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Abstract—Model counting is the archetypical #P-complete
problem consisting of determining the number of satisfying
truth assignments of a given propositional formula. In this short
paper, we empirically investigate the potential of employing graph
centrality measures as a basis of search heuristics in the context of
exact model counting. In particular, we integrate centrality-based
heuristics into the search-based exact model counter sharpSAT.
Our experiments show that employing centrality information
significantly improves the empirical performance of sharpSAT,
and also allows for simplifying the search heuristics compared to
the current default heuristics of the model counter. In particular,
we show that the VSIDS heuristic, which is an integral search
heuristic employed in essentially all state-of-the-art conflict-
driven clause learning Boolean satisfiability solvers, appears to
be of very limited use in the context of model counting.

Index Terms—exact model counting, #SAT, search heuristics,
graph centrality, betweenness centrality

I. INTRODUCTION

Given a propositional formula ϕ in conjunctive normal form
(CNF), the model counting problem consists of counting the
number of satisfying truth assignments of ϕ [1]. This problem,
also known as #SAT, is well known to be #P-complete [2]. Thus
model counting is both an extremely challenging reasoning
problem and captures a wide range of AI and KR problems,
including probabilistic reasoning [3]–[6], planning [7], [8],
circuit design [9], quantitative information flow analysis [10],
differential cryptanalysis [11], and inconsistency measure-
ment [12]. Recent advances on exact algorithms for model
counting are making progress towards enabling exact model
counting on CNF formulas of increasing size. However, due
to the high complexity of the problem, there is a need for
improving model counters in order to handle larger formulas
towards practical applications.

The current state-of-the-art approaches to exact model count-
ing can be divided into search-based [13]–[17] and compilation-
based [18]–[23] approaches. Here we focus on the search-based
approach, which builds on the extraordinary success of conflict-
driven clause learning (CDCL) [24]–[26] Boolean satisfiability
(SAT) solvers by combining key algorithmic ideas of CDCL
solvers with component caching of subformulas encountered
during the model counting process [27].

In this short paper, we focus on search heuristics for SAT-
based exact model counters. In particular, we lift recent work
[28], which investigated speeding up CDCL SAT solvers by
employing a graph-based measure called betweenness central-
ity [29] on an underlying graph structure of SAT instances,
to the realm of exact model counting. For some intuition, as
noted e.g. in [30], nodes with high betweenness centrality
intuitively may represent variables which are “in-between”

communities in the underlying community structure [31] of
real-world constraint networks (and CNF formulas [32], [33]).
In particular, branching on highly central variables can thus
lead to “nicely” dividing CNF formulas into components.

To this end, we study the impact of coupling heuristics
employed in the state-of-the-art search-based model counter
sharpSAT [14] with knowledge of betweenness centrality
of variables in model counting instances. We do so by
investigating variants of the VSADS branching heuristic of
sharpSAT—which combines variable occurrence information
with the standard VSIDS decision heuristic applied in CDCL
solvers [25]—boosted with betweenness centrality information
computed from the so-called primal graph of the input instances.
As the main findings, we empirically show that making use
of betweenness centrality information noticeably improves the
performance of sharpSAT, and also allows for simplifying the
search heuristics compared to the current default heuristics of
the model counter. In particular, we also show that the VSIDS
heuristic, which is an integral search heuristic employed in
essentially all state-of-the-art conflict-driven clause learning
Boolean satisfiability solvers, appears to be of very limited use
in the context of model counting.

In terms of the most related work, the recent application
of betweenness centrality in boosting CDCL SAT solvers
[28] report most successful when integrating centrality into
the clause forgetting mechanism. Beyond SAT, betweenness
centrality has been recently studied as a basis for top-
down compilation of finite-domain constraint networks into
decomposable multi-valued decision graphs (MDDGs) [30].
In constrast, here we consider betweenness centrality as a
means of noticeably simplifying the decision heuristics of
search-based model counters (for #SAT). We show that using
centrality values computed only once at the beginning of the
model counting search can already be beneficial, whereas [30]
recompute betweenness centrality values at each step of a top-
down compilation process. Finally, we note that our empirical
observation that VSIDS is not an impactful heuristic in the
context of search-based model counting agrees with recent
observations on the limited applicability of VSIDS as a way
to decompose search into subspaces in the context of parallel
SAT solving [34].

II. SEARCH-BASED EXACT MODEL COUNTING

Search-based exact model counters build on central search
techniques applied in SAT solvers. In this work, we focus on
the sharpSAT model counter [14] as a state-of-the-art search-
based model counter. In particular, following CDCL, sharpSAT
employs unit propagation as the main constraint propagation



mechanism during search and a decision heuristic for extending
partial assignments. When it derives a conflict, it uses clause
learning to infer a conflict clause that is logically entailed by the
input formula and compactly enforces the fact that the current
partial assignment cannot be extended to a satisfying truth
assignment (model) of the input formula. Whereas CDCL SAT
solvers apply conflict-driven backtracking after each learned
clause based on the conflict clause, model counting imposes
restrictions on the backtracking mechanism to more classical
backtracking in order to guarantee that an exact model count
is obtained [13].

Decision heuristics of search-based exact model counters are
the focus of the current work, and we will detail the decision
heuristics employed in sharpSAT separately in Section IV.

Like the model counter Cachet [27] before it, sharpSAT
implements component caching, which uses the fact that we
can represent a formula ϕ by its primal graph, i.e., the graph
whose vertices are the variables of ϕ and that has an edge
between two variables if they occur together in some clause;
see Fig. 1 for an example. During search, this graph (and thus
the formula) may split up into several connected components,
and sharpSAT computes the model count for each component
separately. Component caching tries to avoid re-computing the
model count for already seen components.

III. BETWEENNESS CENTRALITY

As a main contribution, building on recent work on improv-
ing SAT solvers through centrality measures [28], we propose
the use of so-called betweenness centrality [29] as a basis for
improving the decision heuristics employed in search-based
model counters.

For describing the relevant concepts, in the following we will
consider undirected, simple graphs. When we speak of paths,
we assume them to be undirected in the sense that 〈v1, . . . , vn〉
is the same path as 〈vn, . . . , v1〉.

The notion of betweenness centrality [29] was originally
proposed in the context of social networks. The basic idea is that
some nodes have a higher potential to control communication
in a network than others. Given three distinct nodes s, t, v in a
network, if many of the shortest paths between s and t go over
v, then v has a high potential for controlling communication
between s and t. Betweenness centrality formalizes this by
assigning a global score centrG(v) to each node v of a graph
G as

centrG(v) =
∑

{s,t}∈pairs(G)

σ(s, t | v)
σ(s, t)

,

where pairs(G) contains all distinct unordered pairs of con-
nected vertices in G, σ(s, t) is the number of shortest paths
between s and t, and σ(s, t | v) is the number of such paths
that go through v; by “go through” we mean that the path
contains v but neither starts nor ends at v.

Example 1: Consider the formula and primal graph G
depicted in Fig. 1. No shortest path goes through a or e,
hence centrG(a) = centrG(e) = 0. Next, observe that the
shortest paths that go through b are exactly 〈a, b, c〉, 〈a, b, d〉,

a b

c

d

e

Fig. 1. Primal graph of the formula (a ∨ b) ∧ (¬b ∨ c ∨ ¬d) ∧ (c ∨ d ∨ e)

〈a, b, c, e〉, 〈a, b, d, e〉. Moreover, σ(a, c) = σ(a, d) = 1 and
σ(a, e) = 2. Hence we have centrG(b) =

1
1+

1
1+

2
2 = 3. Using

similar reasoning, we can observe for c (and analogously for
d) that the centrality score is centrG(c) =

1
2 + 1

2 = 1.

IV. CENTRALITY-BASED HEURISTICS
FOR MODEL COUNTING

Whenever sharpSAT assigns variables, it splits up (the primal
graph of) the formula under consideration, and it computes
the model count for each resulting component separately. For
deciding which variable to assign, sharpSAT uses the following
heuristic called VSADS. For each variable v in the current
component, it computes the value score(v) as

score(v) = freq(v) + 10 · (act(v) + act(¬v)), (1)

where
• the frequency score freq(v) denotes the number of (posi-

tive or negative) occurrences of v in the residual formula
(i.e., the current component); and

• the activity score act(`), for any literal `, is similar to the
VSIDS score1 of `.

In other words, the only difference to VSIDS is that act(`)
is not initialized to 0 but to the number of occurrences of
` in the original formula (after some basic preprocessing).
After computing the score for each variable of the current
component, sharpSAT will choose a variable with maximum
score and assign it either true of false, depending on which
literal has the higher activity score.

We propose to integrate betweenness centrality into the
variable scores. Specifically, we compute for each variable v
the score

score(v) = freq(v)+ 10 · (act(v)+ act(¬v))+w · centrG(v),
(2)

where G is the primal graph of the original formula, centrG(v)
is the betweenness centrality score of v, and w is some weight
that normalizes the centrality score so that it is at most the
number of clauses in the original formula. The motivation for
this normalization is to have centrality scores that potentially
have the same range as the frequency scores. In preliminary
experiments, we also tested different weights for this and the
other scores, but found that tweaking the weights does not
affect performance greatly.

1Whenever a clause C is learned during CDCL-style search, VSIDS
increments the scores of the variables in C by 1, and it periodically decreases
all scores by a fixed amount, e.g., by multiplying them with 0.95.



As in [28], we use the NetworkX library [35] to compute
the betweenness centrality scores. We do this once before
solving begins (after sharpSAT’s basic preprocessing). As exact
centrality scores may not be necessary for a useful heuristic,
especially for larger formulas it can be advisable to compute
approximate centrality scores. When asked to produce exact
values, NetworkX computes for each node s all shortest paths
originating from s. By using only a part of the vertices (chosen
uniformly at random) as origins for shortest paths, it also offers
the possibility to approximate centrality.

In contrast to [28], who always approximate centrality scores
with n

50 nodes, where n is the number of variables, we use
a more fine-grained criterion: If the graph has 400 nodes or
less, we compute the exact value, otherwise we approximate it
using between 400 and 800 nodes (proportional to the number
of variables). To be precise, we use 800− 4002

n , where n is the
number of variables. However, this exact scheme and the exact
numbers are not crucial for our approach. Nevertheless, we
chose 400 as the number of nodes until which exact values are
computed because the computation then takes very little time
in practice. The upper bound of 800 for the number of nodes
for approximation was chosen because the computation times
are still reasonable and further increases only led to slightly
better values that did not seem to be worth the additional
computation time. Hence increasing these values will most
likely have almost no effect on the performance of the model
counter. We did not encounter any issues with memory in the
computation of the centrality scores.

V. EXPERIMENTS

We empirically evaluate the impact of integrating between-
ness centrality into the decision heuristics of sharpSAT on a
range of typical exact model counting benchmarks. We also
evaluate the importance of the other heuristic components of
sharpSAT with and without using betweenness centrality, and
report on our findings in the following.

For the evaluation, we used the same set of benchmark
instances as in [20], including a wide selection of instances
used for evaluating model counters in earlier papers [13], [14],
[16], [27]; see Table I. The experiments were run under CentOS
7 Linux using Intel Xeon E5-2680 v4 2.4 GHz CPUs with
256 GB RAM. Each run was limited to 30 minutes of CPU time
and 10 GB of memory. The maximum size for the component
cache in sharpSAT was set to 8 GB.

We observed that the centrality scores are usually fast to
compute compared to the solving times. Among the instances
that sharpSAT (default configuration) solved within the resource
limits, the average time for computing centrality scores was 8
seconds, and over all instances 10 seconds. On 22 instances,
centrality computation times out, but no other contestant could
solve those instances either.2

In the experiments, we considered the following variants of
the sharpSAT decision heuristics.

2For such instances, one could approximate centrality over a smaller sample.

• default: The default decision heuristics of sharpSAT (Eq. 1
in Section IV).

• w/centrality: The default decision heuristics of sharp-
SAT with (possibly approximated) betweenness centrality
included as an additive term (Equation 2).

• w/centrality w/o activity: w/centrality with activity
scores removed.

• w/centrality w/o freq: w/centrality with frequency scores
removed.

• centrality only: w/centrality with activity and frequency
scores removed.

• freq only: default with activity scores removed.
• activity only: default with frequency scores removed.
• VSIDS only: like activity only, but all activity scores

initialized to 0.

An overview of the results is presented in Fig. 2 , which
shows the number of solved instances (x-axis) in terms of the
per-instance time limit (y-axis). As a first observation, note that
default and freq only exhibit essentially the same performance.
This interestingly suggests that the activity-score heuristic,
which is a variant of VSIDS, is not a major contributor to the
performance of sharpSAT; furthermore, VSIDS only exhibits
noticeably worse performance. This suggests that solely using
VSIDS as the heuristic is far from a viable option, which is in
stark contrast to modern SAT solvers where VSIDS is widely
recognized and employed as the decision heuristic.

Centrality only, on the other hand, exhibits significantly
better performance than default, freq only, activity only and
VSIDS only. Utilizing all of centrality, frequency and activity
scores together seems to only slightly improve performance
compared to centrality only. We conclude that betweenness
centrality on its own yields both a significantly simpler and
more effective heuristic.

Fig. 3 gives a per-instance runtime comparison of the default
sharpSAT heuristics (y-axis) and the default heuristics boosted
with betweenness centrality. This further corroborates the
benefits of integrating centrality information into the default
heuristics of sharpSAT.

More detailed results per each benchmark domain are
shown in Table I. We observe that integrating centrality
information into sharpSAT significantly improves performance
almost across the board. For a comparison with a state-of-the-
art compilation-based model counter, the table also includes
results for the recent model counter D4 [20]. While overall,
and especially in the Bayesian network domain, the more
recent compilation-based model counter D4 is still faster,
adding centrality information into sharpSAT narrows the gap
and makes the search-based approach competitive in several
domains. As compilation-based model counters, including D4,
are also based on computing a DPLL SAT solver trace, we find
it likely that centrality-based heuristics have potential for further
speeding up compilation-based approaches as well. However,
integration of centrality-based heuristics would require access
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Fig. 3. Per-instance runtime comparison between sharpSAT using its default
heuristic with and without betweenness centrality.

to the source code of D4.3

Finally, we note that the most successful technique reported
in the paper that applies centrality to SAT [28] was integrating
centrality into the clause forgetting mechanism. We also
investigated taking centrality into account for forgetting clauses
in sharpSAT. By default, it deletes the clauses that are most
seldom used for unit propagation. As in [28], instead of using
the activity in unit propagation as the score of a clause, we used

3Unfortunately we have not been able to obtain the source code of D4
despite our efforts to contact the authors.

the average centrality of the variables occurring in it. However,
preliminary experiments showed that this only gives a marginal
benefit, if any; this is potentially due to the fact that clause
forgetting does not appear to play a central role—compared to
the very central component caching—in exact model counters,
which is in stark contrast with the case of CDCL SAT solving.

VI. CONCLUSIONS

We proposed employing betweenness centrality as the basis
of decision heuristics for search-based exact model counters,
motivated by the recent promising results on employing
centrality measures in SAT solvers [28]. We showed that the
performance of sharpSAT, a state-of-the-art implementation of
a search-based exact model counter, noticeably improves when
integrating the centrality measure into its default heuristics.
We also showed that, in contrast to SAT solving, the VSIDS
decision heuristic plays—somewhat surprisingly—a negligible
role in improving the performance of sharpSAT.

In terms of future work, the current results motivate studying
the integration of betweenness centrality also for evaluating
the components cached during search; centrality could make a
difference in terms of component forgetting, i.e., in heuristically
choosing which cached component to forget when the compo-
nent cache runs out of memory during the counting process.
Graph representations other than primal graphs could be
considered as an alternative basis for computing the centrality
scores. We hope that our observations motivate further research
on the non-trivial question of what properties betweenness
centrality captures in CNF formulas as the underlying reason
for the promising results on centrality-based heuristics in both
SAT solving and model counting. Finally, we note that the
recent empirical study [30] took related first steps on the relative
impact of betweenness centrality and hypergraph partitioning as
basis for heuristics in the context top-down compilation of finite-
domain constraint networks into decomposable multi-valued
decision graphs. We believe it could be insightful to study in-
depth—both empirically as well as more theoretically towards
a more rigorous understanding of—the relationship between
graph centrality measures and graph partitioning techniques
such as the one employed in the D4 compiler in the focused
context of #SAT.
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