
Applications of MaxSAT in Data Analysis

Jeremias Berg, Antti Hyttinen and Matti Järvisalo

HIIT, Department of Computer Science, University of Helsinki, Finland

Abstract

We highlight important real-world optimization problems arising from data analysis
and machine learning, representing somewhat atypical applications of SAT-based solver
technology. To address the problem of current lack of heterogeneity in benchmark sets
available for evaluating MaxSAT solvers, we provide a benchmark library of MaxSAT
instances encoding different data analysis and machine learning problems. By doing so,
we also advocate extending MaxSAT solvers to support real-valued weights for soft clauses
via the presented problem domains in which the costs are naturally real-valued.

1 Introduction

Due to recent advances in maximum satisfiability (MaxSAT) solving techniques, MaxSAT, and
especially its weighted partial generalization, are being used for solving a widening range of op-
timization problems. Having good benchmark problem sets is a critical requirement for modern
algorithmic research, including MaxSAT solver development. Constructing large, meaningful
benchmark sets is a time-consuming task that requires care. Indeed, there is an acknowledged
shortage of good benchmark problem sets for weighted partial MaxSAT, which can be ob-
served by looking at the weighted partial MaxSAT benchmark sets used in the recent MaxSAT
Evaluations [4] (see http://maxsat.ia.udl.cat/).

In this paper, we give an overview of three important optimization problems arising from
data analysis and machine learning, and how we have recently approached them via MaxSAT.
As a contribution to the community at large, our emphasis is on providing the (Max)SAT
community novel types of real-world benchmarks.

The data analysis problem domains described are:

• Cost-optimal correlation clustering (Section 3),

• Learning optimal bounded-treewidth Bayesian network structures (Section 4),

• Causal structure learning (Section 5).

Each of these problems represents a somewhat “non-standard” application domain for
SAT-based techniques. However, our recent work [6, 7, 8, 26, 25]—published mainly outside
the SAT/constraints community—on applying MaxSAT solvers to these problems shows that
MaxSAT is a very reasonable current alternative to approaching these challenging problems:

• MaxSAT allows for learning noticeably better correlation clusterings than more traditional
algorithms (w.r.t. costs of clusterings) and allows for constrained correlation clustering
(which is novel in itself) [6, 7].

• MaxSAT is currently the most efficient way to learning optimal bounded-treewidth
Bayesian networks [8]. This includes comparisons with e.g. competing state-of-the-art
integer programming (IP) based approaches for the problem.

1

http://maxsat.ia.udl.cat/

• MaxSAT provides the currently most general exact approach to learning optimal causal
structures [26, 25].

The motivations for this paper are three-fold:

1. Highlighting potential of and challenges for Boolean optimization in data anal-
ysis. We hope to draw more attention of the SAT community to develop novel SAT-based
approaches to hard search and optimization problems arising from data analysis, which
due to the well-observed “big data revolution” is gaining increasing importance. The
MaxSAT encodings for the problem domains described in this paper have already been
successful in providing novel approaches for the particular problems. Furthermore, de-
spite these recent advances, we believe the SAT community could make further progress
in the state-of-the-art algorithmic solutions for such data analysis problems, particularly
by developing novel techniques (such as incremental partial grounding) for dealing with
data-oriented problems under very large amounts of data.

2. Novel real-world benchmarks for MaxSAT solver developers and evaluations.
As—we believe—MaxSAT solver developers and MaxSAT Evaluation organizers and par-
ticipants would agree, to an extent there is currently a lack of heterogenous benchmark
sets for real-world applications of MaxSAT. Furthermore, optimization problems arising
from data analysis are based on underlying real-world data, and the number of openly
available datasets is bound to only increase, yielding opportunities for generating high
numbers of interesting MaxSAT benchmarks from such domains. With all this in mind,
we have made available a large set of MaxSAT instances encoding problem instances from
the presented problem domain at

http://cs.helsinki.fi/group/coreo/benchmarks/

for the use of the SAT community and e.g. the MaxSAT Evaluations. The web page
provides readmes for each of the benchmark sets, with specifics e.g. on the way the
weights for the individual MaxSAT instances were obtained, the datasets based on which
the instances were made, as well as explanations of the various parameterizations and
the associated naming conventions used for the instance files. Furthermore, we provide
both real-weighted (using the original weights) and integer-weighted (obtained using from
the original real-values using multiplication and rounding) WCNF DIMACS instance files
for the use of the community at large. We have also submitted the benchmark sets
(with integer weights) to the 2015 MaxSAT Evaluation. We will work on expanding this
benchmark collection further in the future.

3. Advocating extending MaxSAT solvers to support real-valued weights. Rather
than expecting the end-user of MaxSAT solvers to multiply the weights into integral val-
ues (hopefully keeping as much of the real-valued resolution as possible), we note that,
at least in principle, a majority of modern MaxSAT algorithms, including the classi-
cal Fu–Malik [20] algorithm as well as a variety of recently proposed algorithms such
as [2, 32, 33, 31], could allow floating-point representations of weights on soft clauses
as input. This could be implemented—depending on the algorithm in question—either
by using floats as the internal representation type, or—in order to avoid potential nu-
merical instability issues—by simply internally converting the input weights into integers
using as high precision as available. Indeed, we believe it would be beneficial to extend
the standard DIMACS WCNF input format to accept floating-point representations of

http://cs.helsinki.fi/group/coreo/benchmarks/

weights, stepping forward from the more traditional but in many case unnecessary and
(from the end-user perspective) a restrictive requirement of integer-weighted soft clauses.1

To corroborate this view, in each of the problem domains described in this paper the use
of real-valued weights is a natural choice. More generally, we believe that by directly
supporting real-valued weights, MaxSAT could become a more attractive choice as a
Boolean optimization paradigm for a wider base of end-users2. Note that, while floats
can be converted using a simple script with high precision to integer weights by multi-
plying by appropriate constants, here we want to emphasize the user’s perspective: there
is no reason not to support floating-point representations of weights, since in many prob-
lems domains the actual weights are indeed real-valued. The benchmarks we have made
available showcase such domains.

The rest of the paper is organized as follows. After a short recap of MaxSAT (Section 2),
we explain each of the considered data analysis problems one by one in Sections 3–5), with
overviews on the MaxSAT encodings on which the provided benchmarks are based on, and
with details on the filenaming conventions used for presenting the underlying parameters of the
benchmarks. We then conclude with some lessons learned from working on the MaxSAT-based
approaches to these problems.

2 Maximum Satisfiability

For a Boolean variable x, there are two literals, x and ¬x. A clause is a disjunction (∨, logical
OR) of literals. A truth assignment is a function from Boolean variables to {0, 1}. A clause C
is satisfied by a truth assignment τ (τ(C) = 1) if τ(x) = 1 for a literal x in C, or τ(x) = 0 for a
literal ¬x in C. A set F of clauses is satisfiable if there is an assignment τ satisfying all clauses
in F (τ(F) = 1), and unsatisfiable (τ(F) = 0 for every assignment τ) otherwise. An instance
F = (Fh, Fs, c) of the weighted partial MaxSAT problem consists of two sets of clauses, a set
Fh of hard clauses and a set Fs of soft clauses, and a function c : Fs → R+ that associates a
non-negative cost with each of the soft clauses. Note here that the weight function above allows
for assigning non-negative real values from R+ as weights, as opposed to the more traditional
definition c : Fs → N restricting to integer valued weights.

Any truth assignment τ that satisfies Fh is a solution to F . The cost of a solution τ to F is

cost(F, τ) =
∑
C∈Fs:
τ(C)=0

c(C),

i.e., the sum of the costs of the soft clauses not satisfied by τ . A solution τ is (globally) optimal
for F if cost(F, τ) ≤ cost(F, τ ′) holds for any solution τ ′ to F . Given an instance F , the
weighted partial MaxSAT problem asks to find an optimal solution to F . We will refer to
weighted partial MaxSAT instances simply as MaxSAT instances.

V f1 f2 f3 . . .
v1 0.5 1 3 . . .
v2 −3 0 −2 . . .
v3 0.7 1 5 . . .
v4 4 1 7 . . .
v5 6 0 10 . . .

DATA

⇒ W =

0 1 0.7 0 0.2
1 0 4 −7 −5

0.7 4 0 ∞ 0
0 −7 ∞ 0 −3

0.2 −5 0 −3 0

SIMILARITY MATRIX

⇒

MAXSAT:

encoding
+

solving

⇒

v1

v2

v3

v4

v5

SOLUTION CLUSTERING

Figure 1: The correlation clustering problem by example

3 Cost-Optimal Correlation Clustering

Correlation clustering is a well-studied [1, 14, 41, 22, 19, 7, 6] NP-hard clustering problem
that finds important applications in various domains such as biosciences [5], and social network
analysis and information retrieval [12, 11, 13].

Figure 1 outlines the correlation clustering task via an example. To begin with, we are given
a dataset consisting of N data points V = {v1, v2, . . . , vN} with some features f1, f2, . . . , fn.
Figure 1 (left) gives an example datasets. From the data, first a symmetric similarity matrix
WN×N is computed; see Figure 1 (middle) for an example similarity matrix. The similarity
matrix W can equivalently be seen as a pairwise similarity function over V , i.e., the value at
row i column j, denoted by W (i, j), indicates whether the data points vi and vj are similar
(W (i, j) > 0) or dissimilar (W (i, j) < 0). The absolute value |W (i, j)| represents confidence in
the (dis)similarity. The special case W (i, j) = 0 is used for representing missing information
of the (dis)similarity between vi and vj in case of incomplete data. This definition of similarity
matrices is thus rather general, and includes often-studied special cases, such as assuming
complete similarity information with similarity values restricted to {−1, 1}.

The objective of the arising combinatorial optimization problem of correlation clustering
is to partition (cluster) the set V in a way that correlates as well as possible with V , i.e.,
minimizing the number of similar pairs of points assigned to different clusters (partition) and
the number of dissimilar pair of points assigned to the same cluster; an example clustering
is shown in Figure 1 (right). An important contrast between correlation clustering and other
clustering paradigms is that the number of clusters is not assumed as input. This makes
correlation clustering especially well-suited for datasets for which the true number of clusters
is unknown, which is in fact often the case when dealing with real-world data.

3.1 Problem Definition

A more precise formulation of the correlation clustering problem is as follows. Given a symmet-
ric similarity matrix W , the task is to find a cost-optimal clustering, i.e., a function cl∗ : V → N

1The classical definition of MaxSAT with integer weights, to our best understanding, arises from the fact that
before the developments of practical MaxSAT solvers, the problem was mainly of interest from the perspective
of computational complexity analysis.

2We acknowledge that supporting floats does not in itself solve all problems related to usability of MaxSAT
from the end-users’ perspective; another challenge is to lower the entry barrier to modelling with MaxSAT by
e.g. providing more sophisticated modelling tools.

minimizing the correlation clustering cost function:

cl∗ ∈ arg min
cl : V→N

∑
cl(vi)=cl(vj)

i<j

(I[−∞ < W (i, j) < 0] · |W (i, j)|) +

∑
cl(vi)6=cl(vj)

i<j

(I[∞ > W (i, j) > 0] ·W (i, j))

where the indicator function I[b] = 1 iff the condition b is true. Figure 1 (right) illustrates an
example solution of the correlation clustering problem. The cost of this (optimal) solution is
4.9.

3.2 Computing Weights

In our MaxSAT-based approach to correlation clustering, the input to the MaxSAT encoding is
the similarity matrix W . The exact method in which W is computed depends on the particular
application at hand. A simple example is to assume that all data points are in the n-dimensional
Euclidean space, i.e., vi ∈ Rn for all i. In this setting, the Euclidean distances between pairs
of data points can be transformed into a similarity matrix. More precisely, given the pairwise
Euclidean distances d(vi, vj) and some (hand-picked) threshold α, let

W (i, j) =

{
d(i, j)− α if d(i, j) > α

−(α− d(i, j)) else.
(1)

This is a natural (although by no means the only possible) similarity measure. Our MaxSAT
encoding is of course general in the sense that we do not make any assumptions on the way the
values of the similarity matrix have been computed.

3.3 MaxSAT Encoding

Next we give a short overview of the encoding of correlation clustering to MaxSAT. In [6, 7] we
proposed three different encodings. Here we give an overview of the so-called binary encoding
of [7] as it was the best performing one in our experiments. We refer the reader to the references
for details on the two other, the so-called unary and transitive encodings.

Given a set of data points V = {v1, . . . , vN} and a similarity matrix W over V , the binary

encoding includes logN variables b1i , . . . , b
logN
i for each data point vi. The semantics of these

variables is that the value of blogNi . . . b1i when interpreted as a binary number (least significant
bit to the right) indicates which cluster the data point vi should be assigned to by the solution
clustering. Using these variables, the constraint requiring that two data points vi and vj should
(not) be assigned to the same cluster is equivalent to requiring that the value of bki and bkj
should (not) be the same for all k. This is encoded by defining auxiliary variables Sij using

the hard constraints Sij ↔
∧logN
k=1 (bki ↔ bkj) and including the soft unit clause Sij (¬Sij) with

weight |W (i, j)| for all (dis)similar pairs of points vi and vj . In total, an instance formed by
the binary encoding contains O(E + N · log2N) variables and O(E · log2N) clauses, where
E ≤ O(N2) is the number of non-zero values in the input similarity matrix.

3.4 Available Benchmarks

We generated the correlation clustering benchmarks based on nine real world datasets. The
first four are protein datasets containing pre-computed similarity values between amino acid
sequences of proteins. The protein data was obtained from http://www.paccanarolab.org/

scps. The pre-computed similarity values for these datasets were in the range [0, 1]. In order
to fit them into our clustering setting we subtracted −0.5 from all values. The four protein
datasets contain 669, 586, 567, and 654 data points, respectively.

The benchmarks also include five other datasets:

ORL, the AT&T ORL database of images of faces, obtained from http://www.cl.cam.ac.uk/

research/dtg/attarchive/facedatabase.html. The dataset contains 400 data points.

Ionosphere, the UCI ionosphere dataset for classification of radar returns from the ionosphere,
obtained from http://archive.ics.uci.edu/ml/. The dataset contains 351 data points.

Breastcancer, the LIBSVM breast-cancer dataset, obtained from http://www.csie.ntu.edu.

tw/~cjlin/libsvmtools/datasets/. The dataset contains 683 data points.

Ecoli, the UCI Ecoli dataset, containing protein localization sites, Obtained from http://

archive.ics.uci.edu/ml/. The dataset contains 327 data points.

Vowel, The LIBSVM Vowel dataset, originally from UCI, with 10 features. Obtained from
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/. The dataset contains 990
data points.

For these datasets we created similarity matrices in the way already described. First we
calculated the normalized Euclidean distances between pairs of data points, and then created
the similarity matrix W as detailed in Equation 1 with α = 0.5. Finally, in order to simulate
sparsity of the data, we pruned all similarity values in the range [−0.2, 0.2]. This step was
omitted for the protein data as it was incomplete to begin with.

In the benchmark set we varied the number N of data points picked from each dataset in
order to create MaxSAT instances with a runtime between 5 seconds and 2 hours, always using
the N first data points from each dataset. The parameter values and filename convention used
for the benchmarks are detailed in Table 1.

Table 1: Overview of the benchmarks encoding correlation clustering

Filename: <r >CorrelationClustering dataset enc Nn Dd.wcnf
Parameter Description Range

r Indicates that the weights of the soft clauses are rounded

to integers

“Rounded”

”

dataset Name of the dataset the instance is based on

enc Name of the encoding used
UNARY

TRANSITIVE
BINARY

n Number of datapoints used from the dataset n ∈ [150, 400]

d Every similarity value W (i, j) for which |W (i, j)| < d has

been pruned from the data before creating the instance.
d ∈ [0, 0, 2]

http://www.paccanarolab.org/scps
http://www.paccanarolab.org/scps
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://archive.ics.uci.edu/ml/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

3.5 Solver Performance

In [7] we conducted an extensive experimental evaluation of the feasibility of solving correlation
clustering using MaxSAT. We compared our encoding with previously proposed (exact) integer-
linear and quadratic programming formulations, and used the state-of-the-art solvers Cplex,
Gurobi, and SCIP for solving. For solving the MaxSAT instances we used the MaxHS solver [17].
We found that this SAT-IP hybrid MaxSAT-solving approach scales significantly better on the
benchmarks. For example, using a timeout of 8 hours MaxHS was able to solve 3 out of the
4 protein datasets completely (i.e., the entire datasets). In comparison, the ILP solvers at
best managed to cluster 75% of the datapoints available in the Protein 3 dataset, but ran out
of memory at 50% for the other datasets. The choice of MaxHS as the MaxSAT solver here
is motivated by experiments with a slightly different set-up where we compared MaxHS to
other more standard MaxSAT algorithms. On a benchmark set consisting of 140 instances,
MaxHS solved 119 while the next best solver, Eva [34] (with the original real-valued weights
from the similarity matrices multiplied and truncated to integer values using greatest available
resolution) solved only 65. Other state-of-the-art MaxSAT solvers, such as OpenWBO [32], did
not exhibit competitive performance.

4 Learning Optimal Bounded Treewidth Bayesian Net-
work Structures

Bayesian networks are an important and widely-used class of probabilistic graphical models
for representing joint probability distributions, i.e., probabilistic relationships among a set of
variables of interest [37]. A Bayesian network consists of a network structure, represented as an
acyclic directed graph (DAG), and the parameters associated with each node (i.e., variable) in
the DAG. Given a set of random variables X = {X1, . . . XN} the Bayesian network structure
learning problem (BNSL) asks to find a DAG G with the node set X minimizing a given non-
negative scoring function s(G). Several different scoring function are well-known. The only—
standard—assumption our MaxSAT encoding makes is that the score s(G) of any possible
structure G = (X,E) is decomposable [23]. A decomposable score can be expressed as the sum

s(G) =
∑N
i=1 si(Pi) where Pi = {Xj ∈ X \ {Xi} | (Xj , Xi) ∈ E} is the parent set of node

Xi and si(Pi) the local score of selecting the parent set Pi for Xi. Indeed, as explained in
Section 4.2, commonly applied scoring functions are typically decomposable.

To begin with, in the BNSL problem, we are given a set of data in the form of observations
over the set X. An example is shown in Figure 2 (left). Based on the observations, a local
score si(Pi) is calculated for each variable Xi and candidate parent set Pi; see the example in
Figure 2 (middle). The goal of the structure learning problem is to learn a DAG G, i.e., pick
parents for each node Xi while maintaining acyclicity, such that G minimizes objective function
s. An example is shown in Figure 2 (right).

After learning a Bayesian network, the network is typically used for probabilistic inference
tasks, such as determining the most likely joint assignments of a set of variables under given
evidence. Exact Bayesian inference is in general NP-hard [15], but for bounded (fixed) treewidth
networks exact inference becomes tractable [30]. Treewidth is a fundamental and important
graph theoretic property, which intuitively characterizes “how far” an undirected graph is from
being a tree. In general, the treewidth of graphs on n nodes ranges from 1 (for trees) to n− 1
(including the complete graph Kn). Computing the treewidth of an undirected graph is in
general an NP-hard problem. From the computational perspective, treewidth has important
connections to (in)tractability. Many NP-hard problems on graphs, when restricted to input

X1 X2 X3

1 0 1
0 1 1
...

...
...

DATA

⇒

N Pi si(Pi)
X1 {X3} 4.2
X1 {X2, X3} 2.3
X1 {X2} 2
X2 ∅ 7.6
X3 {X2} 3.79
...

...
...

LOCAL SCORES

⇒

MAXSAT:

encoding
+

solving

⇒

X1

X2

X3

BAYESIAN NETWORK

STRUCTURE

Figure 2: The Bayesian network structure learning problem by example

graphs of bounded treewidth, can be solved in polynomial time via dynamic programming,
including Bayesian inference. This motivates the study of algorithms for the problem of learning
optimal bounded treewidth Bayesian network structures (BTW-BNSL). Here it is important to
note that BTW-BNSL is NP-hard for any treewidth bound W > 1 [27].

4.1 Problem Definition

A more precise formulation of the bounded treewidth Bayesian network structure learning
problem is as follows. Given a set X = {X1, . . . , XN} of nodes, for each node Xi a set Pi ⊂
P(X \ {Xi}) of candidate parent sets for Xi, a non-negative local score (cost) si(Pi) for each
candidate parent set Pi, and a treewidth bound W , find a DAG G∗ such that

G∗ ∈ arg min
G∈DAGW (N)

N∑
i=1

si(Pi),

where DAGW (N) is the set of DAGs over N nodes having treewidth at most W .

4.2 Computing Weights

As already mentioned, there are a number of ways to calculate the score of a graph structure,
which results in the local scores si required as input to the MaxSAT encoding. Intuitively,
a score should favor structures that explain the data well (e.g., maximize likelihood), but at
the same time the score should penalize unnecessarily dense structures. One of the simplest
examples of scores is the log (Bayesian) posterior probability of the structure G given the
observed dataset D, i.e., s(G) = logP (G | D). With suitable choices of priors, this score
is decomposable and computable in closed form [16]. Commonly used (decomposable) scores
include BDE [16, 24], BIC [40], and scores based on information theoretical concepts such as
MDL [29] and fNML [42].

4.3 MaxSAT Encoding

Next we briefly overview the MaxSAT encoding of bounded treewidth Bayesian network learn-
ing. For more details we refer the reader to [8].

Assume that we are given a set X = {X1, . . . , XN} of nodes, and, for each Xi, a non-negative
local score (cost) si(S) for each candidate parent set S of Xi. Let K stand for the maximum
number of candidate parent sets the individual nodes in X have. Our MaxSAT encoding of the

BTW-BNSL problem under a fixed treewidth bound W includes one variable PSi for each node
Xi and its candidate parent set S. The semantics of these variables is PSi = 1 iff the set S is
chosen as the parent set of node Xi. Using these variables we encode the following constraints.

Each node in the learned network has exactly one (possibly empty) parent set. For a fixed
node Xi, this corresponds to the cardinality constraint

∑
S∈Pi

PSi = 1. In the benchmarks, we
encode this using the improved sequential counter CNF encoding of [39], resulting in O(N ·K)
clauses and variables3.

The learned network is acyclic. In order to ensure that the learned network is acyclic, we
encode for each node Xi a level number l(Xi) ∈ {0, 1, . . . , N − 1} in binary. Using the level
numbers, acyclicity can be ensured by enforcing that l(Xj) > l(Xi) for all parents Xj of Xi.
This constraint results in O(WNK · log(N)) variables and O(WNK · log(N)) clauses.4

Optimality of the learned network. In order to encode the objective function of (BTW-)BNSL,
we need to ensure that selecting a parent set S for the node Xi results in a cost of si(S). This
is encoded as soft unit clauses (¬PSi) with cost si(S) for all nodes Xi and candidate parent sets
S, resulting in O(NK) soft clauses.

Bounding the treewidth of the learned network: This constraint is the most involved of the whole
encoding. We view treewidth computation as a problem of finding an optimal linear ordering
of the nodes [18, 10]. More precisely, our encoding enforces that there exists a linear ordering
over the nodes of the network that has width at most W . This is sufficient for bounding the
treewidth as treewidth can be defined as the minimum width of all possible orderings. We refer
the reader to the references for more details and mention here that this constraint requires
O(N2) variables and O(N3) clauses.

All in all the size of an instance created by our encoding is polynomial in the input, i.e.,
the candidate parent sets. Depending on the input data, the size of the resulting instances is
dominated by either the acyclicity or the treewidth constraint.

4.4 Available Benchmarks

We generated the BTW-BNSL benchmarks based 21 standard BNSL benchmark datasets, and
used W = 2, 3, 4 as the treewidth bounds. This resulted in 63 instances. In more detail, the
benchmark datasets and the used scoring functions were the following.

Asia 100, 1000 and 10000, sampled from a BN with 8 nodes, Insurance 100, 1000, (27 nodes),
Water 100, 1000 (32 nodes), Alarm 100 (37 nodes), and Hailfinder 100, 1000, 10000, (56 nodes).
The precomputed local scores for these datasets are available from http://www.cs.york.ac.

uk/aig/sw/gobnilp/. The scores were computed using the BDeu scoring function with an
equivalent sample size of 1.

Abalone (9 nodes), Wine (14 nodes), Zoo (17 nodes), Voting (17 nodes), Hepatitis (20 nodes),
Heart (23 nodes), Horse (28 nodes), and Flag (29 nodes). These raw datasets are available
from: http://archive.ics.uci.edu/ml. We computed the scores using the well-known MDL
scoring function.

3We did not find a better performing (in terms of solver runtimes) cardinality encoding in preliminary
experiments.

4The W term follows from the fact that the size of all candidate parent sets can be assumed to be at most
W when learning a network with treewidth at most W . This is due to the fact that choosing a parent set of
cardinality greater than W for some node would immediately imply that the treewidth of the learned network
structure would be greated than W .

http://www.cs.york.ac.uk/aig/sw/gobnilp/
http://www.cs.york.ac.uk/aig/sw/gobnilp/
http://archive.ics.uci.edu/ml

Table 2: Overview of the benchmarks encoding bounded treewidth Bayesing network structure
learning

Filename: < r >BTWBNSL dataset TWBoundb.wcnf
Parameter Description Range

r Indicates that the weights of the soft clauses are rounded

to integers

“Rounded”

”

dataset Name of the dataset the instance is based on

b The enforced treewidth bound on the network b ∈ {2, 3, 4}

Housing (14 nodes) and Adult (15 nodes). Pre-computed local scores for these datasets are
available from http://www.cs.helsinki.fi/u/jazkorho/aistats-2013/.

The parameter values and filename convention used for the benchmarks are detailed in
Table 2.

4.5 Solver Performance

We empirically compared our MaxSAT-based approach for BTW-BNSL to a previously pro-
posed dynamic programming algorithm (DP) [27] developed specifically for BTW-BNSL, as well
as competing state-of-the-art approaches based on integer-linear programming: TwILP [36],
based on integrating domain-specific cutting planes for iteratively ruling out cyclic structures
found during search; and IP, a recently proposed approach based on directly encoding BTW-
BNSL as an integer program [35]. Out of the 63 benchmarks, 56 were solved by MaxHS via our
MaxSAT encoding using a timeout of 8 hours. The corresponding numbers of solved instances
for DP, TwILP, and IP were 25, 45, and 41, respectively. MaxHS also turned our to be the best-
performing MaxSAT solver, when compared to various other state-of-the-art MaxSAT solvers.
For example, the Eva [34] solver was able to solve 9, and the ILP-2013 [3] approach (based on
encoding MaxSAT instances to integer programs in a standard way and calling Cplex) was able
to solve 13 instances.

5 Causal Structure Discovery

Discovering causal relations between quantities of interest is an essential part of many fields of
science. Information on causal relations allows us to understand and predict system behavior
not only when a system is in its natural (passively observed) state (e.g., patient without drugs),
but also when the system is intervened on (e.g., when a doctor gives a certain drug to the
patient) [38]. Although randomized controlled trials are the most reliable way of obtaining
causal information, recent advances in causal inference have made it possible to formally gain
causal information also from passively observed data [38, 43]. In the simplest scenario we con-
sider here, we have passively observed measurement data from the system under investigation
(Figure 3, left), and the aim is to find the graph5 describing the causal relations working in the
data generating system (Figure 3, right). In this task, the following MaxSAT-based approach

5Even with infinite amount of samples, we can only identify the true causal graph up to an equivalence class
of graphs. Here we aim at finding a representative graph from that equivalence class.

http://www.cs.helsinki.fi/u/jazkorho/aistats-2013/

X1 X2 X3

0.1 −0.34 0.8
0.22 −0.4 −0.1

...
...

...

DATA

⇒

k w(k)
X1 ⊥⊥ X3 3.29

X1 ⊥⊥ X3|X2 3.73
X2 6⊥⊥ X3 23.4

X2 6⊥⊥ X3|X1 21.2
X1 6⊥⊥ X2 15.8

X1 6⊥⊥ X2|X3 10.11

(IN)DEPENDENCIES

⇒

MAXSAT:

encoding
+

solving

⇒

X1

X2

X3

CAUSAL GRAPH

STRUCTURE

Figure 3: The causal structure discovery problem by example

currently allows for most general graph space (cycles and latent variables) and offers also better
accuracy than previous approach [25]. As a trade-off for generality and accuracy, the approach
currently has limited scalability, and is thus open for improvements.

A causal structure (see an example in Figure 3, right) is a mixed graph G = (X,E) over a
set of nodes X = {X1, . . . , XN} that represents measured aspects of a system (e.g., smoking
habits, age, height, gender). The set of edges E = E→ ∪ E↔ consists of directed edges E→ =
{(Xi, Xj) | Xi ∈ X,Xj ∈ X,Xi 6= Xj} and (symmetric) bidirected edges E↔ = {{Xi, Xj} |
Xi ∈ X,Xj ∈ X,Xi 6= Xj}. Directed edges (→) in the graph represent causal relations (e.g.,
smoking causes cancer). Note that causal graphs are allowed to include directed cycles [26],
and so, between any two nodes there can be up to three edges (→,←,↔).

Bi-directed edges are used for representing the presence of exogenous or outside influence
on the measured variables. More formally, a bi-directed edge Xi ↔ Xj denotes the presence of
a ‘latent confounder’ (e.g., particular but unidentified gene), that has a causal effect on both
Xi and Xj , i.e., a structure of the form Xi ← Xk → Xj , with Xk being unmeasured. Instead of
including potentially many nodes whose values are not measured, this inclusion of bi-directed
edges in the graph allows for a type of a canonical representation of causal structures, with a
graph over just the measured nodes (see [38, 43] for details).

Due to the more general types of graphs and models, the approach for finding optimal graph
structures taken in Section 3 is not applicable in this context. Instead, intuitively, we search for
a causal graph whose reachability properties match the statistical dependence (e.g. correlation)
properties of the data. So first, for each pair of variables {Xi, Xj} and each conditioning set
C ⊆ X \ {Xi, Xj} we test whether the variables are statistically dependent6 (Xi 6⊥⊥ Xj |C) or
independent (Xi ⊥⊥ Xj |C) in the observed data (Figure 3, middle). Furthermore, we also obtain
a weight describing the reliability of the decision (see Section 4.2 for details).

Now, under some common theoretical assumptions (see [43] for details), there exists a condi-
tional dependence Xi 6⊥⊥ Xj |C in the observed data if and only if there is a so-called d-connecting
path given C between Xi and Xj in the causal graph structure of the true data generating sys-
tem. A d-connecting path given set of nodes C is a path (repeated edges are allowed) such that
every ‘collider node’ connected with two incoming edges on the path is in C and other nodes
on the path are not in C [44, 38]. For example, path X1 ← X2 ↔ X3 ← X4 is a d-connecting
path between X1 and X4 for C = {X3}, but not for C = ∅ or C = {X2, X3}. Thus in the
data generated by a system with causal structure X1 ← X2 ↔ X3 ← X4, we would observe
dependence X1 6⊥⊥ X4|X3 and independencies X1 ⊥⊥ X4 and X1 ⊥⊥ X4|X2, X3 (theoretically).

Thus, according to this theory, the statistical (in)dependence (Figure 3, middle) relations

6Intuitively, Xi is statistically dependent on Xj given C iff the value of Xi helps to predict Xj when we
already know the values of variables in C.

directly translate to reachability and separability constraints on the paths of the causal graph,
and hence provide the input to a constraint solver. However, the statistical independence tests
run on limited sample sizes produce errors relatively often, and thus the obtained constraints
are unsatisfiable simultaneously in any realistic scenario. This gives rise to an optimization
problem, which we address via MaxSAT.

5.1 Problem Definition

The input to the causal structure discovery optimization problem is a set K of reachability and
separability constraints. In more detail, K includes a constraint for each pair of nodes in the
graph and for each conditioning set C, stating whether the variables should be reachable or
separable by d-connecting paths (for an example input, see Figure 3 middle). A weight function
w(k) gives a non-negative cost for not satisfying each reachability/separability constraint k ∈ K.
The task is to find a causal graph G∗ (Figure 3, right) that minimizes the sum of costs of
reachability/separability constraints that are not satisfied:

G∗ ∈ arg min
G∈CG(n)

∑
k∈K : G 6|=k

w(k), (2)

where the class of causal graphs with n nodes is denoted by CG(n), and G 6|= k denotes that a
causal graph G does not satisfy a reachability/separability constraint k ∈ K.

5.2 Computing Weights

We consider three different weighting schemes: 1) all the constraints have unit weights; 2)
the independence constraints have unit weights while the dependence constraints have infinite
weights; and 3) log-weights. Particular types of Bayesian tests also produce a probability of
independence that directly describes the reliability of the test result [26]. We input the more
reliable constraint of the two options: Xi ⊥⊥ Xj |C vs. Xi 6⊥⊥ Xj |C, with the difference of the
log-probabilities as its non-negative real-valued weight.

5.3 MaxSAT Encoding

Finally, we give an overview of two alternative encodings for the problem of causal structure
discovery, fully detailed in [26, 25]. As the central definition of d-connection is rather involved,
we aim here only at giving some intuition on the encodings without full formal details. In
both of the encodings, we represent each of the bi-directed and directed edges for pairs of
distinct nodes with Boolean variables. The input reachability and separability constraints are
represented by individual Boolean variables, and included in both of the encodings as unit soft
clauses with weights assigned according to the input. Note that already the number of input
constraints is exponential w.r.t. to the number of nodes in the graph.

The particular type of reachability used (d-connections), establishing the connection be-
tween the causal graph and the input constraints, needs to be encoded as hard constraints.
The first option is to build up all d-connecting paths with recursion over path length [26]. This
amounts to O(n3) for each constraint, where n is the number of nodes in the graph (although
many of the clauses and variables can be shared between the path-encodings for the different
reachability/separability constraints). Alternatively, we can encode all independence/depen-
dence relations by applying particular graph operations consecutively starting from the causal
graph [25]. This also gives complexity of O(n3) per constraint, but allows for more sharing

between the constraints. We have found that this also translates into improved solver runtimes
in practice.

5.4 Available Benchmarks

Causal discovery instances were generated from random linear Gaussian causal models, with
5-7 observed variables each. The average degree of the causal graphs was 2. For the log-
weights, both the floating-point and the rounded integer weighted version of the instances are
included. The weighting schemes, including whether integer or floating-pointing representation
of weights were used, have considerably different running times. The parameter values and
filename convention used for the benchmarks are detailed in Table 3.

5.5 Solver Performance

We shortly report on a previously unpublished solver comparison on the causal structure dis-
covery benchmarks. We used the following MaxSAT solvers: Clasp [21], Eva [34], MaxHS [17],
MSCG [33], OpenWBO [32], Primal-Dual [9], and QMaxSAT [28], and enforced a per-instance
timeout of 900 seconds. Considering all the 116 benchmarks (including all three weighting
schemes), we observed that the two best-performing solver were QMaxSAT (a model-based
solver, solving 114 instances) and Clasp (solving 109 instances using its default branch-and-
bound scheme). All other solvers solved at most 85 instances. On the perhaps most interesting
log-weighted benchmarks—based on the weighting scheme that was shown in [25] to be the
most accurate one in terms of the discovered causal structures—Clasp performed best, solving
all 35 instances each under 250 seconds. QMaxSAT was second-best, solving the 35 instances
each under 750 seconds. MaxHS came in third, with 26 solved instances, while the other solvers
did not manage to solve more than 11 instances.

Table 3: Overview of the benchmarks encoding causal structure discovery

Filename: causal nn ii NN enc weight type.wcnf
Parameter Description Range

n Number of observed variables in the causal graph n ∈ {5, 6, 7}

i Instance (seed) of the problem i ∈ [0, 1, . . . , 10]

N The number of samples N ∈ {500, 1000, 10000}

enc The encoding used
“uai13” (see [26])

“uai14” (see [25])

weight The type of weight (see [25])
“log”

“const”
“hardeps”

type Indicates if the weights of the soft clauses are rounded to

integers

“dec” (not rounded)

“int” (rounded)

6 Conclusions

The main motivation of this work is to provide the MaxSAT community novel weighted par-
tial MaxSAT benchmarks, thus extending the currently somewhat limited range of benchmarks
from different problem domains. To this end, we outlined three types of important data anal-
ysis problems, shortly explained how we have recently succesfully addressed these problems
with MaxSAT technology, and provided details on a large benchmark set containing instances
generated under various parameter value combinations from each of the described problem do-
mains. To motivate MaxSAT solver developers to extend their solvers to accept floating-point
representations of weights on soft clauses, we also provide the benchmarks in their original
real-valued weights in addition to rounded integer weighted versions.

The data analysis problems described represent somewhat untraditional problems in terms
of typical problem domains for which SAT-based technology has proven an effective solving
approach. Nevertheless, MaxSAT has proven to provide interesting alternative approaches to
solving each of the problem domains. In light of this, we hope this work motivates further re-
search on using SAT-based techniques for data analysis. From the experiences we have gained
when working on using MaxSAT in these problem domains, we also see potential for moti-
vating the development of MaxSAT techniques for more efficiently solving hard combinatorial
optimization problems arising from the data analysis domain. For example, for scaling up
MaxSAT for data analysis, there is an evident need for coping with large input data (perhaps
e.g. by adopting a higher level representation language and applying partial grounding tech-
niques within the MaxSAT solving step), and a need for incremental interfaces in the context
of MaxSAT. On the other hand, such problem domains involve constraints which are natu-
rally represented on the Boolean level, which gives promise for developing further SAT-based
approaches to data analysis problems. Finally, we find it interesting that best-performing
MaxSAT solvers are MaxHS (a SAT-MIP hybrid; for the correlation clustering and the BTW-
BNSL problems) and Clasp (using a branch-and-bound algorithm; for the causal structure
discovery problem). Moreover, MaxHS shows noticeably better runtime performance on BTW-
BNSL than e.g. core/model-based MaxSAT solvers that are based purely on a SAT solver, as
well as competing state-of-the-art exact approaches (both IP-based and specialized algorithms).
This also seems to suggest that these benchmarks can increase heterogeneity among the current
standard benchmark sets used for evaluating (weighted partial) MaxSAT solvers.

Acknowledgements

Work funded by Academy of Finland (grants 251170 Centre of Excellence in Computational
Inference Research, 276412, and 284591), Finnish Foundation for Technology Promotion (TES),
and Research Funds of the University of Helsinki.

References

[1] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information: Ranking
and clustering. J. ACM, 55(5), 2008.

[2] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. Solving (weighted) partial MaxSAT through
satisfiability solving. In Proc. SAT, volume 5584 of LNCS, pages 427–440. Springer, 2009.

[3] Carlos Ansótegui and Joel Gabàs. Solving (weighted) partial maxsat with ILP. In Proc CPAIOR,
volume 7874 of LNCS, pages 403–409. Springer, 2013.

[4] Josep Argelich, Chu Min Li, Felip Manyà, and Jordi Planes. The first and second Max-SAT
evaluations. Journal of Satisfiability, Boolean Modeling and Computation, 4(2-4):251–278, 2008.

[5] Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering gene expression patterns. Journal of
Computational Biology, 6(3/4):281–297, 1999.

[6] Jeremias Berg and Matti Järvisalo. Optimal correlation clustering via MaxSAT. In Proceedings of
the 2013 IEEE 13th International Conference on Data Mining Workshops (ICDMW 2013), pages
750–757. IEEE Press, 2013.

[7] Jeremias Berg and Matti Järvisalo. Cost-optimal constrained correlation clustering via weighted
partial maximum satisfiability. Artificial Intelligence, to appear (2015).

[8] Jeremias Berg, Matti Järvisalo, and Brandon Malone. Learning optimal bounded treewidth
bayesian networks via maximum satisfiability. In Proc. AISTATS, volume 33 of JMLR Work-
shop and Conference Proceedings, pages 86–95. JMLR, 2014.

[9] Nikolaj Bjørner and Nina Narodytska. Maximum satisfiability using cores and correction sets. In
Proc. IJCAI, pages 246–252. AAAI Press, 2015.

[10] Hans L. Bodlaender. Discovering treewidth. In Proc. SOFSEM, volume 3381 of LNCS, pages
1–16. Springer, 2005.

[11] Francesco Bonchi, Aristides Gionis, Francesco Gullo, and Antti Ukkonen. Chromatic correlation
clustering. In Proc. KDD, pages 1321–1329. ACM, 2012.

[12] Francesco Bonchi, Aristides Gionis, and Antti Ukkonen. Overlapping correlation clustering. In
Proc. ICDM, pages 51–60. IEEE, 2011.

[13] Nicolò Cesa-Bianchi, Claudio Gentile, Fabio Vitale, and Giovanni Zappella. A correlation clus-
tering approach to link classification in signed networks. In Proc. COLT, volume 23 of JMLR
Procedings, pages 34.1–34.20. JMLR.org, 2012.

[14] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative infor-
mation. J. Comput. Syst. Sci., 71(3):360–383, 2005.

[15] Gregory F. Cooper. The computational complexity of probabilistic inference using Bayesian belief
networks. Artificial Intelligence, 42(2-3):393 – 405, 1990.

[16] Gregory F. Cooper and Edward Herskovits. A Bayesian method for the induction of probabilistic
networks from data. Machine Learning, 9:309–347, 1992.

[17] Jessica Davies and Fahiem Bacchus. Exploiting the power of mip solvers in maxsat. In Proc -
SAT, volume 7962 of LNCS, pages 166–181. Springer, 2013.

[18] Rina Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence,
113(1-2):41–85, 1999.

[19] Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. Correlation clustering in
general weighted graphs. Theor. Comput. Sci., 361(2-3):172–187, 2006.

[20] Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In Proc. SAT, volume
4121 of LNCS, pages 252–265. Springer, 2006.

[21] Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Conflict-driven answer set solving:
From theory to practice. Artif. Intell., 187:52–89, 2012.

[22] Ioannis Giotis and Venkatesan Guruswami. Correlation clustering with a fixed number of clusters.
Theory of Computing, 2(1):249–266, 2006.

[23] David Heckerman. A tutorial on learning with Bayesian networks. In Learning in Graphical
Models, volume 89 of NATO ASI Series, pages 301–354. Springer, 1998.

[24] David Heckerman, Dan Geiger, and David M. Chickering. Learning Bayesian networks: The
combination of knowledge and statistical data. Machine Learning, 20:197–243, 1995.

[25] Antti Hyttinen, Frederick Eberhardt, and Matti Järvisalo. Constraint-based causal discovery:
Conflict resolution with answer set programming. In Proc. UAI, pages 340–349. AUAI Press,
2014.

[26] Antti Hyttinen, Patrik Hoyer, Frederick Eberhardt, and Matti Järvisalo. Discovering cyclic causal
models with latent variables: A general SAT-based procedure. In Proc. UAI, pages 301–310. AUAI
Press, 2013.

[27] Janne H. Korhonen and Pekka Parviainen. Exact learning of bounded tree-width Bayesian net-
works. In Proc. AISTATS, pages 370–378, 2013.

[28] Miyuki Koshimura, Tong Zhang, Hiroshi Fujita, and Ryuzo Hasegawa. QMaxSAT: A partial
Max-SAT solver. Journal of Satisfiability, Boolean Modeling and Computation, 8(1/2):95–100,
2012.

[29] Wai Lam and Fahiem Bacchus. Learning Bayesian belief networks: An approach based on the
MDL principle. Computational Intelligence, 10:269–293, 1994.

[30] Steffen L. Lauritzen and David J. Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical Society. Series
B (Methodological), 50(2):157–224, 1988.

[31] Ruben Martins, Saurabh Joshi, Vasco Manquinho, and Ines Lynce. Incremental cardinality con-
straints for MaxSAT. In Proc. CP, volume 8656 of LNCS, pages 531–548. Springer, 2014.

[32] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-WBO: A modular MaxSAT solver.
In Proc. SAT, volume 8561 of LNCS, pages 438–445. Springer, 2014.

[33] António Morgado, Carmine Dodaro, and Joao Marques-Silva. Core-guided MaxSAT with soft
cardinality constraints. In Proc. CP, volume 8656 of LNCS, pages 564–573. Springer, 2014.

[34] Nina Narodytska and Fahiem Bacchus. Maximum satisfiability using core-guided MaxSAT reso-
lution. In Proc. AAAI, pages 2717–2723. AAAI Press, 2014.

[35] Siqi Nie, Denis Deratani Mauá, Cassio Polpo de Campos, and Qiang Ji. Advances in learning
bayesian networks of bounded treewidth. In Proc, NIPS, pages 2285–2293, 2014.

[36] Pekka Parviainen, Hossein Shahrabi Farahani, and Jens Lagergren. Learning bounded tree-width
bayesian networks using integer linear programming. In Proc. AISTATS, volume 33 of JMLR
Workshop and Conference Proceedings, pages 751–759. JMLR, 2014.

[37] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers Inc., 1988.

[38] Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2000.

[39] Marko Samer and Helmut Veith. Encoding treewidth into SAT. In Proc. SAT, volume 5584 of
LNCS, pages 45–50. Springer, 2009.

[40] Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464,
1978.

[41] Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modification problems. Discr. Appl.
Math., 144(1-2):173–182, 2004.

[42] Tomi Silander, Teemu Roos, Petri Kontkanen, and Petri Myllymäki. Factorized normalized maxi-
mum likelihood criterion for learning Bayesian network structures. In Proc. PGM, pages 257–272,
2008.

[43] Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and Search. Springer-
Verlag, 1993.

[44] Milan Studený. Bayesian networks from the point of view of chain graphs. In Proceedings of UAI,
pages 496–503. Morgan Kaufmann, 1998.

	Introduction
	Maximum Satisfiability
	Cost-Optimal Correlation Clustering
	Problem Definition
	Computing Weights
	MaxSAT Encoding
	Available Benchmarks
	Solver Performance

	Learning Optimal Bounded Treewidth Bayesian Network Structures
	Problem Definition
	Computing Weights
	MaxSAT Encoding
	Available Benchmarks
	Solver Performance

	Causal Structure Discovery
	Problem Definition
	Computing Weights
	MaxSAT Encoding
	Available Benchmarks
	Solver Performance

	Conclusions

