C, g), where thdevelof a gateg in C'is

(0 if g € inputs(C)
level(C, g) = { 1 + max{level(C,g") | ¢’ € fanin(C, g)} otherwise.

Thus,level(C, g) is simply the maximum distance from the ggt&® an input gate,
and so the depth-friendly heuristic based on leleljel-min, would control the search
solely based on the distance to the inputs.

The comparative performance ©FI-min andLevel-min is presented in the scat-
ter plot in Fig. 2(b). We observe that performances of the hearistics are highly
correlated. As such, this comparison does not give a defrithnswer to the question
of which measure is more fundamental for CGRSTo gain some insight, we can in-
troduce heuristics that go for the input gates more aggralgshanLevel-min. Such
heuristics can, for instance, be based on the following oreas

LLevel: level(C, g), where the'low” level of a gatey in C'is

fo0 if g € inputs(C)
llevel(C, g) = {1 + min{llevel(C,¢’) | ¢’ € fanin(C, g)} otherwise.

AlLevel: alevel(C, g), where the‘average” level of a gatey in C'is

0 if g € inputs(C')
alevel(C, g) = { 14+ Y, crnn(c.o) level(C, g')/Ifanin(C, g)| otherwise.

Thus, the “low” level ofg is the shortest distance frognto some input gate, while
the “average” level of; is somewhere in between the level and the “low” level; that
is, we always havéevel(C, g) > alevel(C,g) > llevel(C, g). As such, the Level-
min heuristics will drive the search to the input gates extrgraggressively, while the
ALevel-min heuristic represents a middle ground betwkevel-min andLLevel-min.

The cactus plot in Fig. 3 summarizes the comparative pedaoain terms of CPU
time of the three level-based heuristics described abogd&Bfrmin . We note that the
performance of level-based heuristics degrades as théstiesiattempt to drive the
search towards the inputs more aggressively. This obsematovides partial evidence
to the hypothesis that the size of transitive fanin of a gatéch provides an estimate
of the amount of work needed to justify a sub-circuit rootédhe gate, is a more
fundamental structural property in the context of GR SHowever, in order to evaluate
this hypothesis properly, we need to discover classes dfigmes where the measures
Level andTFI are not correlated. Finally, due to the fact that on the incsta in our
benchmark set the two measures appear to be correlated tevéhabsincd_evel is a
cheaper-to-compute measure, in practical applicatioasght want to consider using
Level-min, rather tharTFI-min , as a gate-selection heuristic.
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Fig. 3. A comparison of the performance @FI-min with various level-based gate-selection
heuristics as a cactus plot, i.e. the number of those instatiat can eacéplvedwithin a given
time limit. An instance is consideresblvedif a success rate over the 25 triesxs50%. The
CPU time of a solved instance is the median CPU time for thiunte over all runs (including
the unsuccessful ones).

6 Conclusions

We presented results of experiments on the applicabilitiiftérent circuit-level prop-
erties as the basis of structure-based search (gate saleleéuristics for the state-of-
the-art SLS method CRS for industrial-related Boolean satisfiability instancéke
results can be seen as first steps towards understandirgetod structural information
in justification-based local search for SAT with limited Bean propagation integrated
into the search. We identified a number of easy-to-compuuetsiral properties which
appear suitable as the basis of heuristics for @R Some of which can even outper-
form the recently introduced depth-based variant of @RS he promise of the result-
ing heuristics was also corroborated by showing the duglgmtees result in extremely
weakly performing heuristics.

The now presented results open up various interestingiqnegor further work on
improving structure-based SLS for SAT. First, the obséovethat somewhat differently
defined structural properties result in good heuristicgests to study different ways of
combiningthe resulting heuristics for achieving even better perfmoe. This includes
the question of what are the actual underlying propertigi®good performance, and
which the now studied easy-to-compute properties may beoappating. In addition
to gate selection heuristics, we also aim to study diffecdmjective functionshat are
based on structural properties of SAT instances. Finaklynate that the development
of good structure-based search heuristics for the citeudt is directly applicable for
the logical combinations of more high-level constrainto(engeneric CSPs), where
the logical combinations can be viewed as circuits. Thisnie of the main research
directions we are currently pursuing.
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