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Abstract—Treewidth is an important structural property of
graphs, tightly connected to computational tractability in eg
various constraint satisfaction formalisms such as constraint
programming, Boolean satisfiability, and answer set program-
ming, as well as probabilistic inference, for instance. An ob-
stacle to harnessing treewidth as a way to efficiently solving
bounded treewidth instances of NP-hard problems is that deciding
treewidth, and hence computing an optimal tree-decomposition,
is in itself an NP-complete problem. In this paper, we study
the applicability of Boolean satisfiability (SAT) based approaches
to determining the treewidths of graphs, and at the same time
obtaining an associated optimal tree-decomposition. Extending
earlier studies, we evaluate various SAT and MaxSAT based
strategies for treewidth computation, and compare these ap-
proaches to practical dedicated exact algorithms for the problem.

I. INTRODUCTION

Treewidth is a fundamental and important graph property,
which intuitively characterizes “how far” an undirected graph
is from being a tree. In general, the treewidth of graphs on n
nodes ranges from 1 (for trees) to n−1 (including the complete
graph Kn). From the computational perspective, treewidth has
important connections to (in)tractability. Specifically, many
NP-hard problems on graphs, when restricted to input graphs
of bounded treewidth, can be solved in polynomial time
via dynamic programming algorithms on tree decompositions
through which treewidth of graphs can be defined. This is due
to the fact that combinatorial explosion (exponentiality) can be
confined to the structural parameter of treewidth, and hence
bounded (low) treewidth implies fast computation. From the
practical perspective, empirical studies in various domains [1],
[2], [3], [4] suggest that treewidth of practical instances is
indeed often small.

In addition to various NP-hard combinatorial problems
defined directly over graphs [5], [6], [7], [8], [9], this also holds
eg for constraint satisfaction problems [10], [11], [12], [13]
and instances of Boolean satisfiability (SAT) the underlying
incidence graphs of which have bounded treewidth [14], [15].
In the context of machine learning bounded treewidth enables
polynomial-time inference over probabilistic graphical models
such as Bayesian networks via the dynamic programming style
junction tree algorithm for belief propagation [16], which has
motivated recent work on SAT-based approaches to learning
bounded treewidth Bayesian network structures [17]. Sim-
ilarly, dynamic programming over tree-decompositions has
been recently proposed as a way of developing novel types of
solvers in the important non-monotonic declarative program-
ming paradigm of Answer Set Programming (ASP) [18].

An obstacle to harnessing treewidth as a way to efficiently
solving bounded treewidth instances of NP-hard problems is

that the typical dynamic programming algorithms working
on tree-decompositions rely on the optimality of the tree-
decompositions, i.e., tree-decompositions which are directly
associated with the treewidth of the graph underlying the
problem instance. Finding such optimal tree-decompositions,
in turn, is NP-hard; in fact, merely determining if a given
undirected graph has treewidth at most k is an NP-complete
problem [19]. While this problem has been the subject of
various theoretical studies [20], [21], including approximation
techniques [22], [23], only few practical exact algorithms have
been proposed [24], [25].

In this paper, we study the applicability of Boolean satisfi-
ability (SAT) based approaches to determining the treewidths
of graphs, and at the same time obtaining an associated
optimal tree-decomposition. Extending previous work on SAT-
based treewidth computation [26], our contributions are the
following.

• We describe various SAT-based strategies and slight
encoding variants for the problem, including both
strategies which directly employ a SAT solver in an in-
cremental fashion, as well as directly making a single
Maximum satisfiability (MaxSAT) solver invocation.

• Compared to earlier work [26], we perform a much
more extensive evaluation of these SAT-based ap-
proaches, including using multiple incremental SAT
strategies and multiple different types of MaxSAT
solvers.

• We provide a comparison with other dedicated ex-
act algorithmic approaches proposed for treewidth
computation—including dynamic programming and
branch-and-bound algorithms—which is missing from
earlier work.

The results show that the SAT-based approach is in cases
very competitive with the dedicated algorithms, being able to
provide solution in cases when the dedicated algorithms fail
due to memory problems. Furthermore, both incrementality
(in the pure SAT-based strategies) and the MaxSAT-based
strategy show clear improvements over the baseline SAT-based
approach presented in [26].

The rest of this paper is organized as follow. We start
by preliminaries on treewidth and tree-decompositions (Sec-
tion II) and SAT and MaxSAT(Section III). We then continue
by a detailed description of the SAT-based encodings and
solving strategies to determining treewidth (Section IV). This
is followed by the description and results of an empirical
evaluation of the SAT-based approaches and their comparison
with implementations of previously proposed dedicated exact
algorithms to determining treewidth (Section V).



II. TREEWIDTH

The treewidth of an undirected graph G is often defined in
terms of the tree-decompositions of G.

Definition A tree-decomposition of an undirected graph G =
(V,E) is a tree T over a set {V1, . . . , Vm} of nodes, where
Vi ⊆ V , with the following properties.

1) ∪mi=1Vi = V .
2) If {u, v} ∈ E, then u, v ∈ Vi for some i ∈

{1, . . . ,m}.
3) For all i, j, k ∈ {1, . . . ,m}, the following holds:

if Vj is on the (unique) path from Vi to Vk in T , then
Vi ∩ Vk ⊆ Vj .

The width of a tree-decomposition is maxm
i=1 |Vi| − 1.

Definition The treewidth tw(G) of an undirected graph G is
the minimum width over all tree-decompositions of G.

It is well-known that, for any undirected graph G = (V,E),
any linear ordering of the nodes V of G defines a tree-
decomposition of G, and that there is always an “optimal”
linear ordering of V defining an optimal tree-decomposition,
i.e., a tree-decomposition of width tw(G) [27], [28]. Further-
more, without needing to explicitly construct the corresponding
optimal tree-decomposition, the treewidth of G can be deter-
mined based on an optimal linear ordering ≺ of V . A node
vi ∈ V is a predecessor of vj ∈ V under ≺ if i ≺ j and
{vi, vj} ∈ E; vi is a successor of vj under ≺ if j ≺ i and
{vi, vj} ∈ E. Given a linear ordering ≺ of V , the width of the
corresponding tree-decomposition is determined by applying
the following triangulation procedure under ≺ to G.

Repeat the following as long as new edges can be added to E:

For each pair vi, vj of nodes with a common predecessor,
add the edge {vi, vj} to E.

We denote the resulting edge-relation by ∆(E,≺), defining
the triangulation ∆(G,≺) = (V,∆(E,≺)) of G under ≺.
Orienting the edges of ∆(G,≺) according to ≺ gives the
directed edge-relation

~∆(E,≺) = {(vi, vj) | {vi, vj} ∈ ∆(E,≺), i ≺ j}

defining the ordered graph ~∆(G,≺) = (V, ~∆(E,≺)) of G
under ≺. Now, the width of the tree-decomposition defined by
≺ is

max
vi∈V

|{(vi, vj) ∈ ~∆(E,≺)}|, (1)

i.e., the maximum number of successors over all nodes in
∆(E,≺). The treewidth tw(G) of G is then

min
≺

max
vi∈V

|{(vi, vj) ∈ ~∆(E,≺)}| (2)

over all linear orderings ≺ of the nodes V of G. In other
words, an alternative characterization of the treewidth of G is
the smallest value w for which there exists a linear order ≺
of V s.t.

max
vi∈V

|{(vi, vj) ∈ ~∆(E,≺)}| ≤ w.

The SAT-based approaches for determining tw(G) are all
based on this characterization.

Example Consider the the graph G in Figure 1(a). A tree-
decomposition of G is shown in Figure 1(b). This tree-
decomposition corresponds to using the linear ordering v6 ≺
v2 ≺ v4 ≺ v1 ≺ v3 ≺ v5, under which the triangulation
procedure produces the triangulation ∆(E,≺) of G shown
in Figure 1(c), and further the ordered graph ~∆(G,≺) of G
under ≺ shown in Figure 1(d). For this ordering, Equation 1
evaluates to 2, and hence the treewidth of G is at most
2. It can be checked that this ≺ actually gives an optimal
tree-decomposition (shown in Figure 1(b)) of G. A simple
motivation for this claim is that G is not a tree, and hence
tw(G) > 1, which implies G has treewidth 2.

III. SAT AND MAXSAT

For a Boolean variable x, there are two literals, x and ¬x.
A clause is a disjunction (∨, logical OR) of literals. A truth
assignment is a function from Boolean variables to {0, 1}. A
clause C is satisfied by a truth assignment τ (τ(C) = 1) if
τ(x) = 1 for a literal x in C, or τ(x) = 0 for a literal ¬x in C.
A set F of clauses, i.e., a CNF formula, is satisfiable if there
is an assignment τ satisfying all clauses in F (τ(F ) = 1), and
unsatisfiable (τ(F ) = 0 for every assignment τ ) otherwise.
The well-known NP-complete Boolean satisfiability (SAT)
problem asks whether a given CNF formula is satisfiable.

An instance F = (Fh, Fs) of the partial MaxSAT problem
consists of two sets of clauses: a set Fh of hard clauses and
a set Fs of soft clauses. Any truth assignment τ that satisfies
Fh is a solution to F . The cost of a solution τ to F is

COST(F, τ) =
∑
C∈Fs

(1− τ(C)) ,

i.e., the number of soft clauses not satisfied by τ . A solution τ
is (globally) optimal for F if COST(F, τ) ≤ COST(F, τ ′) holds
for any solution τ ′ to F . The cost of the optimal solutions of
F is denoted by OPT(F ). Given a partial MaxSAT instance F ,
the partial MaxSAT problem asks to find an optimal solution
to F . From here on, we refer to partial MaxSAT instances
simply as MaxSAT instances.

IV. SAT-BASED TREEWIDTH COMPUTATION

In this section, we outline SAT-based approaches to de-
termining the treewidths of given undirected graphs. In par-
ticular, based on an underlying SAT encoding of treewidth,
we detail several SAT-based strategies, allowing for either
directly using a SAT solver iteratively to determine treewidth,
or determining treewidth with a single call to a MaxSAT
solver. In the experiments presented in this paper, we compare
these strategies on standard treewidth benchmarks, as well
as compare the approach to dedicated exact algorithms for
determining treewidth.

A. Base Encoding

For enforcing the treewidth bound on the input graph G =
(V,E), we follow—with modifications—a SAT encoding of
treewidth in undirected graphs presented in [26]. Specifically,
we do not encode the construction of a tree-decomposition of
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Fig. 1. Example: (a) An example undirected graph G; (b) The tree-decomposition associated with the linear ordering v6 ≺ v2 ≺ v4 ≺ v1 ≺ v3 ≺ v5; (c) the
triangulation ∆(G,≺) of G under ≺; (d) the ordered graph ~∆(G,≺).

G explicitly. Instead, our encoding enforces that, if there is a
linear ordering ≺ of V under which the maximum number of
successors over all nodes in the ordered graph of G is at most
some constant w, then the treewidth of G is at most w.

We start by outlining a base encoding shared by all of the
SAT-based treewidth computation variants we consider. Given
a graph G = (V,E) over N nodes as input, the base encoding
consists of (1) representing linear orderings of the nodes V ,
and, for a given linear ordering, (2) representing the ordered
graph of G.

The Boolean variables used are the following:

ordij for all i, j = 1..N such that i < j represent a
linear ordering ≺ of the nodes of G: ordij = 1
iff vi ≺ vj .

Oij for all i, j = 1..N such that i 6= j represent the
ordered graph ~∆(G, ord) : Oij = 1 iff the ordered
graph of G under ≺ contains the edge (vi, vj).

1) Encoding Linear Orderings: The choice of a linear
ordering of V is represented by the ordij variables. For
notational convenience, let

ord∗ij =

{
ordij if i < j

¬ordji else
.

Transitivity of linear orderings is enforced in the encoding by
stating for all distinct i, j, k = 1..N

ord∗ij ∧ ord∗jk → ord∗ik. (3)

2) Encoding the Ordered Graphs: The Oij variables, en-
coding the ordered graph induced by a linear ordering ≺ given
by an assignment over ordij , are declared as follows.

If the graph contains an edge {vi, vj}, then the triangula-
tion of the graph also contains the edge {vi, vj}, and hence
the ordered graph contains either the edge (vi, vj) or the edge
(vj , vi). This is enforced by

(Oij ∨Oji) (4)

for all i < j for which {vi, vj} ∈ E.

If nodes vi and vj have a common predecessor in the graph,
then the triangulation of the graph contains the edge {vi, vj},
and hence the ordered graph contains either the edge (vi, vj) or

the edge (vj , vi). This is enforced for all distinct i, j, k = 1..N
by

(Oki ∧Okj)→ (Oij ∨Oji). (5)

Finally, in both Eqs. 4 and 5, the choice of which of the
edges (vi, vj) or (vj , vi) occur in the ordered graph depends
on the linear ordering ≺. Essentially, Oij must be consistent
with ordij in that, if vi ≺ vj , then the edge (vj , vi) does not
occur in the ordered graph under ord:

ord∗ij → ¬Oji. (6)

Equations 3–6 are sufficient for describing the ordered
graph of G under ≺ as constraints. However, our encoding also
includes domain specific redundant clauses that empirically
were found to decrease the time required for solving the
resulting instances of SAT and MaxSAT. The redundant clauses
are based on the observation that the ordered graph of G is
simple; whenever there is an edge (vi, vj), there cannot be the
edge (vj , vi). This corresponds to enforcing for all distinct i
and j the clause

¬Oji ∨ ¬Oij . (7)

From now on, we refer to the conjunction of the clausal
representation of the formulas given in Equations 3–7 as the
base encoding. For a given graph G we denote the SAT
instance created by the base encoding by Fbase(G).

B. Deciding Treewidth

Recall that the treewidth of the tree-decomposition corre-
sponding to a linear ordering ≺ specified by the ordij variables
is maxvi∈V |{{vi, vj} ∈ ∆(E,≺) : i ≺ j}|, where ∆(E,≺)
is the edge-relation of the triangulated graph. The variable Oij

represents the fact that the ordered graph of G under the linear
ordering ≺ contains the edge (vi, vj). It follows that enforcing
the cardinality constraint

Cw(i) =
∑
j 6=i

Oij ≤ w (8)

for each i = 1..N is equivalent to the requirement

max
vi∈V

|{{vi, vj} ∈ E | i ≺ j}| ≤ w.



As the treewidth of G is the minimum over all linear orderings
of V , encoding Equation 8 for all i = 1..N as clauses, together
with the base encoding, results in the SAT instance

Fbase(G) ∧
N∧
i=1

Cw(i)

which is satisfiable if and only if tw(G) ≤ w. We note that
whenever the above formula is satisfiable, the variables ordij
represent a linear ordering of the nodes from which a tree-
decomposition of width at most w is easily constructed [28].

Based on the above the treewidth of G can hence be
determined by several independent SAT solver calls in or-
der to find the smallest value w ∈ {1, . . . , N − 1} for
which Fbase(G) ∧

∧N
i=1 Cw(i) is satisfiable. This approach

for determining the treewidth of a graph is possible with any
clausal encoding of Equation 8, however specific choices of
the encoding allow alternative approaches as well.

C. Enabling Incremental SAT Solving

In order to enable incremental SAT solving we employ
a compact clausal encoding of Equation 8 based on so-called
cardinality networks [29], [30]. Given a set Ai = {Oij | j 6= i}
the cardinality network encoding C(Ai) produces a clausal
definition of |Ai|−1 = N−1 auxiliary variables yi1, . . . , y

i
N−1

which indicate how many of the variables in Ai are set to true.
More precisely: if τ(yik) = 0 in a solution τ , then at most k−1
of the variables in Ai are set to 1 by τ . It follows that for a
fixed i, the clauses C(Ai) and the unit clause (¬yiw+1) are
equivalent to Equation 8.

Consider now the SAT instance created by the base encod-
ing and the cardinality networks C(Ai) for all i = 1..N :

F ′iter := Fbase(G) ∧
N∧
i=1

C(Ai).

The requirement tw(G) ≤ w is equivalent to F ′iter being sat-
isfiable under the assumptions τ(yiw+1) = 0 for all i = 1..N .
To make use of this observation, we define auxiliary variables
Wi for i = 0..(N − 2) as

Wi ↔ (¬y1i+1 ∧ ¬y2i+1 ∧ . . . ∧ ¬yNi+1). (9)

Now the treewidth of G can be determined by finding the
smallest w for which F ′iter together with the clauses corre-
sponding to Equation 9 is satisfiable under the assumption
Ww = 1. As the corner case, note that if the instance is un
satisfiable under the assumption WN−2 = 1, we can conclude
that tw(G) = N − 1.

Also here we add domain specific knowledge to the encod-
ing by using the fact that for any w, whenever tw(G) ≤ w,
we have tw(G) ≤ w′ for all w′ > w. This is added to the
encoding by implications of the form

Wi →Wi+1 (10)

for all i = 0..(N − 3). We call the base encoding together
with the clauses corresponding to C(Ai) and Equations 9
and 10 the iterative encoding. For a given graph we denote
an instance of the iterative encoding by Fiter(G). Instances
of the iterative encoding can be solved using an incremental

interface of a SAT solver, iteratively solving Fiter(G) under
different assumptions, allowing the solver to retain information
between iterations.

D. Using MaxSAT

As discussed above and declared be Eq. 10, whenever
τ(Wi) = 1 for a solution τ to Fiter(G), τ(Wi′) can be set
to 1 for all i′ > i. Hence an alternative characterization of
determining the treewidth of G is to find a solution τ which
satisfies all clauses in Fiter(G) and minimizes the number of
indices i for which τ(Wi) = 0. This characterization has a
natural interpretation as a MaxSAT instance

Fmax(G) = (Fh, Fs)

where Fh = Fiter(G) and Fs = {(Wi) | i = 0..(N − 2)}.
For some intuition, note that whenever tw(G) = w, any

solution τ to Fmax(G) has to assign all of the variables
W0, . . . ,Ww−1 to 0 and can assign all of the variables
Ww, . . . ,WN−1 to 1. Each Wi variable assigned to 0 cor-
responds to an unsatisfied soft unit clause, and hence

OPT(Fmax(G)) = w = tw(G).

E. The Original SAT Encoding of [26]

The base encoding and its iterative extension are similar to
the SAT encoding for deciding an upper bound on the treewidth
proposed in [26]. The most important difference between the
two is the choice of cardinality encoding for the constraint
described Equation 8. In the original SAT encoding, Equation 8
is encoded as clauses using a so called improved sequential
counter. For our work the important difference between the
encodings to note is that this encoding is very difficult, if
not impossible, to use efficiently in an iterative setting. Hence
the only viable approach of using the original encoding for
determining the treewidth of a given graph is individually
solving several SAT instances with different upper bounds.
We refer the reader to [26] for the specifics of the improved
sequential counter.

Our base encoding is also slightly more compact than the
original SAT encoding in [26]. The original encoding does not
include the clauses corresponding to Eqs. 4, 6 or 7. Instead,
it includes the clausal representation of ord∗ij → Oij and
ord∗ji → Oji for each edge in the input graph G, in order
to ensure that all of these edges are included in the ordered
graph. In order to describe the induced edges in the ordered
graph, the encoding includes constraints of the form

(Oki ∧Okj ∧ ord∗ij)→ Oij

and
(Oki ∧Okj ∧ ord∗ji)→ Oji.

F. SAT-based Approaches to Computing Treewidth

In the following, we empirically compare three different
SAT-based approaches for determining the treewidth of a given
graph G with N nodes.

1) The original strategy proposed in [26] in which we
individually solve at most N−2 different SAT instances using
the original encoding of [26]. We report the sum of the SAT



solving times required to determine tw(G) using two different
search strategies:

• Orig-U: Start with the lower bound 1, and increase it
while the instance is unsatisfiable.

• Orig-D: Start with the upper bound N − 2, and
decrease it while the instance is satisfiable.

2) An iterative approach in which the incremental interface
of a SAT solver is used in order to find the smallest w for
which Fiter(G) is satisfiable under the assumption Ww = 1.
We consider three different search strategies:

• Iter-U: Bottom-up linear search, starting from w = 1
and increasing until Fiter(G) is satisfiable.

• Iter-D: Top-down linear search, starting from w =
N − 2 and decreasing until Fiter(G) is satisfiable.

• Iter-Bin: Binary search, updating the upper bound
whenever Fiter(G) is satisfiable under the current
assumptions and the lower bound whenever its unsat-
isfiable. The search terminates when the upper bound
and lower bound are equal.

3) Using MaxSAT solvers to find an optimal solution to
Fmax(G). We call the resulting approach MaxSAT.

V. EXPERIMENTS

We provide and empirical comparison of the three different
SAT-based approaches for computing the treewidth of different
graphs on several standard benchmarks.

For solving the resulting SAT instances we used Minisat
version 2.2 [31]. MiniSAT provides an incremental interface,
allowing us to use it for both the individual SAT instances as
well as the iterative approach. For the incremental approach
we also used Glucose 3.0 with the optimizations for incre-
mental use described in [32]. For the MaxSAT instances, we
used WMaxSatz09 [33], MSUnCore [34], [35] bcd2 version,
MaxHS [36] MaxSAT Evaluation 2013 version, and Open-
WBO [37] version 1.1.1. These solvers are based on different
types of algorithms. WMaxSatz is a branch-and-bound solver
that maintains an upper and lower bound while searching for
the optimal MaxSAT solution. MSUnCore and OpenWBO are
based on using a SAT-solver as a black box in order to identify
smaller unsatisfiable cores from the original MaxSAT instance.
The soft clauses in each identified core are then relaxed in
the working formula and the process is repeated until the
optimal cost of the MaxSAT instance is identified. OpenWBO
also splits the set of soft clauses into smaller subsets and
searches for unsatisfiable cores separately from the different
partitions. MaxHS, on the other hand, implements a hybrid
SAT-MIP approach based on iteratively solving a sequence
of SAT instances and extracting cores, and using the IBM
CPLEX MIP solver to solve a sequence of minimum hitting
set problems over the extracted cores.

As benchmarks we used several real world graph col-
oring benchmarks, obtained from http://www.staff.science.uu.
nl/∼bodla101/treewidthlib/coloring.zip. We also experimented
Bayesian Networks from the UCI repository as well as
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the graphs used in [26], available from http://www.cs.uu.nl/
research/projects/treewidthlib/. Our benchmarks range from 11
to 128 nodes, with a highest treewidth of 22. More information
regarding the benchmarks can be found in Table I.

The experiments were performed on a cluster of 2.8-GHz
Intel Xeon quad core machines with 32-GB memory and
Ubuntu Linux 10.04. A timeout of 2 h (7200 seconds) and
a memory limit of 30 GB were enforced on the solvers on the
individual benchmark instances.

A. Results: Comparison of the SAT-based Approaches

A comparison of the running times for the different SAT-
based approaches is presented in Table I. For the original
non-incremental approach used in [26], the bottom-up search
strategy Orig-U performs better than the top-down strategy
Orig-U. For the incremental iterative strategies using MiniSAT,
the binary search strategy Iter-Bin outperforms the bottom-up
and top-down strategies Iter-U and Iter-D. We also report the
running times using Glucose with its improved incremental
engine [32] under the binary search strategy, Iter-Bin-G.
While many of the easier instances where solved faster with
Glucose, Glucose used notably more time on some of the
harder benchmarks such as Eil51.

Figure 2 gives the number of solved instances within
different time limits. Clearly, the original SAT encoding and
the approach of individually solving several SAT instances
is not competitive to the other two approaches considered.
The same can be seen in the scatter plots in Figure 3 (left,
middle). The results are to be expected. A modern SAT solver
and MaxSAT solver is able to memorize and use information
it learns in earlier iterations in order to speed up solving
in the later SAT iterations. As seen in Figure 3 (right), the
performance difference between iterative SAT and MaxSAT is
small and the results inconclusive.

B. Results: Comparison with Specialized Algorithms

We compare the SAT-based approaches to the dynamic
programming algorithm (DP) of [25] and the branch-and-
bound algorithm QuickBB of [24]. The implementation of
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the DP algorithm was obtained from its authors. The imple-
mentation of QuickBB was obtained from http://graphmod.ics.
uci.edu/group/quickbb. We next briefly describe both of these
algorithms.

Given a graph G = (V,E) and a subset S ⊂ V we denote
by G[S] the subgraph of G consisting of the nodes in S and
all the edges {x, y} such that x ∈ S and y ∈ S. The DP
algorithm is based on the observation that the treewidth G[S]
can be effectively determined given the treewidth of G[S\{x}]
for all x ∈ S. The basic form of the algorithm iterates over
increasing sizes of subsets S of V and determines the treewidth
of G[S], the treewidth of G being equal to the treewidth of
G[V ]. The performance of the algorithm is improved by using
a number of heuristics [25]. However, the space requirement
of the algorithm is still exponential in the number of nodes.

QuickBB searches over perfect elimination orderings of the
nodes of G. The algorithm is based on fact that the width of
an ordering o : S → {1..|S|} of some subset S ⊂ V is a lower
bound for the width of any ordering obtained when extending o
to include the whole of V in a way that every node in S comes
before any node in V \S. QuickBB starts by calculating a lower
and upper bound of tw(G) using heuristics. If the bounds are
equal, the problem is solved. Else QuickBB starts branch-and-
bound search, iteratively constructing an ordering of the nodes.
At each step a heuristic is used for calculating the lower bound
of the partial order currently under consideration. Whenever
the lower bound is greater than the known upper bound for
the treewidth, that branch in the search is terminated. Else
the search branches, each branch adding one of the remaning
nodes last to the current ordering. Whenever all the nodes have
been added to the ordering under consideration, the algorithm
checks if the width of the ordering is lower than the current
upper bound and updates the upper bound if it is. QuickBB
also uses a number of additional heuristics in order to prune
the search space and limit the number of generated branches;
we refer the reader to [24] for details.

The results of the comparison are reported in Table I. We
observe that dynamic programming approach is competitive
with the SAT-based approaches only for the smallest datasets,
more importantly, the dynamic programming most often runs
out of memory, a conclusion similar to [25]. Memory outs
can be argued to be even more critical than timeouts as they

imply that the solver will never find the optimal solution,
regardless of how much computation time is given. Compared
to the DP, QuickBB performs notably better, often finding the
treewidth of the input graph within seconds. However, we also
observe 4 instances that were solvable by all of the SAT-based
approaches but on which QuickBB ran out of memory. Indeed,
based on the results it appears that the incremental SAT-
based and the specialized exact algorithm implementations,
especially QuickBB, offer complementary approaches to exact
treewidth computation.

C. Obtaining Anytime Bounds via SAT

Finally, we shortly mention that the SAT-based approaches
can naturally provide upper and/or lower bounds—depending
on the search strategy used—for treewidth during search. In
fact, we observed that for most of the benchmark instances,
only few of the SAT solver calls were difficult for the solvers,
meaning that relatively tight bounds can be found in cases
relatively fast. To exemplify this, the evolution of the upper
and lower bounds on two benchmark graphs are illustrated in
Figure 4, using Glucose and the binary search strategy. As
future work, it would be interesting to compare the bounds

 0

 10

 20

 30

 40

 50

 1  10  100

B
o
u
n
d

Time (s)

Miles500-UB

Miles500-LB

Oesoca+-pp-UB

Oesoca+-pp-LB

Fig. 4. Evolution of the upper and lower bound over time for two datasets.
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achieved by SAT-based approaches to bounds that can be ob-
tained via specialized approximation algorithms for treewidth.

VI. CONCLUSIONS

We presented and experimentally evaluated different SAT-
based methods for determining (computing) the treewidth of a
given graph. We extended a previously proposed SAT encoding
to enable iterative SAT and MaxSAT, as well as proposed
modifications to the encoding. Compared to earlier work, we
reported on a notably broader experimental evaluation of the
SAT-based based approaches. The results demonstrate that
both iterative SAT and MaxSAT outperform the “naive” SAT-
based method earlier proposed. Further, we experimentally
compared the SAT-based approaches to previously proposed
exact treewidth computation algorithms based on dynamic
programming and branch-and-bound search. The SAT-based
approach is much more memory efficient than both the dy-
namic programming and branch-and-bound approaches. In
whole, the results suggest that SAT / MaxSAT is a viable
complementary approach to exactly determining the treewidth
of moderately sized graphs.
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