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Abstract
Maximum satisfiability (MaxSAT) offers a compet-
itive approach to solving NP-hard real-world opti-
mization problems. While state-of-the-art MaxSAT
solvers rely heavily on Boolean satisfiability (SAT)
solvers, a recent trend, brought on by MaxSAT
solvers implementing the so-called implicit hitting
set (IHS) approach, is to integrate techniques from
the realm of integer programming (IP) into the solv-
ing process. This allows for making use of ad-
ditional IP solving techniques to further speed up
MaxSAT solving. In this line of work, we investi-
gate the integration of the technique of reduced cost
fixing from the IP realm into IHS solvers, and em-
pirically show that reduced cost fixing considerable
speeds up a state-of-the-art MaxSAT solver imple-
menting the IHS approach.

1 Introduction
Beyond its importance as a classical NP-hard optimization
problem, maximum satisfiability (MaxSAT) is today a thriv-
ing constraint optimization paradigm, with successful ap-
plications in a range of real-world domains. The underly-
ing declarative language of MaxSAT consists of conjunc-
tive normal form (CNF) propositional formulas extended with
weights assigned to individual clauses. The aim is to find an
optimal truth assignment, i.e., one that maximizes the weight
of satisfied clauses. Algorithmically, however, MaxSAT is
typically treated as the equivalent problem of minimizing the
weight (or cost) of falsified clauses.

The currently most successful exact MaxSAT solvers make
iteratively use of Boolean satisfiability (SAT) solvers, ei-
ther to extract unsatisfiable cores (unsatisfiable sets of soft
clauses) or to extract truth assignments with ever-improving
cost (e.g., [Koshimura et al., 2012]). Pure SAT-based solvers
that extract cores (e.g., [Martins et al., 2014; Ansótegui et
al., 2015; Alviano et al., 2015; Morgado et al., 2014]) use
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these cores to modify the formula until eventually a formula
is obtained that is satisfiable and whose satisfying truth as-
signments are optimal truth assignments for the original in-
put formula. Implicit hitting set (IHS) solvers [Davies and
Bacchus, 2011; Davies, 2013; Saikko et al., 2016a] also ex-
tract cores, but then use an integer programming (IP) solver
to compute a minimum-cost hitting sets (MCHS) of the ac-
cumulated set of cores. If removing such a hitting set (which
is a set of soft clauses) from the input formula makes the for-
mula satisfiable, then the satisfying truth assignment must be
an optimal truth assignment for the original input formula.

The hybrid approach implemented in IHS solvers for
MaxSAT opens up opportunities for making use of various
proven IP solving techniques to further speed up MaxSAT
solving. In this work we investigate utilizing the known IP
technique of reduced cost fixing for this purpose.

In the context of MaxSAT, truth assignments found dur-
ing solving provide an upper bound on the cost of an opti-
mal truth assignment. Every MCHS of the cores on the other
hand provides a lower bound. The linear programming (LP)
relaxation of the MCHS problem thus also provides a lower
bound. This LP can also be used to obtain a reduced cost
for every soft clause ci. The reduced cost of ci specifies a
minimum increase in the cost of the LP that would arise from
falsifying (satisfying) ci which was satisfied (falsified) in the
LP solution. If this cost increase makes the LP MCHS lower
bound greater than the best known upper bound, we can con-
clude that ci must be fixed to its status in the LP solution;
that is, ci must be falsified (satisfied) by any optimal truth as-
signment. This reasoning can be extended to cover the case
where the increase in cost makes the lower bound equal to the
upper bound. In this case, we know that fixing the status of
ci preserves at least one optimal solution. Fixing the status of
various soft clauses makes solving MaxSAT instances easier,
as our empirical results demonstrate.

To facilitate the integration of reduced cost fixing, we
present IHS search in terms of improving upper and lower
bounds. To study the impact of reduced cost fixing for
MaxSAT, we present results from an extensive empirical eval-
uation on the effect of integrating reduced cost fixing into the
MaxHS IHS solver, showing that reduced cost fixing consid-
erable speeds up this state-of-the-art MaxSAT solver.

In terms of related work, different techniques of using
lower and upper bounds for speeding up MaxSAT solvers



have been studied in varying contexts, including branch and
bound for MaxSAT [Li et al., 2006; Lin and Su, 2007;
Lin et al., 2008; Li et al., 2008], use of bounds for MaxSAT
solvers in general [Heras et al., 2012], and hardening based
on the costs of residual formulas in pure SAT-based core-
guided MaxSAT solving [Ansótegui et al., 2013; Morgado et
al., 2012]. To the best of our knowledge, linear programming
relaxation based reduced cost fixing has not been previously
proposed in the context of MaxSAT. However, besides be-
ing a standard technique in IP solving [Wolsey, 1998; Danzig
et al., 1954; Crowder et al., 1983; Nemhauser and Wolsey,
1999], there have been a number of recent works on exploit-
ing reduced cost fixing in constraint programming, IP/con-
straint logic programming, and IP/constraint programming,
e.g., [Thorsteinsson and Ottosson, 2002; Focacci et al., 1999;
Yunes et al., 2010].

2 Maximum Satisfiability and Hitting Sets
An instance of (weighted partial) MaxSAT (Fh, Fs,wt) con-
sists a set of hard clauses Fh, a set of soft clauses Fs, and
weight function wt : Fs → R+. A MaxSAT solution τ is a
truth assignment for the variables in Fh ∪ Fs that satisfies all
clauses in Fh. The cost of a solution, cost(τ), is the sum of
the weights of soft clauses not satisfied by τ . A MaxSAT so-
lution τ ′ is optimal if it has minimum cost over all solutions,
τ ′ ∈ argminτ (cost(τ)). A subset of soft clauses κ ⊆ Fs is
an unsatisfiable core if the clauses in κ cannot be simultane-
ously satisfied by any solution.

A hitting set HS of a set of cores K is a set which contains
at least one element of each κ ∈ K, i.e., HS ∩ κ 6= ∅ for all
κ ∈ K. A minimum-cost hitting set (MCHS) of K is a hitting
set which minimizes

∑
ci∈HS wt(ci) over all hitting sets HS

of K. The optimal cost of a MaxSAT instance is equal to the
cost of the minimum-cost hitting sets of the set of all cores of
the MaxSAT instance.
Example 2.1. Consider the MaxSAT instance (Fh, Fs,wt)
with the hard clauses

Fh = { x1 ∨ x2, x2 ∨ x3, x1 ∨ x4, ¬x4 ∨ ¬x5,
¬x1 ∨ ¬x6, ¬x2 ∨ ¬x7, ¬x3 ∨ ¬x8 },

and soft clauses

Fs = { x5︸︷︷︸
c1

, x6︸︷︷︸
c2

, x7︸︷︷︸
c3

, x8︸︷︷︸
c4

}

with wt(c1) = wt(c2) = 2, wt(c3) = 4, wt(c4) = 1.
The cores of this instance form the set K =

{{c1, c2}, {c2, c3}, {c3, c4}}. For example, {c1, c2} is a core
since x5 = 1 (c1) implies x4 = 0 and x1 = 1, and x6 = 1
(c2) implies x1 = 0; thus both cannot be satisfied by the same
solution. An optimal solution is τ : x1 = x3 = x5 = x7 =
1, x2 = x4 = x6 = x8 = 0 with cost(τ) = 3. One MHCS
of K is {c1, c3} with cost 3.

3 The Implicit Hitting Set Approach
We focus on IHS MaxSAT solvers [Davies and Bacchus,
2011; 2013a; 2013b; Davies, 2013; Saikko et al., 2016a]
which instantiate the implicit hitting set paradigm [Karp,

SAT Solver
Fh ∪ (Fs \HS)

IP Solver
MCHS(K,wt)

update HS
update LB

SAT, UB > LB :
update UB

Input
Fh, Fs wt : Fs → R+

UB = LB :
Output best solution

UNSAT:
K ← K ∪ {κ}
HS ← HS ∪ κ

Figure 1: A bounds-based view on IHS for MaxSAT

2010; Moreno-Centeno and Karp, 2013; Saikko et al., 2016b]
as natural candidates for integrating reduced cost fixing. IHS
solvers iteratively alternate between computing a set of unsat-
isfiable cores K of the MaxSAT instance and minimum-cost
hitting sets over the mononotonically growing K. To obtain
a MCHS HS , an IP solver is employed on the MCHS IP for-
mulation

minimize
∑
ci∈Fs

wt(ci) · bi

subject to
∑
ci∈κ

bi ≥ 1 ∀κ ∈ K,

bi ∈ {0, 1} ∀ci ∈ Fs,
associating a new binary variable bi with each soft clause ci.
At each iteration the satisfiability of Fh∪(Fs\HS ) is checked
with a SAT solver. If satisfiable, the set HS implicitly hits
all cores of the instance and, as first shown in [Davies and
Bacchus, 2011], the optimality of HS implies the optimality
of the MaxSAT solution, terminating the MaxSAT search.

To make use of reduced cost fixing, upper bounds on the
cost of optimal MaxSAT solutions are needed. As origi-
nally described in [Davies and Bacchus, 2011], IHS does
not directly provide upper bounds during search. However,
upper bounds are obtained in the IHS solvers MaxHS and
LMHS when non-optimal hitting sets are used as described
in [Davies and Bacchus, 2013b]. In particular, for any hitting
set HS , if the SAT solver finds a satisfying assignment τ for
Fh ∪ (Fs \ HS ), then cost(τ) is an upper bound (cost(τ) is
equal to the optimal cost if HS is a MCHS).

Here we provide a bounds-based view on the iterations and
termination of the IHS algorithm for MaxSAT. Illustrated in
Figure 1, the bounds-based IHS algorithm for MaxSAT starts
by initializing the SAT solver and IP solver with their respec-
tive inputs. The SAT solver is initialized with the CNF for-
mula Fh ∪ Fs, while the IP solver is initialized with the soft
clause weights wt . The hitting set HS and set of cores K are
both initially empty. The upper bound UB is initialized to∞
and LB to 0. We assume for simplicity that Fh is satisfiable.
The first SAT solver invocation tests the entire set of clauses



Fh ∪ Fs. If the formula is satisfiable, we obtain an upper
bound of 0 and terminate as LB = UB . Otherwise we obtain
an unsatisfiable core κ and add it to K.

In order to obtain the upper bounds required for reduced
cost fixing, we deviate from the original IHS algorithm. In-
stead of immediately computing a new optimal hitting set for
K we add the clauses of the new core κ to HS , forming a
non-optimal hitting set of K, and check the satisfiability of
Fh ∪ (Fs \HS ) again. (A non-optimal hitting set of K∪ {κ}
could be also obtained in other ways [Davies and Bacchus,
2013b]). This is repeated, adding cores κ toK and the clauses
of the new core to HS , until Fh ∪ (Fs \ HS ) becomes satis-
fiable (this is the “disjoint” strategy of [Saikko, 2015]). Fh is
satisfiable, so this condition will eventually be met when HS
grows sufficiently large. Once Fh ∪ (Fs \ HS ) is satisfiable,
a MaxSAT solution is obtained. Its cost gives an upper bound
value and UB is updated. At this point the IP solver is in-
voked to compute a minimum-cost hitting set HS for K. The
hitting set HS is optimal, so its cost gives a lower bound for
the cost of the optimal MaxSAT solution and LB is updated.

The algorithm terminates when LB = UB and returns the
MaxSAT solution which yielded UB . By the same argument
as presented in [Davies and Bacchus, 2011] the algorithm
must eventually terminate. A detailed proof of correctness
is provided in [Bacchus et al., 2017].
Example 3.1. Consider again the MaxSAT instance
(Fh, Fs, wt) from Example 2.1. Following Figure 1, a SAT
solver is called on Fh ∪ Fs. Assume that it returns UNSAT
with the core κ = {c2, c3}. The SAT solver is called again
on Fh ∪ (Fs \ κ), now returning the solution τ : x1 = x3 =
x5 = x7 = 1, x2 = x4 = x6 = x8 = 0. This solution
has cost(τ) = 3, which gives an upper bound UB = 3.
The IP solver then called to compute a minimum-cost hit-
ting set over K = {{c2, c3}}. Clearly, HS = {c2}. The
SAT solver is called on (Fh ∪ Fs) \ {c2}. It returns UN-
SAT with core κ = {c3, c4}. The next SAT solver call over
(Fh ∪Fs) \ {c2, c3, c4} returns SAT but cannot improve UB .
The IP solver is called for a minimum-cost hitting set over
K = {{c2, c3}, {c3, c4}}. This gives HS = {c2, c4} and
LB = 3. Now UB = LB and the search terminates.

4 Reduced Cost Fixing for IHS
Reduced cost fixing is a standard technique in IP solv-
ing [Wolsey, 1998; Danzig et al., 1954; Crowder et al., 1983;
Nemhauser and Wolsey, 1999]. It uses an upper bound and
reduced costs obtained from an LP relaxation to fix variables
in an IP. Given a minimization IP P containing Boolean (0/1)
variables, we can solve P as an LP by allowing the Boolean
variables to take on intermediate values between 0 and 1. The
cost of the LP solution will be a lower bound on the optimal
cost of P . The LP solver also provides a reduced cost for the
non-basic1 variables set at 0 or 1 in the LP solution. These
reduced costs specify a minimum increase in the cost of the
LP that would arise from changing a non-basic variable at 0
(1) to 1 (0). Suppose we know a feasible IP solution to P with

1The variables in the LP solution are either basic or non-basic.
All of the non-basic variables will be at their upper or lower bounds
in the LP solution [Chvátal, 1983].

cost z. If changing a non-basic variable causes the LP solu-
tion to increase in cost beyond z, then we can fix that variable
to the value it has in the LP solution. Since the LP solution is
a lower bound, putting such variables at their opposite values
would cause the cost of the IP to increase beyond the cost of
an already known feasible solution. Here we explain how this
technique can be used within IHS MaxSAT solvers.
Theorem 4.1. For a MaxSAT problem F = (Fh, Fs,wt),
suppose we have (a) B = {b1, . . . , bn} a set of Boolean vari-
ables where each bi = 0 (bi = 1) represents the satisfaction
(falsification) of a soft clause ci ∈ Fs, (b) IPHS an IP over
the bi representing the minimum-cost hitting set problem over
the current set of cores, (c) LPHS the LP relaxation of IPHS ,
(d) best τ a feasible solution to F , (e) an optimal solution to
LPHS with cost zLPHS

opt , and (f) LP reduced costs rc(bi) at the
optimal basis.

Then the following simplifications can be performed with-
out changing opt cost(F ). (1) For every non-basic variable
bi set to 0 in the optimal LPHS solution we can make the
soft clause ci hard in F if zLPHS

opt + rc(bi) > cost(best τ)

or if zLPHS
opt + rc(bi) = cost(best τ) and ci is satisfied

in best τ . (2) For every non-basic variable bi set to 1 in
the optimal LPHS we can make soft clause ci false in F
if zLPHS

opt − rc(bi) > cost(best τ) or if zLPHS
opt − rc(bi) =

cost(best τ) and ci is falsified in best τ .
For more intuition on how reduced cost fixing allows for

hardening and falsifying soft clauses during IHS search for
an optimal MaxSAT solution, we consider the following ex-
ample.
Example 4.2. Consider again the MaxSAT instance
(Fh, Fs, wt) from Example 2.1 and the first iteration of the
execution of IHS as described in Example 3.1. After ob-
taining from the SAT solver the first solution best τ with
cost(best τ) = 3, the IP solver is called for a hitting set over
K = {{c2, c3}}. The LP-relaxation of the hitting set problem
LPHS can be formulated as

minimize 2b1 + 2b2 + 4b3 + 1b4

subject to b2 + b3 − s = 1,

0 ≤ s, 0 ≤ b1, b2, b3, b4 ≤ 1,

where s is a surplus variable. This LP can be solved using
different algorithms, clearly the optimal LP solution is b2 =
1, b1 = b3 = b4 = s = 0, which has cost zLPHS

opt = 2. This
induces a lower bound LB = 2. In this case, the optimal
LP solution happens to be the optimal solution to the IP HS
problem, i.e. HS = {c2}.

A feasible solution to an LP can be represented using a
basis, where non-basic variables are at their upper or lower
bounds. Consider the basis consisting of b3. The basic vari-
ables can be written as a function of the non-basic ones, in
this case as b3 = 1 − b2 + s. This allows the objective to be
rewritten solely as a function of the non-basic variables as
2b1 + 2b2 + 4 (1− b2 + s)︸ ︷︷ ︸

b3

+b4 = 4 + 2b1 − 2b2 + b4 + 4s

The coefficients in front of the non-basic variables are the re-
duced costs and (obviously) specify the change of the objec-
tive to modifications of the non-basic variables. Now, since
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b1 is set to 0 in the optimal LP solution and zLPHS
opt +rc(b1) =

2 + 2 > 3 = cost(best τ), we can make c1 hard. Intuitively,
solutions under which c1 is falsified (b1 = 1) would have cost
at least 4 and hence such solutions cannot be optimal for the
MaxSAT instance. Since b2 is set to 1 in the LP solution and
zLPHS
opt − rc(b2) = 2 − (−2) > 3 = cost(best τ), we can

make c2 false. Intuitively, solutions under which c2 is sat-
isfied (b2 = 0) would have cost at least 4 and hence such
solutions cannot be optimal, either.

5 Empirical Results
We implemented reduced cost fixing in MaxHS v2.9.8 which
entered the 2016 MaxSAT Evaluation. This version of
MaxHS includes a number of other features shown to im-
prove the solver, described in [Davies and Bacchus, 2013a;
2013b; Saikko et al., 2016a]. We compare the performance of
MaxHS with and without reduced cost fixing, with all other
features unchanged. We utilized IBM CPLEX v12.7 as the
IP/LP solver, and ran our experiments on computing nodes
with Xeon 2.8-GHz cores and 256-GB RAM. We limited
MaxHS to 1800 seconds and 3.5 GB on each instance. We
also report on longer 5-hour (18,000 s), 5-GB runs on Xeon
2.0-GHz cores and 256-GB RAM.

We experimented with all non-random instances that have
been collected and made available by the MaxSAT Evaluation
during the years 2008–2016. These include extra submitted
benchmarks never used in the evaluation. After pruning du-
plicate instances this yielded 6290 MaxSAT instances (4361
unweighted, 1929 weighted). For the 5-hour runs, however,
we omitted 507 unweighted instances with no hard clauses
(MS instances) most of which encode MaxCut on random
graphs. Core-based solvers, including IHS solvers, perform
poorly on such instances, and we did not expect any of these
instances to complete in 5 hours with or without reduced cost
fixing. This left 5783 instances for these longer experiments
(4361 unweighted, 1422 unweighted).

Figure 2 left shows a histogram of the instances grouped by
the number of soft clauses that become fixed during solving.

In 5024 of the 6290 instances no reduced cost fixing ever oc-
curs (3953 unweighted, 1071 weighted), but in the remaining
1266 instances fixing can be quite common—in 791 of these
instances 100 or more fixings occurred. In extreme cases over
a million soft clauses were fixed by the technique.

There were 26 instances where fixing took more than 100
seconds. However, 25 of these were not solvable with or
without fixing (22 were MaxCut on random graphs). On
one solved instance fixing required 214 seconds out of a total
solve time of 835 seconds (this instance was solved in 416
seconds without fixing). Of the remaining 6264 instances,
on 1782 instances fixing took zero seconds (LP solving was
never invoked since the gap between UB and LB was never
small enough), on 3746 instances fixing took less than 1 sec-
ond, on 298 instances fixing took between 1 and 10 seconds,
and on 438 instances fixing took more than between 10 and
100 seconds. Figure 2 middle shows, however, that on these
438 instances fixing is well worth the time it takes. The scat-
ter plot shows that fixing provides a significant speedup for
most of these instances, especially on the harder instances.

Figure 2 right shows the performance improvement ob-
tained from reduced cost fixing under a 5-hour per-instance
time limit. Here we computed the speedup ratio for each in-
stance, i.e., the CPU time taken without reduced cost fixing
divided by the CPU time taken when reduced cost fixing is
used. As this ratio will be between 0 and 1 for instances that
are slowed down by fixing, we took log2 of this ratio which
produces a symmetry between speedups and slowdowns. The
plot is in the form of a histogram showing for how many in-
stances experience various ranges of the log speedup, and it
clearly shows the value of our approach to employing reduced
cost fixing in IHS based MaxSAT solvers.
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